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Summary. The purpose of this note is threefold: i ) to derive the new function- *
al equation,

—(1—-w)(1 —d))]l’:/lk[/la)—l-(b—wc?)]'h'_"[id)+a)—wc?)]'CU';k
(04D —wd)?* pP,
which couples the nonzero eigenvalues of the USSOR iteration matrix T, ,
with the eigenvalues u of the associated block Jacobi matrix B in the p-cyclic
case, ii) to interpret the exponent k in this equation by means of graph

theory, and iii) to connect the above equation with known results in the
literature.

Subject Classifications: AMS(MOS) 65F10; CR: G.1.

1 Introduction

There have been a number of recent research articles, all concerned with the
symmetric successive overrelaxation (SSOR) iterative method and the unsym-
metric successive overrelaxation (USSOR) iterative method, applied to p-cyclic
matrices. These research articles give generalizations of the following functional
equation, derived by Varga et al. [4]:

[A—(1—w) P =A[A+1— 0] 22— w)? o’ 2, (1.1)

which connects the eigenvalues 4 of the associated SSOR matrix S, to the
eigenvalues u of a particular weakly cyclic of index p Jacobi matrix B (where
p=2). Of course, the functional equation (1.1) strongly resembles in character
the related well-known functional equations

A+to—1) =lw?*u? (1.2)
of Young [7, 8], and
A+o—1)P="1wf u? (1.2)
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of Varga [5, 6], which similarly connect the eigenvalues 4 of an associated
successive overrelaxation matrix %, to the eigenvalues u of a consistently
ordered weakly cyclic of index p Jacobi matrix B (where p=2).

The purpose of this note is threefold. First, we develop the following new
functional equation (cf. also (2.1) of Theorem 1):

—(—0)(1—d) "= [Ao+d—wd] *[ld+o—nd]w ¢
(w+d—wd) e, (1.3)

which serves to generalize and unify all the recent research articles on the SSOR
and USSOR iterative methods applied to a block p-cyclic matrix. Second, we
give a graph-theoretic interpretation of the exponent k in the equation above.
As it turns out, a similar analysis applies to a graph-theoretic interpretation
for the associated known SOR case. (This is remarked in §2.) Finally, (1.3)
and Theorem 1 generalize the recent result of Gong and Cai [1] on the SSOR
iterative method for p-cyclic matrices, which has been published only in Chinese.
Our final purpose in this note is to connect our new Theorem 1 with known
results in the literature, and to bring this result of Gong and Cai [1] to a
larger audience.

For the remainder of this section, we give background and notation for
our problem. For the iterative solution of the matrix equation

Ax=Kk, (1.4)

where A4 is a given nxn complex matrix, assume that the matrix 4 can be
written in block-partitioned form as

Ay Ay, o Ay,

A A .. A
I (1.5

Ap,l AP,Z Ap,p

where each diagonal submatrix A4, ; is square and nonsingular (1<i<p). (We
assume throughout that p=2.) With

D:dlag [Al, 1> A2,2’ s Ap,p]s
the associated block-Jacobi matrix B is defined by
B:=I-D"1A4, (1.6)

which we can write, from the partitioning in (1.5), as

0 B,, .. B,
B 0O .. B

B=[B,]=| ' . (1.7)
B, B,, ... O
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As the block diagonal submatrices of B are by definition all null, we can also
express B as the sum

B=L+U, (1.8)

where L and U are respectively strictly lower and strictly upper triangular matri-
ces.

From (1.8), the associated unsymmetric successive overrelaxation (USSOR)
iteration matrix T, , is then defined by

Ty o=I—OU) '[1—) [+OLII—0L) ' [1—w)[+0U], (19)

where @ and @ are relaxation parameters. The associated symmetric successive
overrelaxation (SSOR) iteration matrix S, for (1.8) reduces to the case when
w=ao in (1.9), ie.,

So=T, o. (1.10)

Our interest here is in the case where the block-Jacobi matrix B of (1.7)
has the property that there is a cyclic permutation (a 1-1 onto mapping) of
the integers {1,2,..., p}, expressed in cyclic form as ¢=(0,, 0,,...,0,), such
that

B, =0 forall k+o;,, (1=j,k=p), (1.11)

where ,,,:=0,. It is easily seen that if the block-partitioned matrix B of (1.7)
satisfies (1.11), then B is weakly cyclic of index p (cf. [6, p. 39]), and, conversely,
if the partitioned matrix B is weakly cyclic of index p, then B satisfies (1.11)
for a suitable cyclic permutation ¢. Thus, we define the block-partitioned matrix
B of (1.7) to be a weakly cyclic matrix generated by the cyclic permutation o =(o,
0y, ...,0,) if (1.11) is satisfied. (We do remark that a block-partitioned matrix
B, which is weakly cyclic of index p, can, for a different partitioning of B,
be weakly cyclic of some index p’ with p'+p.)

Assume that B=L+ U of (1.7) is a weakly cyclic of index p matrix generated
by a cyclic permutation 0 =(0,, 0, ..., 0,), so that (1.11) is valid. Then, it follows
from (1.11) that B” is a block-diagonal matrix whose ¢;-th diagonal block is
given by the product

Ba'j,ﬂ'j+1.BO'J'+1,O']‘+2."BG'J‘+I7'“1,O'J‘ (1§]§p): (112)

where 0;:=0;_, if i>p. To avoid trivial cases, we further assume that none

of the square matrices in (1.12) is a null matrix. This implies that

B, o FO  (15j=p). (1.13)
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Then, with the cyclic permutation 6= (g,, 0,, ..., 6,), we define its associated
disjoint subsets {; and {y of {1,2,...,p} as

CL::{aj:aj>aj+1}’ 1.14
{CU‘:{Gj:01<Jj+1}- .14

With |R| denoting the cardinality of an arbitrary set R, then, by definition,
|¢,| and |{y| are precisely the number of nonzero block submatrices of B which
are in L and in U, respectively. Also, as {; u{y=1{1,2,...,p} and as {, n{y=0,
then

¢l +1Cul=p. (1.15)

To determine which entries of the product LU, for the block-partitioning
of (1.7), are nonzero, we define the disjoint (and possibly empty) subsets 7,
and 5y of {y as

{W]L=={O'j:0'j_1>O'j,6j+1>0'j, and 0;_;>0;,,} (1.16)

nu={0j:0;_,>0;,0;.1>0;, and 0; 1<0;,}, (whereoy:=0,).

Again by definition, |;| and |ny| are precisely the number of nonzero block
submatrices of LU which occur in the strictly block-lower and strictly block-
upper triangular parts, respectively, of the partitioning for LU. We further set

if p>2
k::{lnLIJrlnul if p>2, (1.17)

1 if p=2.

If I is such that o,=1, then evidently ¢,_; >0, and o,, >0, so that (cf. (1.16)
o, is necessarily either an element of 5, or of ny for p>2. Consequently, (cf.
(1.17)), k=1 if p>2. Similarly, if o, satisfies ¢,_, >0, and 0,,, > 0;, then neither
0,_, nor o, , can be an element of n, or yy, so that k<[[p/2]], giving

1=k=[lp/2]], (1.18)

where [[x]] denotes the integer part of a real number x. As can be verified,
k is precisely the number of nonzero block submatrices of LU. It is further
evident that |{;|=k and |{y| = k.

We finally give in this section a directed graph interpretation of the positive
integer k of (1.17). Specifically, let G,[B] denote the directed graph of type
2 for the block-partitioned matrix B of (1.7), ie., (cf. [6, p. 121]), we associate
with the matrix B of (1.7) a directed graph with p vertices, V;, V,, ..., V,, where
an arc from vertex V; to the vertex V; is drawn with a double arrow only if
B; ;%0 and if j>i, while an arc from vertex V; to the vertex V; is drawn with
a single arrow only if B; ;%0 and if j<i. Then, for any simple closed path
of length p starting at any vertex V; and ending at the same vertex V; (this
path consisting of consecutive single- and/or double-arrowed arcs), the positive
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integer k of (1.17) is precisely the number of times (in travelling this closed
path) that a double-arrowed arc follows a single-arrowed arc. This will be illus-
trated in three examples in §2.

2 Statement of Main Result and Discussion

With the notations and definitions of § 1, our main result is

Theorem 1. Assume that the block-partitioned matrix A of (1.5) is such that all
diagonal submatrices A; ; are square and nonsingular (1<i<p), and assume that
its block-Jacobi matrix B of (1.7) is a weakly cyclic matrix of index p, generated
by the cyclic permutation 6=(0,, 05, ...,0,). If 0+d—wd=*0, if A is an nonzero
eigenvalue of the USSOR matrix T, , of (1.9), and if u satisfies

[~ (1 —w)(1—3) P = F*[Ao+d— 0 d] [ 1d+w—wd] el
(o +d—wd)** ur, (2.1)

(where k, |, |, and |{y| are defined from o in §1, and where the convention 0°:=1
is used in (2.1)), then p is an eigenvalue of B. Conversely, if u is an eigenvalue
of B and if 1 satisfies (2.1), then 1 is an eigenvalue of T,

The proof of this theorem will be given in §3. We remark that in the case
w=a, (2.1) reduces with (1.15) to

[A—(1—w)*]? =24[A+1—w]P~ 22— w)?* w? 2, 2.1')

which was given in Gong and Cai [1, Eq. (1.4)].
To complete this section, we show how this new functional Eq. (2.1) relates
to recent results in this area.

Example 1. Consider the block-partitioned Jacobi matrix B, given by

o o .. o B,
B,, O o o

B=| 0 B,, ol 2.2)
K O\Bm,_l 0 |

where p=2. In this case, B, is a weakly cyclic of index p matrix, generated
by the cyclic permutation (1, p, p—1,...,3, 2). From the definitions of §1, we
have

{e={23,...,p} and |{|=p—1; (p={1} and |[{y|=1,

p>2: n,=0 and |5, |=0; ny=1{1} and |ny|=1; k
p=2: n,=0 and |5 |=0; np=0  and |ny|=0; k

1
1.

For the case p=6, the block-directed graph of type 2 for the matrix B, of
(2.2) is shown below in Fig. 1.
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~F

In this case, the functional Eq. (2.1) reduces to
U—(1—o)(1—d)P=[lo+d—0d]? *(0+d—wd)* i, (2.3)

which is the functional equation for T, ,, derived by Saridakis [3], for the
block-Jacobi matrix of (2.2).

Example 2. Consider the block-partitioned Jacobi matrix B, given by

(0] B, 0] 0
(0] 0] B,; .. 0
B,=| : \ Lo (2.4)
o o0 o0 B, i,
B,y 0 0 .. ™0

In this case, B, is a weakly cyclic of index p matrix generated by the cyclic
permutation (1, 2, ..., p), and we have

CLz{p} and ICLI=1’ €U={1)27’p_1} and ]CUlzp_la
p>2: n,={1} and |n|=1; #ny=0 and |ny|=0; k=1,
p=2:n,=0 and | |=0; #ny=0 and |ny|=0; k=1

For the case p=6, the block-directed graph of type 2 for the matrix B, of
(2.4) is shown below in Fig. 2.
In this case, the functional Eq. (2.1) reduces to

—(l—w)(1—d)P=A[Ad+0—wd]? 2(0+d—wnd)? 1. (2.5)

For the special case w =0, the above functional equation (for S,) was obtained
in Varga et al. [4]. For general w and &, (2.5) was also obtained by Saridakis

[3].

Example 3. Consider the block-partitioned Jacobi matrix B; given by

By= il (2.6)
B, O 0 0O

In this case, B; is a weakly cyclic of order 4 matrix generated by the cyclic
permutation (1, 3, 2, 4). Thus,

(p=1{3,4} and |{|=2; (y={1,2} and |{y]=2,
ne={1} and |n |=1; #ny={2} and |pyl=1; k=2,

and the block-directed graph of type 2 for the matrix B; of (2.6) is given in
Fig. 3.
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vy

A2
Fig. 1. G,(B,)

vl.
Fig. 2. G,(B,)

v, Vs

VZ
Fig. 3. G,(B)

In this case, the functional Eq. (2.1) reduces to

[—(1—0)(1—d)]*=12(0+d—wd)* u*.

115

2.7)

For the special case w =, the above functional equation was obtained in Varga,
etal. [4, Eq. (2.36)], and, again for w=d, was given as an example in Gong

and Cai [1, Eq. (1.6)].
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As mentioned in §1, we can also apply the above graph-theoretic ideas
to the analysis of the SOR (successive overrelaxation) iterative method. Specifi-
cally, associated with the block-Jacobi matrix B of (1.6)«1.8) for the matrix
problem (1.4), is the well-known SOR iteration matrix %, defined by

Z=(I—wL) '[(1—w) [+oU]. (2.8)

If B is a weakly cyclic matrix of index p, generated by the cyclic permutation
(6,03, ..., 0,), then the functional equation (analogous to (1.2), (1.2), and (2.1)),
which couples the eigenvalues p of B to the eigenvalues 4 of %, is known
(cf. Nickel and Fox [2] and [6, p. 109, Exercise 2]) to be

A+o—1Y=71 0P pu’. (2.9)

It turns out (as is easily seen) that the exponent 7 in (2.9) is precisely |{;|,
and |{,| is, from our discussions in §1, exactly the number of nonzero lower
triangular block submatrices of B. Equivalently, in terms of the associated di-
rected graph G,(B) of type 2 described in §1, t is precisely the number of single-
arrowed arcs in any simple closed path of length p starting at any vertex V;
and ending at the same vertex V;.

3 Proof of the Theorem

It can be verified from (1.9) that
M—T, ,=(I—-0U)" '(I—wL)™ ' (yI—aL—pU—06LU), (3.1)

where
—(1—o)(1-d),
a=lo+d—w,
fi=ld+w—wd,
o=1—-A)wd. (3.2)

Hence, A is an eigenvalue of T,, , if and only if
det{yl—aL—BU—6LU}=0. (3.3)

Before we prove Theorem 1, we first establish Lemmas 2, 3, and 4. For notation,
we introduce two p x p block-partitioned matrices H,=[H; ;] and Hy: =[H nils
associated with the block-partitioned matrix B of (1.7), where

B, if heny,
H. . = ’ N 34
b { O  otherwise, 34)

and

~ .::{B"’f if heny, (3.5)

(0] otherwise.
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For example, in the case of B3 of (2.6), we have

O O 0 O O 0 0O o
O 0 0 O 0O 0 O

HL_ P HU: B2°4 .
O O 0 0 O 0O 0O O
B,, 0 0 O 0O 0 0 o0

Lemma 2. Let B=L+U of (1.7) be a weakly cyclic of index p matrix, generated
by a cyclic permutation ¢ =(0,, 6,,...,0,). Then, for arbitrary complex numbers
o, B, 6 and & with %0 and S0,

det{yI—aL—pU—-36LU}

:det{yl—(“ﬁ;M)HL—a(L—HL)_<3‘E:—Vé)HU-ﬁ(U_HU)}, (3.6)

where the matrices H; and Hy are defined in (3.4) and (3.5).

Proof. With (1.8), set .
E:=yl—aL—BU-6LU. 3.7

As we shall see, eliminating from the matrix E (by means of elementary block-row
and block-column transformations applied to the matrix E) those nonzero sub-
matrices of LU :=[C, ;], will directly give the desired result of (3.6).

It follows from the definition of #, and ny (cf. (1.16)) that for each C; ;%0
with i>j (in the lower triangular part of LU), there exists a unique h in 7,
such that C; ;= B, , B, ;. Focusing on the six associated submatrices in E (name-
ly, E, 4, Ey, j, Ey;and E; ,, E; ;, E; ;) we have from the form of E that

Yy ... — BB, ; .. O

E- . (338)

-(XB“, —5Bi,hBh,j yli,i

Because 40 by assumption, consider the lower block-triangular matrix Q,
defined by

[1,, o 0 0|
0| ° 5 \ - (3.9)
O _EBi’h Ii,i O
o o o 1I,,
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where Q has a sole nonzero block, i.e, —dB; ,/f, in its strictly lower block-
triangular part. Then, it is easily seen that the matrix product QE (corresponding
to an elementary block-row transformation of E) satisfies

y0
i
so that the submatrix C; ; has been reduced to zero in this step. In this fashion,
all nonzero submatrices C; ; (with i>j) can be eliminated by such blow-row
elementary transformations, and the resulting lower triangular part of the trans-
formed matrix E is —(y6/8) H,—a«L. Similarly, for all nonzero submatrices
C; ; in the upper triangular part (i<j) of LU, we apply corresponding block-
column elementary transformations to E. Then, the resulting upper triangular

part in E becomes —(yd/x) Hy— BU. As such elementary transformations leave
the associated determinants univariant, the lemma is proved. []

det(QE)=det E; (QE); ;=0; (QE);,n=—"75 H; y—o L,

Lemma 3. Let B=L+U of (1.7) be a weakly cyclic of index p matrix generated
by a cyclic permutation 6 =(0,, 05, ...,d,). Then, for arbitrary complex numbers
v, a, b, ¢, and d,

det{yl—aH, —b(L—H;)—cHy—d(U—Hy)}

=det{yl —t'/" B}, (3.10)

where t:=ql"t! plil=Inel clnol glevl=lnol “\where the matrices H; and Hy are defined
in (3.4) and (3.5), and where the convention 0°=1 is used in the definition of t.

Proof. Assume first that abcd=0. We define the p x p block-partitioned matrix
M(a, b, ¢, d) by

M(a, b, c,d):=t P {aH, +b(L—H,)+cHy+d(U—Hy)}. (3.11)

On comparing the matrix M:=M (a, b, ¢, d) with the matrix B, it is easily seen
that the matrix M has exactly the same partitioning structure as the matrix
B, except for scalar multipliers of its nonzero submatrices. Thus, M is a weakly
cyclic of index p matrix, generated by the same permutation 6=(g;, 05, ...,0)),
and M? and BP are both block-diagonal matrices having the same diagonal
submatrices, except for scalar multipliers. Since there are |, | and |ny| nonzero
submatrices in the matrices H, and Hy, respectively, then there are |{;|—|#|
and |{y| —|ny| nonzero submatrices in matrices L—H, and U — Hy, respectively.
Recalling from (1.15) that |{;|+|{y|=p, it follows from the definition of ¢ and
by direct computation that the scalar multiplier of each diagonal submatrix
in M? is
t~1 al'lL| b|CL| —Incl CI'IU| dlCU| —lnul — 1.

Thus,
[M(a,b,c,d)]" =B, (3.12)
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and the eigenvalues of matrix M(a, b, ¢, d) are independent of a, b, ¢, and d.
Note that as M (1, 1,1, 1)=B, we have

det{yI—t'? M(a, b, ¢, d)} =det {yI-t'/" B}, (3.13)

which is the desired result of (3.10) when abcd+0.

The remaining case, abcd=0, similarly follows by continuity since both
sides of (3.10) are continuous functions of the parameters a, b, ¢, and d. For
example, if, as in Example 1, |{y]|=1=|ny|, then d*v!~Ivl=1 for all d+0. Thus,
on letting d — 0, d'*v!~ vl arising as a factor of ¢ in (3.10), has the value unity
(which explains our use of the convention 0°:=1). []

By applying Lemma 2 and Lemma 3, we can establish the following result,
Lemma 4, which gives a general determinantal invariance associated with weakly
cyclic of index p matrices.

Lemma 4. Let B=L+U of (1.7) be a weakly cyclic of index p matrix, generated .
by a cyclic permutation 6 =(0,, 6,,...,0,). Then, for arbitrary complex numbers
o, ﬂ; Vﬁ and 53

det{yI —aL—BU—06 LU} =det{yl —[ol*c! =¥ plivI=k (o g 47 5)<]'/» B}, (3.14)
where |{,|, |{y| and k are as defined in §1, and where the convention 0°:=1 is
used in (3.14).

Proof. For a+0 and 40, Lemma 4 is the straightforward consequence of
(1.17) and Lemmas 2 and 3. As in the proof of Lemma 3, continuity considera-
tions then allow us to extend (3.14) to cases when a=0 and =0, provided
that the convention 0°:=1is used. []

This brings us to the

Proof of Theorem 1. If ¢(1)=det(AI—T, ), then ¢(A)=det{yl—olL
—BU—=6LU] from (3.1). Thus, from (3.14) of Lemma 4, we further have

¢ (A)=det{yI —[alr!=* pitvI =k (o B+ 5 5Y]'/7 B}. (3.15)

As remarked at the very beginning of this section, 4 is an eigenvalue of T, ,
if and only if ¢(21)=0, i.e. (cf. (3.15)), if and only if

det {T — [l =¥ Bltvl k(5 B4y 5] /P B} =0, (3.16)

Now, the proof follows the procedure of the proof of (1.2) (cf. [6, Th. 4.3]).
First, from the definitions of (3.2), there follows

af+y0=Aw+d—wd) (3.17)
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Since B is weakly cyclic of index p, it follows from (3.15), (3.2), and Romanovsky’s
Theorem (cf. [6, p. 40]) that

d)(j-):))m ]:] {yP_OCICLI*k ﬁlgU!‘k((Xﬂ—i—yé)k uf’}

=[0—(1-o)=d)]" [[{[Z-(1-o)1-d)]
— M o+d—wd) lo+d—wd)H *Ad+o—wd) v Fur,  (3.18)

where the y; are nonzero eigenvalue of B if r=1 and where m is a nonnegative
integer. To establish the second part of this theorem, let u be an eigenvalue
of B and let 1 satisfy (2.1). Then, one of the factors of ¢ (1) of (3.18) vanishes,
proving that 1 is an eigenvalue of T, ,, the desired second part of Theorem 1.
To establish the first part of Theorem 1, let w+d—wd=+0 and let 4 be an
nonzero eigenvalue of T, ,. It follows that at least one factor of (3.18) vanishes.
It is convenient to note that (2.1), from (3.2) and (3.17), can be expressded as

y =2k ol =k gleul k() + o — w d)** pP. (3.19)

If 0 and u satisfies (3.19), then, assuming in addition that ¢ =0, we must
have that y=24—(1—w)(1 —d)=0. Thus, (2.1) is valid for some nonzero p; where
1<i<r. Combining this with (2.1), we have that y?=puP. Taking pth roots,
then

= p; €7, (3.20)

where s is a nonnegative integer satisfying 0 <s<p. But, from the weakly cyclic
of index p nature of the matrix B, it is evident that u is also an eigenvalue
of B, which is the desired first part of Theorem 1. To conclude the proof, if
w+d—wd+0,if A is a nonzero eigenvalue of T, ,, and if u=0 satisfies (3.19),
then we must show that u=0 is an eigenvalue of B. But with these hypotheses
and a0, it is evident from (3.19) that y=0. In this case, (3.16) reduces to

det { — [oée! 7F BILvI =k Jk () + ) — iy 9)?*] /P B} =0. (3.21)

But, as the multiplicative factor of B in (3.21) is nonzero, then det B=0. Hence,
u=0 is an eigenvalue of B which is again the desired first part of Theorem
1, under the added assumption that « f+0. To establish the first part of Theorem
1 when a8=0 is similar but tedious, and this is omitted. []
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