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We investigate here a new numerical method, based on the Laguerre inequalities, for
determining lower bounds for the de Bruijn-Newman constant A, which is related to the
Riemann Hypothesis. (Specifically, the truth of the Riemann Hypothesis would imply that
A < 0.) Unlike previous methods which involved either finding nonreal zeros of associated
Jensen polynomials or finding nonreal zeros of a certain real entire function, this new
method depends only on evaluating, in real arithmetic, the Laguerre difference

’ 2 r T
Ly(H\(x))= (H/\(“‘)) —H(x) H{(x) (x,A€R),
where H\(z):= [§ e*®(1) cos(tz) dt is a real entire function. We apply this method to
obtain the new lower bound for A,

-0.0991 < A,
which improves all previously published lower bounds for A.
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1. Introduction

The purpose of this paper is twofold: (i) to give a new constructive method for
finding lower bounds for the de Bruijn-Newman constant A, which is related to
the Riemann Hypothesis, and (ii) to apply this method to obtain a new lower
bound for A.

For background, if {(z) denotes the Riemann {-function, it is known (cf.
Titchmarsh [18, pp. 13, 30, and 45)) that {(z) has the “trivial” simple real zeros
{—=2k)7_,, and all remaining zeros, which are nonreal and infinite in number, lie
in the “critical” strip 0 < Re z < 1. The Riemann Hypothesis is the statement
that all the zeros of {(z) in this critical strip lie precisely on the line Re z = 1/2.
With Riemann’s definition of his &-function, i.e.,

1

: 2 1 —epp-pap] 2 1 1
§(12)5=§(Z —Z)’rf F(§+Z)§(z+—2-), (1.1)
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it can be seen from (1.1) that the Riemann Hypothesis is equivalent to the
statement that all zeros of &(z) are real. It is further known that £(z) is an even
entire function of order 1 (cf. [18, pp. 16, 29)), and that £(z) admits the integral
representation (cf. Pélya [14, p. 11] or [18, p. 255]) of the form

g(%)/g-—-fow@(t) cos(xt) dt (x€C), (12)
where
D(t) = i (2m2nte® — 3wn? %) exp(—wn’ e*) (0<t<). (1.3)

For properties of @(¢), we have (cf. Pdlya [14] or Csordas, Norfolk, and Varga
[4, Theorem A]) that

(i)  @(z) is analytic in the strip [Im z| <7 /8;

(i) @(t)=®(—t)and &(t)>0 (tER);

(i) for any € >0, lim @™(¢) exp[(m—€) e*] =0 (n=0,1,--").
t—w

As in Csordas, Norfolk, and Varga [5], the entire function H,(x) is defined by
Hy(x)= [ ¢®(1) cos(xt) dt (AeR;x0), (1.5)
0
so that from (1.2),

Hyx) =€ 5)/8. (1.6)

It was shown in [5, Appendix A] that for each real A, H (x), as defined in (1.5),
is an even real entire function of order 1 and of maximal type (i.e., its type (cf.
Boas [1, p. 8)) is infinite). We note from (1.6), that the Riemann Hypothesis is
equivalent to the statement that all zeros of H(x) are real.

Next, de Bruijn [3] in 1950 established that

(i)  H,(x) has only real zeros for A >1/2;
(i) if H,(x) has only real zeros for some real A, then (1.7)
H,(x) also has only real zeros for any A" > A.
In particular, we see from (1.7(ii)) that if the Riemann Hypothesis is true, then

H (x) must possess only real zeros for any A > 0. In 1976, C.M. Newman [11]
showed that there exists a real number A, satisfying —» <A <1/2, such that

(i)  H,(x) has only real zeros if and only if A > A;

(1.8)

(i) H,(x) has some nonreal zeros if and only if A <A.

This constant A has been called in [5] the de Bruijn-Newman constant. Note that



G. Csordas et al. / The Laguerre inequalities with applications 307

if the Riemann Hypothesis is true, then from (1.8(i)), A would satisfy A < 0. (In
[11], Newman offers the complementary conjecture that A > 0.)

Because of the relationship of A to the Riemann Hypothesis, there has been
recent interest in determining lower bounds for A. The first constructive lower

bound,

-50<A,
was given in 1988 in [5]. Subsequently, te Riele [16] has given in 1991 strong
numerical evidence that

-5<A.
Most recently, Varga, Norfolk, and Ruttan [19] have shown that

~0.385 <A,
using a tracking technique which yielded a nonreal zero of the function F,(z),
defined by

F(z)=[ (1) cosh(n/Z) di (A€ R; z€C),
0

where the entire function F, of (1.9) and H, of (1.5) are related (cf. [19])
through
F(-z?)=H\(z) (A€eR; z€0). (1.10)

As stated earlier, our purpose here is to define a new constructive method for
finding lower bounds for A, and to apply this method to obtain a new lower
bound for A. This new lower bound, to be established in §3, is the result of

THEOREM 1
If A is the de Bruijn-Newman constant, then

~0.0991 < A. (1.11)

In the next section, we define the functions in the Laguerre-Pdélya class and
the Laguerre differences.

2. The Laguerre-Pdlya Class and the Laguerre inequalities

Since H,(x) of (1.5) is a real entire function of order 1, then the relation in
(1.10) shows that the function F(z) of (1.9) is a real entire function of order
1/2. Consequently (cf. [1, p. 24]), F(z) has infinitely many zeros which, with
(1.10), implies that H,(x) also has infinitely many zeros. Denoting the zeros of
F(z) by {z,(A)};_,, then as none of these zeros can be at the origin since (cf.

(14() .
FO)=[ eMo()di>0 (AeR),
4}



308 G. Csordas et al. / The Laguerre inequalities with applications

these zeros of F,(z) can be arranged so that
O<lz (M) <lz(A)] -+ (A €R).

Hence, the Hadamard factorization theorem, applied to F,(z), gives that F(z)
can be represented as

A= e (1=

Thus, from (1.10), the entire function H,(x) can be similarly expressed in the
form
2

H(x)= C(/\)Hfj1 1- -;;(—/\—)—) (A eR, x2(A) = —-z,(1)), (2.2)

where 0 < [x,(A)] < [x,(A)] < -+, with Z°_, | x,(A) | > <o,
Next, the Laguerre-Polya class is defined as the collection of all entire
functions f(x) which can be expressed in the following form:

) where i Iz, (A)] ! <o, (2.1)

n=1

flx) =C emetepe "H(l__) T (0swse), (23)

J

where a > 0, 8 and C are real numbers, n is a nonnegative integer, and the x;’s
are real and nonzero which satisfy 0 <|x | <|x,| < -+ and E¥_ x? <o,
(For any such entire function f(x), we write f&.#— £.) With this notation, it
follows from (2.2) that (1.8) can be equivalently expressed succinctly as

H e /—% ifandonlyif A > A. (2.4)

By way of notation, for any real entire function g(x), we set
k+n[2n) (k) (2n—k)
LAs() = G Z (=) [ 27| g 4008~ (x)

(xER,n:O,1,~--), (2.5)

and we term L, (g(x)) the n'" Laguerre difference for g(x). The following result
of Csordas and Varga [6], giving necessary and sufficient conditions in terms of
Laguerre differences for certain real entire functions to be in the Laguerre-Pdlya
class, extends results of Obreschkoff [12], Patrick [13], and Skovgaard [17].

THEOREM A (6]
Let

f(z)=e"g(z), (2.6)
where a > 0 and where g(z)(# 0) is a real entire function of genus 0 or 1. Then,
feL~F if and only if (cf. (2.5))

L(fP(x))>0 (x€R;n=0,1---;p=0,1,---). (2.7)
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If n=1and p =0, then (2.7) of Theorem A reduces from (2.5) to
Li(f(x)=(f'(x)"=f(x)f"(x) 20 (xeR), (28)

and the inequality (2.8) is called, in the literature, the Laguerre inequality for
f(x). Thus, Theorem A asserts, in particular, that if fe_Z— &, then the
Laguerre inequality of (2.8) necessarily holds. Clearly, (2.8) is only a necessary
condition for a real entire function f(x) to belong to the Laguerre-Pdlya class.
Indeed, if

h(x)=e* —e**, so that K'P(x)=e*—27e** (p=0,1,--), (2.9)
then
L (hP(x))=27e*>0 (x€R; p=0,1,---), (2.10)

so that A(x), as well as all its derivatives, satisfy the Laguerre inequality of (2.8).
But, it is evident that A”(x) is not an element in £— & for any p=
0, 1,---,since A'?(x), from (2.9), has the nonreal zeros —p log 2 + 2mik (k =
+ ]’ + 2’ e )

On combining (2.4) and the special case n=1 and p=0 of (2.8) from
Theorem A, we immediately have the result of

PROPOSITION 2
Suppose that, for some real A and for some real x, the real entire function H, of
(1.5) satisfies

L(H,(x))<0. (2.11)
Then (cf. (2.4)),
A <AL (2.12)

The proof of Theorem 1 in §3 is explicitly based on Proposition 2, where, for
the particular choice A == —0.0991 and for a particular real X (cf. (3.12)), it will
be shown that L,(H{ X)) <0; whence (cf. (2.12)), A <A, which is the desired
result of (1.11) of Theorem 1.

It may be asked here why the particular Laguerre difference L,(g) in (2.11)
was singled out in Proposition 2, since, from Theorem A, any Laguerre
difference L,(g) with L,(H,(x)) <0 could have been used. A reason for this
choice is given in Lemma 3 below.

LEMMA 3
Let g(x) be a real entire function, and define

f(x)= {(x —a)2 +[32lmg(x) (e € R, B> 0, ma positive integer ),
(2.13)



310 G. Csordas et al. / The Laguerre inequalities with applications

so that « + if3 are two nonreal zeros of order m of f(x). If g(a) # 0, then

Ly(f(a)) = —2mB*"~2(g(a))’ +B*"L,(g()). (2.14;
Thus, if
2m(g(a))’
M = Ll(g(a)) , if Ll(g(a))>0’ ~(2'15)
oo, i Ly(g(a)) <0.
then
L(f(a)) <0 forall 0<p <M. (2.16)
Proof

A straightforward calculation using logarithmic differentiation and the fact
that f(a) =B*"g(a), directly gives (2.14), which, with (2.15), then yields (2.16).
ad

The result (2.16) of Lemma 3 can be paraphrased as follows: a pair of
conjugate complex zeros « +i8 of f(x) of (2.13), when B> 0 is sufficiently
small, forces L,(f(a)) to be negative. This will play an essential role in our new
numerical method for finding lower bounds for the de Bruijn-Newman constant
A, which will be described in detail in §4.

3. Proof of Theorem 1

It is known, from the impressive computations of van de Lune, te Riele, and
Winter [9], that the first T := 1,500,000,001 nontrivial zeros of the Riemann
{-function in the upper critical strip 0 < Re z < 1 with Im z > 0, are all of the
form

pn=7%+1iy, where 0<y, <y, < -+ <yp, (3.1)

and that all these zeros are simple, i.e., {'(p,) # 0. This, coupled with (1.1) and
(1.6), gives (since H,(x) is an even function for any A real) that

(i) Hy(-2y,)=0 (n=1,2,...,T), and

(i) H{(=2y,)#0 (n=1,2,---,T). (3.2)

Since the zeros {p,}[_, of {(z) in (3.1) are all simple, then

7= 108" (P17 (3-3)
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is a well-defined positive real number for each n =1, 2,-- -, T. Thus, from (1.1),
(1.6) and (3.3), a calculation shows that

Lol 1T (p,/2)]
32771/47'"

!Hé("Z‘)’n)l= (n=1!2)"'>T)’ (3°4)

where the relationship in (3.4) will be used below.

In Table 1 of te Riele [15], one finds the numbers {y,)}>%°, accurate to
approximately 28 significant digits, and in Table 2 of [15], one finds the numbers
{r,}138% accurate to approximately 10 significant digits. Concentrating on the

particularly close pair of zeros of {(z), namely

. 1 .
P22 = % +iyy, and py3 =3 +ivys, (3.5)

we have, from [15, Table 1], that

Y1, = 415. 01880 97551 55115 64631 92115, i
y,1s = 415. 45521 49962 94598 85712 87825, (3.6)
while from [15, Table 2], we have (cf. (3.3))
712 = 0.14878 74760 X 102
212 (3.
713 = 0.12561 94402 X 1072,

Hence, with the complex form of Stirling’s formula (cf. Henrici [7, p. 377)), i.e.,
I(z)=V2m exp[(z —%) In z-z] '@, (3.8)

where the Binet function J(z) in (3.8) has the asymptotic representation (cf. [7,
p. 359])

; 1 1 1
J ~ - + — 4.
(2= 137 7 36027 ¥ T2602% 168027
(z » o with |arg z | <7 /2), (3.9)

it is possible from (3.4) to estimate | Hy(—2v,;,)| and | Hj(—2v,,3)|. Indeed,
we find that

| H{(=27,,) ] = 1.18968... x 10~ 135,

3.10
| H§(—2y213) | =1.00098... x 107138, (3.10)

It is the smallness of the two numbers in (3.10) which prompted our use of
high-precision in our numerical calculations, to be discussed in §4 and §5.
This brings us to the
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With (1.5), we see that
H(x) = j; e*d(1) cos(xt) dr,

H{(x)= ~ [ 1 ®(¢) sin(xt) d, (3.11)
0

H!(x)= —/O 12 eMP(¢) cos(xt) dt.

For the particular values

X = —830.51222 23698 70977 76903 53 and A = —0.0991, (3.12)

the integrals {H{”(X)}’, from (3.11) were numerically determined, each to an
absolute accuracy (cf. §6) of 1072 using 210 digit floating point arithmetic. The
calculated approximations are

Hi(X) = —6.69844 92854 36698 50022 46215 55350 75726 97379 36465

24345 31495 72840 88049 22773 35031 74716 55792
12935 13450 08355 25610 96074 40992 74294 85514
96610 14950 89343 68520 06031 51781 54358 86512
57173 87696 46318 14500 26289 08756 4258 E-143,
H{(X) = —8.30046 96964 81693 93998 18551 31834 89533 94361 64158

17471 35631 81922 57659 58807 08167 39482 48240
64016 57319 47243 57671 23339 45055 51722 18218
74313 34850 98125 67169 99313 90861 09051 59390
33845 43089 00053 68532 20245 75207 1103 E-156,
H{(X) = —2.29889 40844 83868 42954 59661 54783 43796 56798 41808

60451 74239 61487 51577 21096 52957 35073 02363
25673 65141 03585 83713 33482 17015 95085 22944
85914 18790 21836 12152 38568 11604 93831 13554
75425 73952 49006 47667 45243 55758 0477 E-138.

(3.13)

The magnitude of these numbers, together with the magnitude of the absolute
error of the calculation, yields that the approximations given in (3.13) must
agree with the actual values of Hyx), H{(x) and H{(x) to at least 43
significant digits (43 =200 — 156 — 1). With these numbers {H{’(X)}7,, the
Laguerre difference, L,(H{ X)), was determined (cf. (2.8)):

Ly(Hy(X)) = (Hi (X)) = H{(X) H{(X) = —1.53990... X 10~ < 0.
(3.14)
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As L(H{X)) <0, it follows from (2.12) of Proposition 2 that
~0.0991 < 4, (3.15)

the desired result of Theorem 1. O

4. The Laguerre difference method

Before giving in §6 the details on how the integrals of (3.13) were computed
and how the accuracies of these numbers can be guaranteed, we describe in this
section our new Laguerre difference method, from which the numbers, appear-
ing so mysteriously in (3.12), arose. In addition to this method’s dependence on
the Laguerre difference L,(f(x)) of (2.8), it also depends on Lemma 4 and its
Corollary, which are given below. We remark that Lemma 4 is an extension, for
our purposes, of the classical Laguerre theorem on the separation of zeros of
certain entire functions (cf. [1, p. 23]).

LEMMA 4
Let f(x) be a real entire function of the form

f(X)=C e—axz+ﬁxﬁ (1 __f_) ex/xkﬁ (1 _ ___x__) ex/zJIH—}I (] _:}:V_) CX/Zf,

k=1 Xy J=1 Z; i=1 Z;
(4.1)
where a0, C+#0 and B are real numbers, the x,’s are nonzero real numbers
(1 <k <) and the z;’s are nonzero complex numbers (1<j<w,where 0 <w < ®)

w/uch satisfy L5 _ Il/xk <owand L¥.11/1z; |2 < w. Assume that there is a fzmte
real interval [ A, B] with B —A > 2 such zhat

all zeros of f(x) in the vertical strip A < Re x < B are real and simple,
(4.2)
and that all the complex zeros z; of f(z) satisfy
Im z;] <1 (1<j<w). (4.3)
Then,
L(f(x))= (f'(x))2 —f(x)-f"(x)>0 forallxe[A+1, B—1]. (4.4)

Moreover, if x, and x, ., (with x, ., >x,) are any two consecutive real zeros of
f(x) in the interval [A + 1, B — 1], then f'(x) has exactly one zero in.the interval
(xn’ xn+l)'

Proof
Setting z;:=a; +iB; (a,, B; € R; 1 <j <w), then logarithmic differentiation
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of f(x) in (4.1) gives, from the definition of L (f(x)), that

Ly(f(x)) = (f(x))*{2a + Z sy e ./
=1 (x - xk) j=1 [(x—a) +Bj2]

If w=0 (i.e., the last two products of (4.1) are vacuous), we see from (4.5) that
L(f(x)) >0 for all real x, which is stronger than the desired result of (4.4). If
w > 0, then the hypotheses of (4.2) and (4.3) imply that

(x—aj)z—ﬁjz>0foranyxe[A-l—l, B —1] and any j with 1 <j <w

which, from (4.5), gives the desired result of (4.4).

For the final assertion of Lemma 4, let x, and x,,, (with x, <x,,,) be any
two consecutive zeros of f in [A+1, B- 1]. Then, f is of one sign in
(x,, x,.,) and by Rolle’s Theorem f’ has an odd number (> 1) of zeros in
(x,, x,.;). Suppose, on the contrary, that f' has more than one zero on
(x,, x,.1), say 3 consecutive zeros, a, b and c, with x, <a<b<c<x,
where f' is of one sxgn in (a, b). From (4.4), a, b, and ¢ are each necessarily
simple zeros of f’ in [4 + 1, B —1]. From Rolle s theorem again, f” has an
odd number of zeros in (a, b), and so, in particular, since f' is of one sign on
(a, b), then

f"(a)-f"(b) <0 with f'(a)=0=f'(b). (4.6)
Thus, it follows from (4.6) that
Li(f(a)) - Li(f(b))=[~f(a)f"(a)] - [=F(b)-f"(b)]

=[f(@)f(D)I(f"(a)f"(b)) <0, (4.7)
since f is of one signon (x,, x, ), i.e., f(a)f(b) > 0. But as a and b are points
of [4 + 1, B — 1], this contradicts (4.4). O

To apply Lemma 4, consider the Riemann é&-function of (1.1). It can be
verified from (1.1) that, since all the nonreal zeros of £(z) lie in the critical strip
0 <Re z <1, all (real or complex) zeros of &(x) necessarily lie in the horizontal
strip |Im z| <1/2. With (1.6), this implies that all (real or complex) zeros of
Hy(x) lie in the horizontal strip

[Im z| <1, (4.8)
which similarly appears in hypothesis (4.3) of Lemma 4. As was mentioned in §1,
Hy(x) is an even real entire function, of order one, so H, satisfies the
hypothesis of Lemma 4, up to the determination of an appropriate interval

[A4, B]. But from the numerical results of van de Lune, te Riele, and Winter [9],
it is known that for

=545, 439, 823.215, (4.9)

there are precisely 7:= 1, 500, 000, 001 simple zeros of ¢, in 0 < Re z < 1 and
0 <Im z <u, which lie exactly on Re z=1/2. Hence, with the identities of
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(1.1), and (1.6), it follows that H, has only real simple zeros (numbering 27 =
3, 000, 000, 002) in the vertical strip —2u < Re z < 2u, and applying Lemma 4
with A = —2u and B =2u gives the

COROLLARY
For the entire function Hy(x) == &(x /2),
Ly(Ho(x))>00n [~2u + 1,2 =1], (21 =1.0908...10°),  (4.10)

where p is defined in (4.9). Moreover, between any two consecutive real zeros of
Hyin[=2u +1,2u — 1], H§ has exactly one zero.

We now describe our Laguerre difference method. For the initial value A = 0,
take any two consecutive real zeros of H, say —2v,,, and —2v,, where it is
assumed that

Vo1 <p—1/2, (4.11)
so that Lemma 4 applies to H,,. (The numerical example in §3 corresponds to
the choice n =212, and as y,;; = 415.455. .. from (3.6), (4.11) is trivially satisfied
in this case!) From the Corollary of Lemma 4, there is a unique real x(0),
satisfying — 2y, ., <x(0) < —24,, for which

H(x(0)) =0, (4.12)
and x(0) was iteratively determined using Newton’s method, i.e.,
Hol(yj)

Yooy =y, — 8 i=1,2,), 4.13
J+1 J HO ()’,-) ( ) ( )
where lim;_ .y, =x(0). (Note that this use of Newton’s method requires the
simultaneous evaluation of the integrals H(y;,) and H{(y;), so that in the
process of determining x(0), the numbers H;(x(0)) and H/(x(0)) are also
determined.) Then, on evaluating H,(x(0)), the Laguerre difference, with (4.12),
satisfies

Ly(H(x(0))) = (Hg(x(0)))" = Ho(x(0)) - Hy (x(0))
= —Hy(x(0)) - Hy (x(0)). (4.14)

For this initial choice of A =0, the above quantity is evidently positive from
Lemma 4. Consequently, neither Hy(x(0)) nor H](x(0)) is zero; whence, x(0) is
a simple zero of H. Then, A =0 was decreased by a sufficiently small-amount
to A; <0, so that in analogy with (4.12), a number x(A,) (close to x(0)) exists for
which

H(x(A,)) =0. (4.15)

Then, x(A;) was determined using Newton’s method, which again required for
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Newton’s method the simultaneous evaluation of the integrals H,(x) an
H,'(x(A)) and (4.15),

Ll(H/\,(x(’\1))) = —_H/\x(x(’\l))HANi(x(Al)) (4.1¢€
was determined. If the Laguerre difference (4.16) was nonnegative, A, we
further decreased, and this process was terminated when a real value of A <
was found for which L,(H,(x(A)) was negative. As indicated by the reasoning i
§2, the initial pair of real zeros (when A =0), namely —2vy,,; and —2y,,, ¢
Hy(x), had, in the process of decreasing A from zero, become two nonrec
complex conjugate zeros of H,(x), which produced the lower bound of A ¢
Theorem 1.

We emphasize that this Laguerre difference, when applied to arbitrar
consecutive pairs of zeros of Hy(x), will generally fail to produce a value c
A <0 and an x(A) for which L,(H,(x(A)) <0. Certain consecutive pairs of zerc
of Hy(x), from which the method begins, do, on the other hand, produce lowe
bounds for the de Bruijn-Newman constant A. This is discussed in the nes
section.

5. General comments for future numerical work

It is our opinion that the method proposed here, based on the real arithmeti
calculation of {H{”(x)}?_, and the Laguerre difference L ,(H(x)), has comput:
tional advantages over the two techniques, using complex arithmetic, which wer
previously used to find lower bounds for the de Bruijn-Newman A. The firs
technique, used by Csordas, Norfolk, and Varga [5] to produce the lower boun

—50 <A, (5.1
and its improvement by the Riele [16] to
~5<A, (5.2

in essence sought nonreal zeros of associated Jensen polynomials, as defined i
[5], by tracking a particular pair of zeros, x,(A) and x5(A) of H,(x), starting wit
x,(0) == =2y, = —60.84975...and x5(0) = —2y;= —65.87012..., (5.3
as A decreased from zero. Similarly, in Varga, Norfolk, and Ruttan [19],
tracking procedure (not involving Jensen polynomials) of nonreal zeros wa

applied to the function Fy(x) of (1.9), starting in essence with the particular pal
of zeros of x4,(0) and x45(0) of H (x) as A decreased from zero, where initiall

%34(0) = =2y, = —222.05907...and x5(0) = —2y45 = —223.74931 ...
(5.4

This produced the lower bound of [19] of
—0.385 <A. (5.5
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Using the new Laguerre difference method of this paper, we repeated the above
calculations by also starting with the initial pair of zeros of (5.3), and this
produced the improvement of (5.1) and (5.2) to

~3.9 < A; (5.6)

similarly, the Laguerre difference method, starting with the initial pair of zeros
of (5.4), produced the improvement of (5.5) to

~038<A. (5.7)

We wish to also comment here on the possibility of using this Laguerre
difference method to produce even better lower bounds than reported in (1.11)
of Theorem 1. In each case mentioned above, we had applied this Laguerre
difference method, starting (at A = 0) with a pair of successive zeros of H,(x),
say —2v, and —2v,,,, for which vy, and v,,, were close. Because these
starting values were crucial, we give in Table A below all the successive values
of y, (2 <n <15,000), where, if

Aj = 7j+1 — ’yj (] = 1, 2,' t, T— 1, T:= 1,500,000,001),
then the difference A, was smaller than all previous differences 4,1ie,
4,< min 4, (5.8)

l1<jgsn—1
and we call the differences A, satisfying (5.8) super differences. In our Table A
(all of whose entries are truncated to five decimal places), we also estimate
| Hi(=2v,)|. These estimates of |H;(—2y,)| are derived from (3.4), using
(3.8) and (3.9). It is at this point that the numbers 7, of (3.3) are used. We
remark that all entries in in Table A can be deduced from Tables 1 and 2 of te
Riele [15], on using (3.4).

The lower bound of (1.11) for A of this paper specifically came from applying
this Laguerre difference method (with the starting values A =0 and the two
zer0s —27v,;, and —2v,,; of Hy(x)), determined from the row corresponding to
n =212 of Table A. There is every reason to believe that the application of this
new method to subsequent rows of Table A, will produce further improved
lower bounds for A. However, the last column of Table A, which gives values of
| Hj(~2v,) !, indicates that the associated calculations must be done with
successively greater precision, and such calculations will undoubtedly require
significantly more computer time! (For example, to apply this method to the
starting values associated with the row for n = 1496 of Table A, one would have
to carry out all computations with approximately 750 floating point significant
digits.)

We remark that the last column, of [Hj(—2v,)|, of Table A depends
specifically on the numbers {7,}}>%% which were compiled in Table 2 of Riele
(15], and, to our knowledge, this compilation has not been extended beyond
n =15,000. However, it may be of interest to the readers to have a listing
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Table A
Super differences (2 < n < 15,0000)
n Yo A=, 1= Y, | Ho(=2y,)]
2 21.02203 3.98881 1.10936E-6
4 30.42487 2.51018 1.50731E-9
7 40.91871 2.40835 7.62215E-13
9 48.00515 1.76868 4.05787E-15
13 59.34704 1.48473 7.06392E-19
19 75.70469 1.44014 3.64154E-24
24 87.42527 1.38383 4.76349E-28
27 94.65134 1.21929 1.54247E-30
34 111.02953 0.84512 5.68260E-36
63 169.09451 0.81746 1.79231E-55
71 184.87446 0.72431 8.44906E-61
91 220.71491 0.71578 6.77870E-73
135 294.96536 0.60788 4.48141E-98
159 333.64537 0.56597 6.04617E-111
186 375.82591 0.49817 2.05820E-125
212 415.01880 0.43640 1.18968E-138
298 540.21316 0.41822 2.76261E-181
315 564.16087 0.34517 2.38099E-189
363 630.47388 0.33189 5.92345E-212
453 750.65595 0.31043 1.27457E-252
693 1054.78103 0.22110 2.09575E-356
922 1329.04351 0.16150 6.01580E-450
1496 1977.17394 0.09750 1.48834E-670
3777 4292.72644 0.09081 3.82866E-1460
4765 5229.19855 0.04325 2.24581E-1779
6709 7005.06286 0.03769 6.40373E-2385

beyond n = 15,000 of those super differences A, which satisfy (5.8). This is given
in Table B below for all 15,000 < n < 2,000,000, where the numbers in Table B
were kindly supplied to us by Dr. A.M. Odlyzko (A.T.&T. Bell Laboratories).

Table B
Super differences (15,000 < n < 2-10%)
n ‘Y,, An = yu+1 - 7;!
18,859 - 17,143.78653 0.03530
44,555 36,510.16638 0.02953
73,997 57,273.66193 0.02583
82,552 63,137.21153 0.02085
87,761 66,678.07585 0.01948
95,248 71,732.90120 0.01470
354,769 234,016.89498 0.01305
415,587 270,071.29406 0.00863
420,891 273,193.66313 0.00570

1.115,578 663,318.50831 0.00295
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Tables A and B indicate that the number of such super differences 4, which
satisfy (5.8), is quite small!

6. Computation of H,(x)

Recalling from (1.5) and (1.3) that H,(x) = [ e P(t) cos(xt) dt, and P(r)
=Y _2m%n* e® = 37n? %) exp(—mwn? e*'), we will, in this section, describe
how one can obtain rigorous approximations to H,(x), H,(x), and H,(x) to
more than 43 significant decimal digits when A = —0.0991 and x =X, as given
in (3.12). Since the analysis is essentially the same for all of these functions, we
will discuss only the approximation of H,'(x).

We approximate H,'(x) by computing

H'(x)* = (T(—t2 eMP(t) cos(xt), h, n))#, (6.1)
where

. 16

D(1)= Y (27*n* ¥ —3mwn? %) exp(—wn? ) (6.1)

n=1

is the truncation of the series for @(z), and where T(f(z), n, k) is a modifica-
tion of the trapezoidal rule approximation to f(z) using the n+ 1 points
0, A, 2h,...,nh. That is,

T(—1? eMd(1) cos(xt), h, n)
= h{%{——tz eMD(1) cos(xt)}!=0 + i [—(kh)2 e* D (kh) cos(khx)]}.
k=1
(6.2)

Here, H,'(x)* denotes the computed value of the quantity in (6.2). In the actual
computations, we used

h and n = 16384, so that nh = 2. (6.27)

T 8192

From the triangle inequality, we obtain
1" " #
| H (%) = H (%) |
g!HA”(x)# ~T(~1? eM (1) cos(xt), h, n)l (6.3a)

+JT(—t2 eM (1) cos(xt), h, n)—T(—1?ed(1) cos(xt), h, n)’
(6.3b)
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+fT(—t2 eM® (1) cos(xt), h, n) = T(~t? e ®(t) cos(xt), h, 00)1
(6.3¢

+|T(=1% e®(¢) cos(xt), h, =) — H!(x)].  (63d

The remainder of this section will be devoted to showing that the sum of the
terms in (6.3a), (6.3b), (6.3c), and (6.3d) does not exceed 1.45 X 107! wher
H(x)* is computed using 210 digit floating point arithmetic.

Before considering a bound for (6.3a), whose size must depend directly on the
nature of the underlying arithmetic, we will consider (6.3b), (6.3¢) and (6.3d).
which can be bounded analytically without regard to arithmetic details.

WE FIRST DETERMINE AN UPPER BOUND FOR THE TERM IN (6.3d).

Fortunately, because the integrand of H,'(x) of (3.11) is an even function
which is (cf. (1.41)) analytic in the strip |Im z| < /8, it follows from the work
of Martensen [10] and Kress [8] that the familiar trapezoidal rule approximation
(on a uniform mesh of size 4) of H,'(x), defined by

T(—t? eM®(t) cos(xt), h, =)

t=0

= h{%{ —12 eMP(r) cos(xt)]

+ i [ = (kn)* "D (kh) cos(khx)}}, (6.4)

k=1
converges exponentially rapidly to H)(x) as h decreases to 0, ie., (cf. [8,
Theorem 2.2 with p =0])

}T(—tz e ®(1) cos(xt), h, ) ~H/(x)]
exp(—am/h) cosh(ax) e
sinh(am /h)

for any A <0 and for any a with 0 <a <7/8 =0.39269..., where the path of
integration in (6.5) is the nonnegative real axis. It directly follows from the
definition of ¢(¢) that the integrand in (6.5) is bounded above by

=

/Ox'(s+ia)2q§(s+ia)[ ds, (6.5)

(s*+a?) Y (27 n* e* +3mwn? &%) exp(—mn? e* cos 4a) (s> 0),

n=1

(6.6)

and on observing that 3n%mr e <n*mw? e’ for all s >0 and all n > 1, we see
that the integrand in (6.5) is bounded above by

3mi(st+a?) e™ ) n® exp(—wn? e® cos 4a). (6.7)

n=1
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Setting

. 5 T
G = g arccos| o— In(2)| =0.29855. .. (< —é—), (6.8)

ks

it can be verified that the ratio of successive terms in the summand given in
(6.7), with @ =4, is at most 1/2 for all n> 1 and all s > 0. Consequently,

(s +ia) P (s + i&)l <372(s2+4?)e® exp(—m e* cos 4d) ), (%)(k—l)
k=1
< 6m2(s*+ &%) e exp(—m e cos 44). (6.9)
Therefore, from (6.5),
]T(—z2 e P(1) cos(xt), h, =) —H;(x)|
[ exp(—dm/h) cosh(dx) e é
<67 A
sinh(a@w /h)
xf (s?+@a?) e* exp(—m e* cos 4d) ds (A <0). (6.10)
0

For any positive integer k, set I, = [7 e** exp(—m e** cos 4a) ds, where &

is defined in (6.8). With the change of variables u = e* cos 44, this integral
becomes
1 ®
]k=—.———,~_kf u*"le ¥ du.
4(77‘ COS 46{) 7 cos 4@

Since from (6.8), the lower limit of integration satisfies 7 cos 4& = 1.15524... >
0, then evidently

1 ® k—1)!
4(m cos 4a)” Jo 4(7r cos 4a)
for all k=1, 2,.... Consequently, for k =3 (so that 4k —9 > 0),
f (s +a?) e® exp(—m e* cos 4@) ds
0
2
< max{(s?+4?%) e L) <« —————— max{(s?+4%) e ). (6.12

(54 %) ¢ V) & s (6t @) 7). (612)

It is easily verified by the calculus that

max {(s? +@%) e ¥} =4~ (6.13)

=
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Thus, combining (6.10), (6.11), and (6.13) gives that
'T(—z‘2 e P(r) cos(xt), h, ) — H/(x)]

@’ exp(—&m/h —X@?) cosh(&x)
7 sinh(&w /h)(cos 4&)’

for h =1/8192 and for all | x| <1000 and all —1 <A <0, which bounds the
term in (6.3d). (Note that X and A of (3.12) are thus covered by (6.14).)

<2.87x 10758, (6.14)

=

NEXT, WE DEDUCE AN UPPER BOUND FOR THE TERM IN (6.3¢).
Since @(¢) > 0, this term in (6.3c) satisfies

iT(—t2 eM®(t) cos(xt), h, n) = T(—1t? eM®(t) cos(xt), h, oo)’

Y [ (kn)? XD (kh) cos(khx)]

k=n+1

<h Y (kh)? eM*"D(kh).

k=n+1

=h

(6.15)

Next, with the notation of [4] that @(¢):=(27?% e” — 37 ) exp(—7 e*) +
@ (1), it is known (cf. [4, eq. (3.9)]) that @ (¢) < 6472 exp(9t — 4= e*) for all
t > 0. Thus, this inequality for @ (¢) gives

0<P(r) <(2m? e® =37 &) exp(—w e*) + 6472 exp(9t — 47 e*)
<2m? exp(9r — 7 e*) + 64?2 exp(9t — 47 e*)

=722 +64 ™) exp(9t — 7 e*) (13 0). (6.16)
But as 2 + 64 exp(—3m e*) <2 + 64 exp( —37) < 3 for all ¢ >0, then
O(t) <3m? exp(9t —m e*) (£=0), (6.17)

and inserting this inequality in (6.15) gives, for all A <0, and all real x,

lT(mt2 e P (1) cos(xt), h, n) = T(—1? eM®(t) cos(xt), h, 00)]

<37h Y. (kh)’ exp(9kh —m e*h). (6.18)
k=n+1

We now proceed to establish an upper bound for

o0

Si= Y (kh)® exp(9kh —m e*"). (6.18")
k=n+1
We begin by writing this sum as
* 1

kh)* exp(9kh —m e**h) =
,}H( )" exp(9kh —m &™) k=§+lexp{—9kh+7re4k"—21n kh)

* 1 il 1
< ¥ — — (6.19)
k=n+

I_K_" k=§+1 exp(k In K)~
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If the middle inequality in (6.19) is to be true, then

In K
—9kh +m e*" —2Inkh >k In K=(kh)T (k=2n+1), (6.20)
or equivalently, on dividing by kA,
me" 2Inkh K
-9+ - > (k=n+1). (6.21)

kh kh h
For a continuous variable s with (n + 1) <s < o, set

me—21Ins
g(s)= —9+————T—— (s> (n+1)/h), (6.22)

so that

mlds—1] e* +2(In s — 1)
g'(s)= 3 (s = (n+1)h). (6.23)
s
Now, the numerator of g’(s) in (6.23), on differentiating, is seen to be strictly
increasing for s > 0. As this numerator is also positive for s = 2, it follows that
g'(s)>0 forall s>2. (6.24)

Thus, g(s) is strictly increasing for s > 2. Consequently,

mef—2In2

g(s)=>g(2)=-9+ — =4672.78470... (s=2), (6.25)
and we then define K by (cf. (6.21))
In K ) ; 7ed—2In2 6 26
= = + — .
so that
7ef~2In2
K =explh —9+———2————-} . (6.27)
Now, the final sum in (6.19) is just
1 1 1
Ty~ TS —2mnz2)| i
n+1 . S
K+(1_K) exp (n+1)h{——9+—-—-——2—~——} (1 K)
(6.28)
But as nh =2 from (6.2"), the above expression is bounded above by
1 1
(6.29)

exp(—18 +7 €% —21n2) . (l—i)'
K
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Now {exp(—18 +7 e®—21In 2)} ! < 1.866 X 107%°%  Next, from (6.27) with /
= 5153, We see that K> 1.768, so that (1 —1/K)~' <2.301. Thus, from (6.18
and the definition of S in (6.18), we have

IT(—~t2f15(t) e*” cos(xt), h, n) = T(—12®(t) eM? cos(xt), k, oo)]

* ) 3mh
<3mih ), (kh)® exp(9kh —m e**) < —~
k=n+1 Kn+l(1 _ __)
K
<1.552 X 1074061, (6.30

which bounds the term in (6.3¢) for all A <0 and all real x.

WE NEXT BOUND THE TERM IN (6.3b).
First note that the general error in truncating the series for the function ®(¢,
of (1.3) satisfies (cf. [4, eq. (4.6)]
N
0<P(t)— ) (2m2n* &% —3mwn? &%) exp(—wn? e*)
n=1
<7mN? exp(5t —mwN?*e),
for any ¢ > 0 and for any positive integer N. Consequently, for the particular
truncation N =16 of (6.1'), we have
0 < ®(t) — D(r) < 40967 exp(5t — 2567 e*) (¢ 0). (6.31)
For all A <0 and all real x, this yields

IT(—z‘2 e d (1) cos(xt), h, n)—T(~t? eMD(¢) cos(xt), h, n)l

<h{ 200 = D))o+ T (1) 1d(k8) = 0t |

<h Y, 40967 (kh)’ exp[Skh — 2567 e**"]. (6.32)
k=1

With the specific values of n and & of (6.2'), it can be verified that each term of
the final sum of (6.32) is bounded above by

max {4096 (kh)® exp(Skh — 256 e*4*))

I<kgn

— (40967 (kh)® exp(Skh — 256 ¢*#)]
Therefore, as nh =2 from (6.2"),
lT(——z‘2 e’ d (1) cos(xt), h, n) = T(—t? eMd(t) cos(xt), h, n)’
<3.54% 10733 (nh) = 7.08 X 1073, (6.34)
which bounds the term in (6.3b) for all A <0 and all real x.

s <354 X107 (6.33)
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Finally, we consider the numerical evaluation of

n #
HY(x)* = {h{ Y — (kh)? b (kh) cos(xkh)” : (6.35)

k=1
Central to this issue is the accuracy of the cvaluation of sums and products of
floating point numbers. To establish rigorous bounds on the accuracy of our
floating point calculations, we will use the following well-known facts (cf.
Wilkinson [20], Chapter 1). In the following theorem ¢ represents the floating-
point precision of each of the arithmetic operations.

THEOREM B
If x and y are floating point numbers and if floating point arithmetic is used,
then

+ #
X V|

which are defined as the computed values of

+
x o vl
satisfy
+ \* +
x;y = x;y (1+e€)
where |e| <107 If m < 10" and if x,, x,,...,x,,, are floating-point numbers,
then
{(xIXxZX...Xxm)#=(x1><x2><,..Xxm)(1+E) (6.36)
where (1-107)" ' <1+E<(1+107)" ",
and
(xy+x5+ o F2,) " =1+ v,) +x,(1+v,) + .o +x, (1 +0,)
{where (1- 10"’)m+]—r <l+vy, <(1+ 10"’)m+l_r, r=1,2,...,m.
(6.37)

All calculations for this report were performed on Sun 3 /80 work station
using Richard Brent’s MP package [2] with the floating point precision set so
that the arithmetic satisfies the assumptions of the above Theorem 2 with
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t = 210. In addition, with the floating point precision set to 210 decimal places
Brent’s MP package can evaluate all the elementary functions to that accuracy
Moreover, if x is a floating point number, then the value of e* produced by th
MP package satisfies (e*)* =e*(1 + ¢,) and 7* =7 (1 +¢,) where |¢;| < 107"
i =1, 2, but the MP can only evaluate such functions as cos(x) and sin(x) to a
absolute error of 107217,

Recall that to estimate (6. 3a) we must determine the error involved ir

calculating ®(kh) = L1 1(27 et — 37rn? &%) exp(—mn? e*"). To evalu
ate this sum, for k=0, 1,...,n, we compute for each j, j=1,...,16, respec
tively

1. Zkh

(ekh (kh )#,

#
—) #
(eZkh kh ) ,

"=
2. 4kh (
3. Skll ((e4kh (ekh )#,
4. (7)) = (=),
(i ) = () )

6. (exp(—mj° e‘”"”))# = (exp(—(ﬂrrj2 e“k”)#))#,

W

7. (22 ey ® = (2(ms? o)),

N I (GO

9. (2mj* e -3 e5"")# = (2mj? e — 3)#(65“{)#7

10, (237* €% = 3772 99)7 = ((m2) (22 € =3 %))
11, (273" &% =377 e%**) exp(—j? e*#))"

- 2:4 9ki __ 2 Skhy* 2 sk #\*
—((277/6 3mj% e*") exp(—mj’e ))

Using only the fact that when the floating point precision is set to 21(
significant digits, the MP package calculates products, differences, exponentials
and 7 with a relative error of at most 107%'°, one can show that the computec
value of (27 2j* e%# — 3772 e3*") exp(—j? e*") is no more than

(1+ v 1) *[2m2* e (1 + v ) = 37)2] exp(Skh —mj? e**(1 = [v])"°),
(6.38
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where |v| < 1072'°, The maximum relative error produced from (6.38) is given
by

1+ {vl)m[%rjz e h (1 + !vi)”~1] exp[mj? e (1-(1— |V!)w]
-1).
('32'7Tj2 e4kh ___1) ’
As the term in braces above is strictly increasing in 7j? e**” and in |v|, the
b

maximum is thus obtained when k =n = 16384, j = 16, and |v | = 107%1°. Hence,
as nh =2 from (6.2'), we have

a +1O_2“’)l6[§w(16)2 e3(1+10-219)" —1] exp| 7 (16)? €81~ (1-10720)""]
27(16)" e® — 1)

M, < -1,

which, on evaluating the right side above, gives
M, <2.40 x 107%3,

A lower bound for the minimum relative error is similarly obtained, with the
same modulus, so that

((2m?* e*# — 37)?) exp(Skh —mj* e*#))”
= (273" e**" =37 j?) exp(Skh —j? ) (1 +w)), (6.39)
where |w;] <2.40 X 10723 (k=0,1,---,n;j=1,2,--,16).

Next, on applying (6.37) of Theorem B, we have
16
d(kh)* = Y (2m3j* %" — 3572 exp(Skh — wj? M) (1 + w)(1 +v,),
j=1

(6.40)
where w; satisfies (6.39) and where (cf. (6.37))

1-10728 < (1-10"20)" 7 < 143, < (14+10729)"7 <1 +1072%
(j=1,2,--,16). (6.41)
Writing (1 +w;)(1 + v;) = 1+ n;, then (6.40) becomes
16 '
d(kh)* = Y (2m2* e —37)2) exp(Skh — mj? e*")(1 + ;) (6.42)
j=1
where, from (6.39) and (6.41),
|1 <2.41x1072% <1072 (j=1,2,---,16). (6.43)

Because all the terms in the sum in (6.42) are positive, it then follows from (6.42)
and (6.43) that
D(kh)* = D(kh)(1 + 1), where lu, | <10722? (k=0,1,---,n).
(6.44)
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Finally, we come to the calculation of
T(=t2d(t) ' cos(Xt), n, h),

where X and A are explicitly given in (3.12). To this end, we apply Theorem
with n = 16384, noting that kAX can be represented exactly, using 210 di;
floating point arithmetic. We thus obtain

H{(X) = T(=12B(s) e cos(Xt), h, n)"
=~ T (({(0+ 00BN+ )1 05

X (exp( A1+ v ) () (1+v5,0)) (1 +v5,0))(1+v4,)
X (14 v, )(c0(KRX) + vg,) ) (1 +vg), (6.4

where, for 0 < k < 16384,
vl Tyl <1072 (2<i<8); [vg, | <1072 (cf. (6.37)); and

b, | < 107202,

Next, with the known inequality (cf. [4, eq. (3.41)]) that
max (1) = B(0) < 3 (2m* = 3) exp(~7) = 0.44793.. ., (6.4
>

on expanding H{(X)* — T(-¢? A p(1) cos( Xt), h, n) and using explicitly tl
expression in (6.45), it can be verified in a straightforward, but tedious way, th

|H(X)* = T(—1? eM®(r) cos(Xr), h, n)| <1.44x 1072, (6.4

which is a generous upper bound for the remaining term (6.3a). Combinir
(6.47) with our previous bounds for (6.3b)-(6.3d) then gives that

|Hy (X)* = HY (X)| < 2.87 X 1075 + 1.552 X 107! + 7.08 x 107>
+1.44 X107 < 1.45 x 10721 (6.4

i.e., HY(X) can be computed to an absolute accuracy of 1072, as claimed

§3.
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