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ABSTRACT: The problem to be considered here is the determination of necessary and
sufficient conditions for the uniqueness of 2-periodic lacunary trigonometric interpolation on
equidistant nodes. OQur main results are new necessary and sufficient conditions in particular
cases which depend only on the total number of even and odd integers in the derivatives
which define the trigonometric interpolation process. As such, these new conditions can be

readily checked, as they avoid the evaluation of determinants.
AMS Classification: 42A15.

1. Introduction.

Given any positive integer n, define

(1.1) z = 2k(n) 1= k. (k=0,1,---,2n—1),

n

so that {z;}7%5" is a set of 2n equidistant nodes in [0,27). Next, with p and ¢ arbitrary
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positive integers, assume that the associated vectors

(1.2) m = (my,mg, -+, my), and m' = (mj, mj,- -, m,),
have nonnegative integer components which satisfy

(1.3) 0=:my <my <---<my, and 0 <mj <mj <. < my.

We consider here the following 2-periodic trigonometric interpolation problem for the vectors
(m;m). For arbitrary data consisting of complex numbers {a;,, ?;3,’521 and {o], ;-‘;3",?:1,

we ask if there is a unique complex trigonometric polynomial of the form

M
(1.4) tm(z) = ao+ Y (akcoskz + by sinkx),
k=1

or of the form

M-1
(1.4") tu(z) =ao+ Y (axcoskaz + bysin kx) + apr cos(Mz + %’I)

k=1

(where € = 0 or € = 1), such that

(1 5) tS\}nV)(xZJ) = Oy (]:0,1,,77,“1, v = ]:727"'3p)7 and
tg\zinu)(w%*‘l) = a;‘,u (j:[)a]a"'7n_1; V:1723"'7q)'

Note that as the number of nodes in (1.1) is even (namely, 2n), we see that the interpolation
conditions of (1.5) are broken into interpolation conditions on two disjoint sets of n nodes,
from which the term, 2-periodic trigonometric interpolation, is derived.

The total number of interpolation conditions in (1.5) is evidently
(1.6) N :=n(p+q).

If N is odd (which implies that n is odd and that p+ ¢ is odd), then the sought trigonometric
interpolant a(x) is necessarily of the form (1.4) (which has an odd number of parameters),
and in this case, M = (N—1)/2. If N is even (which implies that at least one of the numbers,

n and p + ¢, is even), the sought trigonometric interpolant ¢a(z) is necessarily of the form
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(1.4") with M = N/2, where (= 0 or 1) is to be appropriately determined. To summarize,

M = (N-1)/2 if N isodd, and

(1.7)
M =NJ/2 if N is even.

We say that this (m; m’) 2-periodic trigonometric interpolation problem of (1.5) is regular,
if, for arbitrary data, the interpolation problem (1.5) admits a unique solution (z), where
tr(z) is of the appropriate form (1.4) or (1.4').

This (m;m’) 2-periodic trigonometric interpolation problem on 2n equidistant nodes is a
special case of the more general s-periodic trigonometric interpolation problem on sn equidis-
tant nodes in [0, 27), considered in Sharma, Smith, and Tzimbalario [5]. In [5], necessary and
sufficient conditions for the regularity of this s-periodic trigonometric interpolation problem
were derived, in terms of the nonvanishing of several determinants (of possibly large order).
In this form, these necessary and sufficient conditions are not in general easy to apply.

Recently, however, two papers (cf. Sharma, Szabados, and Varga [6] and Sharma and
Varga [7]) have treated special cases of 2-periodic trigonometric interpolation on equidistant
nodes, and, in each of these latter two papers, new necessary and sufficient conditions for
regularity were derived which depend only on the total number of even and odd integers in
the components of the vectors m and m’ of (1.2). As such, these necessary and sufficient
conditions can be easily checked, in contrast with the necessary and sufficient determinantal
conditions of [5]. Thus, our goal here is to extend the results of [6] and [7] by finding
necessary and sufficient conditions, for the regularity of the 2-periodic lacunary trigonometric
interpolation problem, which similarly depend only on the total number of even and odd
integers in the components of each of the vectors m and m’ of (1.2). To this end, we use

throughout the notation of (cf. (1.3))

E := number of even integers in the components of m = (0, mz, -+, m;),
(1.8) O := number of odd integers in the components of m = (0,mg, -+, m,),
£’ := number of even integers in the components of m’ = (mj,mj, -+, m;),‘

O’ = number of odd integers in the components of m' = (m},mj, -+, my),
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so that
(1.9) F+O=pand E'+0' =q.

2. Statements of Theorems 1 and 2.
With the notation of section 1, we now state our basic results, Theorem 1 (when N is

odd) and Theorem 2 (when N is even). We begin with the case when N is odd.

THEOREM 1. Let N be odd, so that (cf. (1.6)) n =: 2r+1 and p+q =: 2s+1 are both odd.
Then, a necessary condition for the (im;m’) 2-periodic trigonometric interpolation problem

(1.5) to be regular is that (cf. (1.8))
(2.1) E+FE -1=s=0+0".

Moreover, if the components of m and m' are, respectively, alternately even and odd integers,

i.e. (cf. (1.2) and (1.3)),
(2.2)mi + miyy isodd (i =0,1,---,p—1), and mi+ml, isodd (1=0,1,---,q—1),

then (2.1) is both necessary and sufficient for this (m;m’) 2-periodic trigonometric interpo-
lation problem to be regular.

It is not yet known if condition (2.1) is, by itself, both necessary and sufficient for the
regularity of this trigonometric interpolation problem when N is odd, though we tend to
believe that it és. Indeed, with N odd and with (2.1) holding, there are examples showing that
the trigonometric interpolation problem is regular, without (2.2) holding. Explicit examples
of this will be given in section 4.

We continue with the case when N of (1.6) is even. Here, there are three cases to be dealt

with:
. i) niseven (n=:2r), and p+qisodd (p+g¢g=:2s+1),

(2.3) i1} mniseven (n =:2r), and p+ ¢ is even (p+ g =: 2s + 2),
i17) nisodd (n=:2r+1), and p+ g iseven (p+g=:2s+2).
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Because N is now even, the sought interpolant tp(z) is necessarily of the form (1.4'), and
e(= 0 or 1) must also be appropriately chosen in each case of (2.3). We also use the notation

[[z]] to denote the integer part of the real number z.

THEOREM 2. i) Let N be even, with (cf. (2.37)) n =: 2r even and p+ ¢ =: 25 + 1 odd.
Then, a necessary condition for the (m;m’) 2-periodic trigonometric interpolation problem

(1.5) to be regular is that

(2.41) E4+E -1=5=0+0"

Moreover, if the alternation condition (2.2) holds, then (2.41) is both necessary and sufficient
for this (m;m’) 2-periodic trigonometric interpolation problem to be regular, with € of (1.4)
being given by

0, 2 1s odd;
(2.51) €= { fe '

1, if pis even.
ii) Let N be even, with (cf. (2.3i)) n =: 2r even and p+ ¢ =: 25 + 2 even. Then, a

necessary condition for the (m;m’) 2-periodic trigonometric interpolation problem (1.5) to

be regular is that

(2.4i1) B = [l(p+1)/2]], and E' = [[( + 1)/2]]

Moreover, if the alternation condition (2.2) holds, then (2.441) is both necessary and sufficient
for this (m;m’) 2-periodic trigonometric interpolation problem to be regular, with € of (1.4")
being given by

(2.5ii)

0, if p and q are both odd,;
E =
1, if p and q are both even.

i) Let N be even, with (cf. (2.3ii))) n =: 2r + 1 odd and p + ¢ =: 25 + 2 even. Then, a
necessary condition for the (m;m’) 2-periodic trigonometric interpolation problem (1.5) to

be regular is that

(2.4iii) E+E —-(040)=0o0r2
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Moreover, if the alternation condition (2.2) holds, then (2.41ii) is both necessary and sufficient
for this (m;m’) interpolation problem to be regular, with € of (1.4') being given by

0, if FE+F =35+2 and O+ 0 =s;

(2.5iii) €=
1, if E4E =s+1 = O+0.

Having stated above our main results, we next outline the remaining portions of this
paper. In section 3, we give some useful results on determinants having special forms. Then
in section 4, we derive in detail necessary and sufficient determinantal conditions for the
regularity of this (m;m’) 2-periodic trigonometric interpolation problem when N is odd,
from which the necessary condition of (2.1) of Theorem 1 is obtained. The remainder of
section 4 gives a detailed treatment of the sufficiency part of Theorem 1 when N is odd.
Because the methods used in establishing the results of Theorem 2 (when N is even), are
similar to those used in establishing Theorem 1 (when N is odd), only the first part i) of
Theorem 2 is given in detail in section 5.

To conclude this section, we now comment on the relationship of Theorem 1 and 2 here to
known results in the literature. In [1], Cavaretta, Sharma, and Varga considered what can
be analogously called the I-periodic trigonometric interpolation problem on the equidistant

nodes {zx(n)}Z5, with @x(n) := 2kr/n, where the single vector
(2.6) m = (M, mg, -+, M)

has nonnegative integer components with 0 =: m; < m, < --+ < mq. Here, n is either an
.- . . -1, .
odd or even positive integer, and for arbitrary complex numbers {a, }xZo'?_,, the associated

1-periodic lacunary interpolation problem was defined by
(2.7) thr (z) = ar, (k=0,1,---,n—1, v=0,1,---,9),

where tp(z) is a trigonometric polynomial of the appropriate form (1.4) or (1.4'). In [1],
necessary and sufficient conditions, for the interpolation problem (2.7) to be regular, were

derived, and remarkably, these conditions depend only on the number of odd and even
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integers in m. (For a recent survey of lacunary trigonometric interpolation, see Chapter 11
of Lorentz, Jetter, and Riemenschneider [4].)

Curiously, if m = m’ in (1.2), one would expect that this would cover completely the case
treated in [1]. This, however, is not the case because the number of nodes in (1.1) is always
even, namely 2n, whereas the case treated in [1] allows the total number of nodes to be either
odd or even. In this sense, the results in this paper can be viewed as being complementary
to those of [1]. In addition, the necessary and sufficient conditions of Theorems 1 and 2 of

this paper require the alternation condition of (2.2), a condition which doesn’t appear in [1].

3. Some Lemmas on Determinants.

In subsequent sections, we shall need results for deciding whether certain determinants
are nonzero. For this purpose, we collect in this section some elementary but useful results on
determinants. We begin with the following well known result for generalized Vandermonde

determinants.

LEMMA 1. Let {t;}_, be positive real numbers with 0 < t; <ty < -+ < i, and let {y;};.,
be nonnegative integers with 0 < py < pg < -+ < ps. Then, the determinant D of order s,
defined by

t;blltgl tf;;

tuz t#2 t/:g
(3.1) D:=|" 7 e

the ot g

satisfies D > 0. Similarly, if the positive real numbers {t;}3_, in (3.1) are strictly decreasing,
then D = 0 with

(32) sgnD = (—1)2t-172,

Proof. The first part of Lemma 1 is of course the well known result for generalized Vander-
monde determinants (cf. Gantmacher (2, p. 99]). For the second part of Lemma 1, assume

{t;}:=, is a strictly decreasing sequence of positive real numbers. On interchanging the
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columns of D of (3.1) so as to achieve a rearrangement of {¢;}_; which is a strictly increas-
ing sequence of positive real numbers, then part 1 of Lemma gives that this new determinant
is nonzero, and, on counting the number of column interchanges necessary to achieve this

rearrangement, it follows that (3.2) is valid. O
The next result is similar to the result of Lemma 2 of Cavaretta, Sharma, and Varga [1].

LEMMA 2. Let {t;}3., be positive real numbers with 0 < t; < t3 < -+ < t,, and let
{m;}Yeoy and {m}}I_, be any two sets of nonnegative integers with 0 < my < my < +++ < m,

and 0 < my <m) < - < ml, where p+q = s> 0. Then, the determinant D of order s,

Q7
defined by
g
tmp tmp - tme
(3.3) D= 7 i
tl 1 ___t;'ﬁ .. (—1)5_1t3 1
t;"‘; _t;"'& (_l)s—lt;":l
satisfies D # 0 with
(3.4) sgn D = (—1)4+p=1/2,

Proof. The Laplace expansion of D of (3.3) about its first p rows, is given (cf. Karlin [3, p.
6]) by

S : L, 2, -y p p+1,  p+2, -, ptg
(35) 3 (=1)0+244p)+(itizttip) -D, ,
1<h1<<jp<s ’ 1, J2y v Jp 1 Jge v g
3 2? 3y . .
where D, is the determinant formed from the rows 1,2, --,p and
Jis J2y s Jp

o . P . +1, p+2 o, p+
columns jy, jo, -+, jp of D (with 1 < 7, <j2<'--<]p§s),andD2(p ) P ) P Aq
. J15 J2y s ]q

)
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is the determinant formed from the complementary rows p+ 1,p + 2,-++,p 4 ¢ and com-
plementary columns ji,jj, -+, j, of D (with 1 < ji < jj < -+ < j] <'s). From part 1 of

1, 2, - y
Lemma 1, sgn D, ’ P 1, and, on factoring out (—1)%+~1 from each k-th

Ju Jay v Up

+1, p+2, - p+ o
column of D, P . P ‘ P ‘ 7 , part 1 of Lemma 1 similarly gives that
oo Jm ot g
sgn Dy | DL PR POt
j{’ ]év ) ];

It then follows that each term of the sum (3.5) is nonzero with the same sign, this sign being
given in (3.4). O

We remark that Lemma 2 is also valid when the set {m/}?_, is empty (i.e., ¢ = 0) since
Lemma 2 reduces to the first part of Lemma 1 in this case. Similarly, Lemma 2 is also valid

when the set {m;}’_, is empty (i.e., p = 0).

LEMMA 3. Let {t;}¥_, be positive real numbers with t; > t3 > +-+ > t; > 0, let {uiYis
be positive real numbers with 0 < uy < up < -+ < wy, and let k+ £ =: s > 0. If {y;}5,
are nonnegative integers with 0 < py < po < -+ < p5, then the determinant Ds of order s,

defined by

H1 H1 Hy M1 H1 H1
g g ubt o uk
t;‘d t‘é‘z . t;:2 _ulll2 _uizlz’ e ___uzfa
e— — 5—1
(3.6) D,:=| " i . ) (o:= (=11,
ety et gult ouy oo oul

satisfies Ds # 0 with

(3.7 sgn Dy = (=1)*=D/2,
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Under the same hypotheses, if

ti’d t;‘l e t;—:l uflll ug’] e u“;l
. *tén __ttztz '—t£2 u;‘z ’U,;2 u?z
(38)  Die=| o Cl o= (-,
oty oty - ot uft uhr o upe
then
(3.9) D, > 0.

Proof. Here, we use the Laplace expansion of D, about its first k columns. Then as in

(35)7

k
142 +k+ Zi,, L ) , . .
i, G2, v, g 1, i3y i
(310) D,= > (1) v=1 D, -Dy !
1< <<ig s 1, 2, -, k B+l k42, e, ke

From the second part of Lemma 1, it follows from (3.2) and the hypotheses on {tj}le that

sgn D1 oottt :(—-1)""2—1)
1L, 2, -, k '

while, on factoring out (—1)%~' from each v-th row of D, it similarly follows from the first

part of Lemma 1 that

S SO ¢
sgn Dz 15 25 ’ ¢ _ (_I)Ev=l(z”—1)_

k+1, k+2, -, k+¢
Thus, each term of the sum (3.10) is nonzero with the same sign, this sign being given
in (3.7). Finally, for the determinant D, of (3.8), simply factoring out (—1)’~! from each
Jthrow (j = 1,2,---,s), exactly gives the determinant D, of (3.6). Thus, we have D, =
(—=1)*6=1/2D, and with (3.7), it follows that D, > 0. O

As in the remark following Lemma 2, we note that both parts of Lemma 3 are valid when

either the set {uz}le is empty (i.e., £ = 0) or when the set {tj}le is empty (i.e., k = 0).
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This will be used in the proof of Theorem 1 in section 4.

4. Necessary and Sufficient Conditions for Regularity: N Odd.
With the definition of (1.6), we assume here that N = n(p+ ¢) is odd, so that n and p-+¢

are also both odd, and we write
(4.1) n=:2r+1and p+q=:2s+1.

In this case, we have (cf. (1.7))

(4.2) M:—]—V—;—lzns—%r,

and the sought trigonometric polynomials must be of the form (1.4).

The derivation of necessary and sufficient conditions for a unique trigonometric interpolant
in (1.5) is based on the elementary notion that the interpolation of null data is unique if and
only if certain associated determinants are nonzero. To begin, we use the familiar device of
identifying (in a 1 — 1 way) trigonometric polynomials (in the real variable ) with algebraic
polynomials (in the complex variable z), through the transformation z = e®. Then, any

trigonometric polynomial of the form (1.4) can be expressed as

(4.3) tu(e) =2 Mam(z)  (g2m € mam),

where 7, denotes the set of all complex algebraic polynomials of degree at most k. Thus,

with (4.1) and (4.2), we can express (4.3) as

(4.4) ta(z)=2"M ij: 2"Qx(2),

where

n~-1
Qr(z) := Z aA,jz" (A=0,1,---,2s).
7=0

Then, since z = € implies d/dx = izd/dz, the interpolation conditions of (1.5), applied to
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(4.4) for null data, reduce, respectively with zo; 1= €®2* and zppyy 1= €241, to

n—=1 2s
Zzék [Za/\d‘(]"{_}‘nhM)mujl =0’ (V = 1,2,"',17; k= 0717"'7”'—1)7
7=0 A=0
n—-1 25 ,
LA {Z(—*l)’\aw(]’ +An — M)m"} =0, (vw=12,-++,¢; k=0,1,--+,n~1),
=0 A=0

(4.5)

where we have used the facts (cf. (1.1)) that 25 = 1 and 2., = —1. Next, if we define

the quantity in square brackets in the first display of (4.5) to be B, and if we set p,_;(2) :=
n—1
E B;z?, then (4.5) implies that p,q1(zex) = 0 for k = 0,1, - ,n—1. But as the n associated
=0

nodes {z}}Zg are all distinct, then p,_;(z) = 0; whence, B; = 0 for all j = 0,1,---,n — 1.

As the same argument applies to the second display of (4.5), we thus have

2s

Za/\,j(j—}L)\n—M)m":O’ (1/=1,2,~~,p;j=0,1,~~,n~—1),
(4.6) o

Z(_l)/\a)\,j (]+An_M)mL :01 (V=1>23"'7q; ] =0,1,"',TL'~1).

A=0

Recalling from (4.2) that M = ns+r and from (4.1) that n = 2r + 1, then on dividing out a

factor of n™ and n™v, respectively, from each of the two equations of (4.6), and on setting

j—r
2r+1

(47) Qj = (.7 = 071)"‘727‘)7

it follows from (4.6) that, for each j =0,1,---,2r,

2s

Za,\,j(aj—}-)\—s)m":o (v=1,2,---,p),
(4.5) |

Z('—l)/\a/\aj (aj + A s)mu =0 (V = 1?23 T 7q)'

=0

But for each choice of j = 0,1,---,2r, the above equations represent 2s + 1 homogeneous
linear equations in the 2s + 1 variables {ay;}3%,. If A(o;) denotes the determinant of order
25 + 1 of the coeflicients of {a;}%%, in (4.8), then A(q;) # 0 for each j = 0,1,---,n —~ 1 if
and only if tpr(z) = 0 in (4.3). Consequently, we immediately have the result of
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PROPOSITION 1. Let N = n(p + q) be odd, so that n is odd (with n =: 2r 4+ 1) and

p+q is odd (with p+ q =: 25 + 1). Then, in order for the (m;m’) 2-periodic trigonometric

interpolation problem (1.5) to be regular on the 2n equidistant nodes {z;}325" in [0,27), it is

necessary and sufficient that

j=r .

(49) A(aj)#o (aj = 27‘+1, ]:071,“-727‘),

where A(a;) denotes the determinant of order 2s + 1 of the coefficients of {ay ;}3%, in (4.8).
We remark from (4.7) that the a;’s of (4.7) all satisfy

1
(4.10) |aj]<§ (7=0,1,---,2r).

Next, for convenience, let A(«r) denote the determinant (of order 25+ 1) of the coefficients
of {ay;}3%, in (4.8) when o is replaced by the variable o. Then, this determinant A(e) can

be expressed in usual row-column notation as
(4.11) Alo) = ferj(e)] (1 <4,j<2s+1),
where, from (4.8),
(a+j—1—s)™ (1<ispl<)<2s41),
cij(a) =

(=1 Y a+j—1-s)™r (p+1<i<p+qg=2s+11<j<2s+1)
(4.12)

Thus, the determinant A(a) is explicitly given by

1 1 e 1 1 . 1
(a=s)" (a+1—s)me a™2 (o +1)m2 (a + s)™2
(413) Ale)=| (a—s)™ (a+l—g)™ .. o™ (a+1)™ (et sme |
(=)™ —(a+1—=8)"1 oo (=1)a™ (=10 Y a+1)™ ... (a+s)™
(a=s)" —(a+1—s)™ - (=)™ (=1 Ha+ D)™ - (a+s)™
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where the first p rows all have entries with positive signs, while the last ¢ rows have entries

which are alternately positive and negative in sign.

Next, we derive a useful general relationship between A(a) and A(—«). Starting with
A(—a) from (4.13), interchange its first and last (2s + 1)st columns, its second and the 2sth

columns, etc., a total of s interchanges. This gives from (4.13) that

1 - 1 1 e 1
(~at s (—er 1) (—e)ym (~ar=s)m
A(=a) = (=] (o)™ (—a+1)m —a)™ (~or =)™
R A G D G G L
(et )™ o (FDTA e T (1 ()™ (—a s

If m; is even, the j-th row of the determinant above is the same as the j-th row of A(a)
of (4.13), the same being true for the appropriate rows of these determinants if m/ is even.
But if m; is odd, the j-th row of the determinant above is the negative of the j-th of A(«)
of (4.13), the analogous property holding when m/ is odd. On factoring out (—1) from each

row where m; or m/} is odd, it follows from the definition of (1.8) that

(4.14) A(=a) = (1)t A(a) (o arbitrary).

It is evident from (47) that o, = 0. From Proposition 1, it thus follows that A(0) # 0 is
a necessary condition for this (m; m’) 2-periodic interpolation problem (1.5) to be regular
in the case when N is odd. Assuming that m} > 0 (the treatment of the case m{ = 0 being
similar), take the case @ = 0 of the determinant of (4.13) (of order 25 + 1), and subtract its

first column from its last (2s + 1)-st column, its second column from its 2s-th column, etc.
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This leaves A(0) unchanged and gives

1 1 1 0 0

(=)™ (=s+ 1) 0 1-(-1)™ s — (—5)™2

(4.15) A) =] (=s)™  (=s+1)™ ... 0 1= (=1)" S g — (=)™
(=)™ —(=s+ D)™ - 0 (FD)THL= (D)™)o s = ()™

(=)™ —(=s+ D)™ 0 0 (=1L (1)) e 5™ = (=)™

Note that the last s columns of A(0) in (4.15) have a zero row whenever m; or m/ is even.
Thus, the last s columns of A(0) have, with the notation of (1.8), E + E’ zero rows, while
the last s+ 1 columns of A(0) have E+ £’ —1 zero rows. Next, assume that £+ E' > s+2,
so that the last s + 1 columns of A(0) have at least s + 1 zero rows. Now, the Laplace
expansion of A(0), in terms of its first s columns, is given by the sum of (3.10) with k:=s

and £ := s+ 1. But, the fact that the last s+ 1 columns of A(0) have at least s+ 1 zero rows

i, i, e, . )
implies that the final determinant D, ' : | of (3.10) must vanish, since
s+1, s+2, - 2541
it has at least one zero row, for any choice of 1 < éj < iy < -+ <4/, < 25+ 1. Hence,

E + E" > s+ 2 implies A(0) = 0. Thus, a necessary condition for regularity is that
E+E <s+1.

In a similar fashion (on adding appropriate columns of A(0) in (4.15)), we deduce that a

necessary condition for regularity is that (cf. (1.8))
0+0 <s.

But since (E+ E')+ (0O +0') = p+ ¢ = 2s+1 from (1.9) and (4.1), it must follow from the

above two inequalities that
(4.16) E4+E =s+1and 0+0 =5,

which establishes the necessary condition (2.1) of Theorem 1.
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We remark that (4.16) is a necessary condition for the regularity of this (m;m’) 2-periodic
interpolation problem when N is odd. In fact, we now show that (4.16) implies A(0) # 0
when NV is odd. Because the derivatives in the interpolation conditions of (1.5) can be applied

in any order, we may assume (without loss of generality) that

(4.17) 0 = mq,mq, -+, my are even, and mgy1,Metg, -, My are odd, and

my,my, - -+, mj are even, and my,,,my .-, m, are odd,
where, from (4.16),

(4.18) b+k—-1=s=p—L+q—k.

From our previous construction, we know that the last s columns of A(0) of (4.15) have s
rows of zeros, corresponding to the even integers maq, - -+, my, mf,- -+, m}. Thus, the Laplace

T

expansion of A(0) of (4.15) about its center column, namely (1,0,---, 0}, results in a single

determinant, of order 2s, equal to +A(0), which can be expressed (up to a nonzero constant

factor) as the product

(4.19) A(0) = D, - Dy,

where, after elementary column operations, D; and D, are determinants, each of order s,

given by
1 9ma e (=M g™
1 ome — 1) e
(4.20) Dy = , . / S/ J
O R Vi
(1 (e (s o
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and
1 PALZS] . (3 — 1)m£+1 PULES!
(4 21) D 1 9mp Ce (S — 1)mp s™r
. 2 = N ] 1
(_1)3'1 (—1)22Mk41 oo (5 — 1)Tk41 T4
(_1)3—1 (‘1)s2m{? —‘(5*—1)7"{1 Sm;

Upon multiplying all entries in the last k rows of Dy and the last ¢—k rows of Dy by (—1)*,
then Lemma 2 directly shows that both Dy and D, are nonzero. Thus (cf. (4.19)), A(0) # 0.
This gives us the following result, which establishes the first part of Theorem 1.

PROPOSITION 2. Let N = n(p+ q) be odd, so that n is odd (withn =:2r+1) and p+¢
is odd (with p + q =: 2s + 1). Then, a necessary and sufficient condition that A(0) # 0 is
that (cf. {1.8))

(4.22) E4+E -1=s=0+0"

We now complete the proof of Theorem 1. We assume that (4.22) is valid, and that the
components of m and m’ are, respectively, alternately even and odd integers (cf. (2.2)).
To establish that this (m,m’) 2-periodic trigonometric interpolation problem is regular, it
is sufficient, from Proposition 1 and (4.10), to show that A(a) # 0 for any real a with
0 < |of < 1/2. But from (4.22) , we have O + O' = s, which implies from (4.14) that
A(—~a) = Aa). Thus, to establish Theorem 1, it suffices to show that

(4.23) Aa) # 0 for any 0 < o < 1/2.

Continuing, since p + ¢ = 2s + 1 is odd from (4.1) when N is odd, assume that p is even,
ie.,, p=2{, and that ¢is odd, i.e., ¢ = 2k + 1 (the remaining case of p odd and g even being
similar). With the alternation hypothesis of (2.2), then

(4.24)

0=m1 <mg < - < gy areeven integers, and
me < my < --- < mg are odd integers.
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Next, with the alternation hypothesis of (2.2), assume that
my <mjy < --- < mhy,, are even integers, and
(4.24"

my <my < -+ <mh  are odd integers;

(the remaining case of m) odd again being similar). From (4.24) and (4.24'), we have (cf.

(1.8)) that E=¢, O ={, E' =k+1, and O’ = k, so that (2.1) is satisfied.

With the hypotheses of (4.24) and (4.24), the determinant A(«) of (4.13), of order 2s+1,
can now be brought into a more suitable form. Indeed, if we factor out (—1)7 from each j-th
column (j = 1,2,--+,2s + 1) of A(a) of (4.13), and if we factor out (—1)* from each i-th
row of the first p rows (1 = 1,2,--- ,p) and change the signs in each of the remaining rows
(t=p+1,p+2,...,p+¢q) of the resulting determinant, we obtain the determinant A(a),
of order 2s + 1, given by

1 —1 (—1)° (__1)S+1 1
(s—ay —(s—l-a)  (=1)¥am (~D)*1ta)™  —(s+a)m
(s—ays —(s—1-ays  (-lpa™ ()t (s+am
A(Ot) = (s—a)™ —(s—1—a)™ ... (=1)tlam (=13 (1+a)™ --- —(s+a)™
(s—a)™ (s=1—a)™ .- o™ (14 a)™ e (st a)m
—(s—a)™ —(s—1—a)m o (14 a)m (s +a)™
(s—a)™ (s—1—a)™ --- a™a (14 a)™ N
(4.25)

where A(e) differs from A(a) by a multiplicative factor of +1. Thus, we must show that
A(a) # 0 for any o with 0 < a < 1/2. In fact, we shall show that

(4.26) sgnA(a) =1 for any o with 0 < a < 1/2.
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Applying the Laplace expansion of A(a} in terms of its first p rows, then

, 2

P

S D DU

. 2 S, +1, e, +

A= S (=1 = op| "o P,
Jis J2y Ty Ip ]{a Tty J;

1< < <ip <o+l

(4.27)
where (71,75, - -, j7) is complementary to (71,2, - -, Jp) with 1 < jj <jj < -+~ < jl <2541
+1, - +
Now, the determinant D b . ’ P q can be seen, from (4.25), to be ezactly of
]{7 ) .7;

the form of the determinant in (3.8) of Lemma 3, where k (possibly zero) in (3.8) is the
number of indices of (j{,---,77) less than s + 1. (It is here where the remark after Lemma 3
applies.) Note also that the strict monotonicity requirements, for the positive real numbers
t;’s and u;’s in (3.8), follow from (4.25) and the fact that 0 < o < 1/2. Thus, from (3.9) of
Lemma 3,

+1, -, ptgq
(4.28) F I PN}
.7{7 T ](I;

17 27 Tty P

Next, consider D ) of (4.27). On factoring out (—1)%*~1 from the kth

.j17 j27 o jp
column of this determinant (where £ = 1,2,...,p), we have
1, 2, --- : 1, 2
(429) D ’ . I I P - (_1)Z’;=1(1k_1) D* . 3 ' i I P ,
Jis J2y s p Jus J2 s Jp
1. 2 eeu
where the determinant D* | ’ ' ’ ’ ' is ezactly of the form of the determinant
Jis J2s s Jp )

of (3.6) of Lemma 3, where k (possibly zero) in (3.6) is the number of indices of (ji,...,7,)
less than s -+ 1. Again, the monotonicity requirements for applying (3.7) of Lemma 3 are
fulfilled, and so from (3.7),

17 27 Tty D

(4.30) sgnD” ( _ = (=1)Pr/2,
J

1, J20 s p
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Hence, with (4.28)-(4.30), it follows that each term of the sum in (4.27) has the same sign,
given by

d -1
1,3, — p + plp—1)

sgni(a) = (~1) v=1 2 0 <o<1/2),

which establishes (4.26) and Theorem 1. O

We conclude this section with examples showing that regularity, in this case when N is
odd, can hold with (2.1) but without the alternation condition (2.2) holding. Specifically,
assume again that N = n(p+ ¢) is odd, so that n is odd and p + ¢ := 2s + 1 is odd. Choose

s =1, and set
(4.31) m:= (0,20) and m’:= (2k +1) (any £ > 1, any k > 0).

Now, (2.1) is satisfied (with E+ E'—1 =1 = O+ O'), but the alternation condition of (2.2)
clearly does not hold. We shall show that this (m, m’) 2-periodic trigonometric interpolation

problem defined by (4.31) is however regular. In this case, A(a) is given by (cf. (4.13))

1 1 1
(4.32) —Ale)=| 1-a)¥ o (14 a)*
(1- a)2k+1 2k —(1 +a)2k+1
where, from (4.14), A(—a) = A(a). Moreover, it is readily seen, on expanding A(a), that
(433) - A(O() — [(1 _ Q,)Zl - a?t] [(1 +a)2k+1 +a2k+1] + [(1 . a)2k+1 . a2k+1] [(1 +a)2l . a?l] .
But for any £ > 1, k£ > 0, and o with 0 < o < 1/2, the quantities in brackets are all positive,
and this establishes that these ((0,2¢); (2k+1)) 2-periodic interpolation problems are regular.

5. Necessary and Sufficient Conditions for Regularity: N Even. .
If (cf. (1.6)) N = n(p + g) is even, then one of the three conditions of (2.3) necessarily
holds, and we first consider the case (cf. (2.3¢)) when

(5.1) niseven (n=:2r), and p+¢isodd (p+¢g=:2s+1),
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so that (cf. (1.7))

(5.2) M=N/2=ns+r.

Since N is even, we necessarily consider trigonometric interpolants of the form (1.4'), where
e(=0or 1) in (1.4') is to be appropriately chosen. Following the procedure of §4 of using
the transformation z = €“, we can similarly write any as(2) of the form (1.4') as

(5.3) tm(z) = z—M{i ZnAQ/\(Z) + CZ(23+1)71}7

A=0

where
n—1
Q,\(Z) = Z a,\,]‘Zj ()\:O,l,"',QS),
7=0

and where, because of (1.4), we have

(5.4) ago + ¢(—1)t = 0.
With
5 [t J — T ) — ...
(SD) Qj = 9 (.7 - 0, 17 ,27’),

we obtain, exactly as in (4.8) in the interpolation of null data, the following homogeneous

2s + 1 linear equations

2s

Za/\»j(aj—f_)‘~3)mu:0 (V:sz"'ap)’
A=0

(5.6)
25 ,
Z(_l)/\a/\x]‘(aj + A— S)mV =0 (Z/ = 1’2) T ’q)a
A=0

in the 25 4+ 1 variables {a,;}3,, for each j = 1,2---,n — 1. The departure from the case
treated in §4 comes in the case j = 0 which involves the unknown constant ¢ of (5.3) For
this case j = 0, the associated homogeneous 2s + 2 linear equations for the unknowns ¢ and

{axo}3L, are given by (5.4) and
2s
Z@,\,o(ao +A=5)" +clag+s+1)™ =0 (v=1,2,---,p),
(5.7) Ty
Z(—I)Aam(ao + A= 8)™ — c(ap+ s+ D™ =0 (v=1,2,- - q).
A=0
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Clearly, the system of equations (5.6) is the same as those in (4.8), except that here we

have in (5.5) that o; = £, whereas in (4.8), a; = #77- I, as in §4, A(ey) denotes the
determinant, of order 2s + 1, of the homogeneous system (5.6) for j = 1,2,-+- ,n — 1, and if
Ao denotes the determinant, of order 2s + 2, of the homogeneous system (5.7) and (5.4) for

7 = 0, then in complete analogy with Proposition 1 of §4, we have

PROPOSITION 3. Let N = n(p + q) be even with n =: 2r even and p+ ¢ =: 2s + 1

odd. Then, in order for the (m;m’) 2-periodic trigonometric interpolation problem (1.5) to

be regular on the 2n equidistant nodes {x;}2"5! in [0,27), it is necessary and sufficient that

(5.8) Al) 0 (ay =205, 5 =1,2,-,2n),
T
and that
1 .
(5.9) BoA0  (ag=~3, j=0).

Next, since o, = 0 from (5.8) and since A(Q) in this section is the same as that in §4
(except for the value of n), we immediately obtain the results of (4.14) and (4.16), which

directly give the first part of the following analogue of Proposition 2 of section 4.

PROPOSITION 4. Let N = n(p + q) be even with n =: 2r even and p + q =: 25 + 1 odd.
Then, a necessary and sufficient condition that A(0) # 0 s that

(5.10) E4+FE -1=5s=0+0"
Moreover, a necessary and sufficient condition that Ag # 0 is that either

E4+O0 =s+1 and EF+0=s with ¢ =0, or

(5.11)
E+0 =s and E'+0=s5+1 with €= 1.

For the proof of the last part of Proposition 4, recalling from (5.5) that ap = —1/2, we
may assume (without loss of generality) that the components of m and m’ are ordered as in
(4.17). Then, up to a nonzero multiplative factor, the determinant A¢ from (5.4) and (5.7),
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of order 2s + 2, becomes

1 1 1 1 1 1
(25 4+1)™2 3™m2 1 1 3m2 (25 +1)"2
(2s+1)™ .- 3me 1 1 3me cee (284 1)™
—(2s 4+ 1)™etr . —3met -1 1 3mett s (284 1) e
(512) dg=| “EEHNT e AT -1 1 ams v (24 1)
. 0 == 1 1 ’ ,
—(2s+1)™ ... (~1)3™ (=1)**t (=1)*  (=1)PHEm™ o (254 1™
C@s A1) (213 (=1 (=1)° (=1 (24 1)
@s+D)™he o (1T (21 (<1 (ST 204 1)
(25 +1)™ (- (<1t (<) (-1t (2s+ 1)
1 0 0 0 0 (~1)+e

1t is evident that the first £ rows, involving the exponents my,-- -, my, and the ¢ — k rows,
involving the exponents mj,,---,my, of the determinant Ag of (5.12) are symmetric about
its vertical center, while its remaining interior rows are antisymmetric about its vertical
center. Thus, if we subtract the first column of Ag of (5.12) from its last (2s+2)-nd column,
its second column from its (2s + 1)-st column, etc., thereby forming Ao (where Ag = Ao),
then the last s+ 1 columns of this determinant have at least F + O’ zero rows. If we assume
that
E+0 >s42,

then applying the Laplace expansion to this Ao about its last s + 1 columns shows that
Ag = 0. Thus, a necessary condition that Ag # 0 is that

(5.13) E+0 <s+1,

and, in a completely analogous manner, it similarly follows (on adding appropriate columns

of Ao) that a necessary condition that Ag # 0 is also that

(5.14) E'+0<s+1.
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However, since £ + E'4+ O + O’ = 25 + 1 from (5.1), then equality cannot simultaneously
hold in (5.13) and (5.14). Hence, either E+ O’ =s+ 1 and '+ 0 =s,0r E+ O’ = s and
E4+0=s+1.

HE+0 =s+1and '+ O = s, then the determinant Ay, formed above by subtracting
the first column of Ag from its last column, etc., has the last s + 1 entries of its final row

given by
(515) (070,..4,07.,.1,{_(_.1)”'5),

Clearly, the choice ¢ = 1 would make a zero row in (5.15) above, which, by the argument
above, would result in Ag = 0. Thus, in this first case of (5.11), a necessary condition ’that
Ag # 0 is that & = 0.

We now show that the choice e = 0, when E + 0O’ = s+ 1 and F' + O = s, is a sufficient
condition that Ay # 0. For the determinant Ao, of order 2s + 2, constructed above, we
have that the last s + 1 columns of A has exactly s + 1 zero rows. Thus, in the Laplace
expansion of Ao in terms of its last s + 1 columns, there is at most one term which has to
be examined, namely the product to two subdeterminants, each of order s + 1, where the
first subdeterminant is taken from the last s + 1 columns of Ag and rows corresponding to
the integers of O and E’ (where ' + O = s) and the final row of Ao (which is zero from
(5.15) except for its final entry which is —1, since € = 0), and the second subdeterminant
is complementary to the first subdeterminant, corresponding to the first s + 1 columns and
the rows corresponding to the integers of £ and O’ (where E'+ O = s+1). But on applying
Lemma 2, it is readily seen that neither of these subdeterminants is zero; whence, Ao # 0.
This establishes the first necessary and sufficient condition of (5.11). We remark that in the
same manner (on adding columns in (5.12)), one similarly obtains the second necessary and

sufficient condition of (5.11).

To complete the proof of Theorem in the case (2.37), we note that the proof of §4 shows
that the assumptions, that the components of m and m’ satisfy (5.10) and the alternation

condition of (2.2), give that A(a) # 0 for any 0 < |a] < 1/2. Thus, it remains only to show
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that (2.51) of Theorem 2 is valid, i.e., e = 1 if p is even, and ¢ = 0 if p is odd. First, assume
that p is even, say p := 2£. Then, q := 2t + 1 is odd since p+ ¢ = 2s -+ 1 is odd. In this
case, s := { + 1. Because p = 2( is even and because of the alternation condition (2.2), it
necessarily follows that £ = ¢ = O. With ¢ = 2t + 1, assume that £’ = ¢+ 1 and if O’ = ¢.
Then, £ + E' —1 = s = O + O which satisfies (5.10), and E+ O’ =sand E' + O = s + 1.
Thus from (5.11), € = 1. Again with ¢ = 2{ 4 1, assume on the other hand that £’ = ¢ and
O =t+1. Bat then, E+ F' —1=5—~1%# O+ 0" = s+ 1, which violates the condition
(5.10). Hence, when p is even, we can only satisfy the conditions of (5.10) and (5.11), with
the latter case of (5.11) so that & = 1, which gives the first part of (2.5¢). The case when p
is odd is completely similar and is omitted.

Finally, because the remaining cases it) and #1) of Theorem 2 follow along the lines shown

above, we leave these verifications to the reader.
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