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SOME 2-PERIODIC TRIGONOMETRIC INTERPOLATION PROBLEMS ON
EQUIDISTANT NODES
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ABSTRACT: The problem to be considered here is the determination of necessary and
sufficient conditions for the uniqueness of 2-periodic lacunary trigonometric interpolation on
equidistant nodes. Our main results are new necessary and sufficient conditions in particular
cases which depend only on the total number of even and odd integers in the derivatives
which define the trigonometric interpolation process. As such, these new conditions can be

readily checked, as they avoid the evaluation of determinants.
AMS Classification: 42A15.

1. Introduction.

Given any positive integer n, define

k
(1.1) 2y = ap(n) == — (k=0,1,---,2n - 1),

n

so that {zz}i%5! is a set of 2n equidistant nodes in [0,27). Next, with p and q arbitrary
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positive integers, assume that the associated vectors

(1.2) m := (my,my, -+, m,), and m’ = (m},my, -, m.),
have nonnegative integer components which satisfy

(1.3) 0=m; <my < -+ < my, and0§m§<m'2<~-<m;.

We consider here the following 2-periodic trigonometric interpolation problem for the vectors
(m;m’). For arbitrary data consisting of complex numbers {ozjy,,}j;(}’f:l and {a/, ;;éy’le,

we ask if there is a unique complex trigonometric polynomial of the form

M
(1.4) ta(z) = ag + Z (ak cos kz + by sin kz),
k=1

or of the form

M-1
(1.4%) tm(z) = ao+ Y (axcosks + bysin kz) + apr cos(Mz + %r)
k=1

(where € = 0 or € = 1), such that
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(1.5) th) (22;)
tS\Y/IrLV)(ij+1) = a;',u (.7 = Ov 17 - la v = 1727' ) JQ)

Note that as the number of nodes in (1.1) is even (namely, 2n), we see that the interpolation

conditions of (1.5) are broken into interpolation conditions on two disjoint sets of n nodes,

from which the term, 2-periodic trigonometric interpolation, is derived.

The total number of interpolation conditions in (1.5) is evidently
(1.6) N :=n(p+q).

If N is odd (which implies that n is odd and that p+g is odd), then the sought trigonometric
interpolant ¢a(x) is necessarily of the form (1.4) (which has an odd number of parameters),
and in this case, M = (N—1)/2. If N is even (which implies that at least one of the numbers,

n and p+ ¢, is even), the sought trigonometric interpolant ¢p(z) is necessarily of the form



Sharma et al. 167

(1.4') with M = N/2, where (= 0 or 1) is to be appropriately determined. To summarize,

M= (N-1)/2 if Nisodd, and

(1.7
M = N/2 if N is even.

We say that this (m;m’) 2-periodic trigonometric interpolation problem of (1.5) is regular,
if, for arbitrary data, the interpolation problem (1.5) admits a unique solution tp(x), where
ta(z) is of the appropriate form (1.4) or (1.4').

This (m; m’) 2-periodic trigonometric interpolation problem on 2n equidistant nodes is a
special case of the more general s-periodic trigonometric interpolation problem on sn equidis-
tant nodes in [0, 27), considered in Sharma, Smith, and Tzimbalario [5]. In [5], necessary and
sufficient conditions for the regularity of this s-periodic trigonometric interpolation problem
were derived, in terms of the nonvanishing of several determinants (of possibly large order).
In this form, these necessary and sufficient conditions are not in general easy to apply.

Recently, however, two papers (cf. Sharma, Szabados, and Varga [6] and Sharma and
Varga [7]} have treated special cases of 2-periodic trigonometric interpolation on equidistant
nodes, and, in each of these latter two papers, new necessary and sufficient conditions for
regularity were derived which depend only on the total number of even and odd integers in
the componehts of the vectors m and m’ of (1.2). As such, these necessary and sufficient
conditions can be easily checked, in contrast with the necessary and sufficient determinantal
conditions of [5]. Thus, our goal here is to extend the results of [6] and [7] by finding
necessary and sufficient conditions, for the regularity of the 2-periodic lacunary trigonometric
interpolation problem, which similarly depend only on the total number of even and odd
integers in the components of each of the vectors m and m’ of (1.2). To this end, we use

throughout the notation of (cf. (1.3))

E = number of even integers in the components of m = (0,ma, -+, m,),
(1.8) O := number of odd integers in the components of m = (0, mq,---,m,),
E’' := number of even integers in the components of m’ = (mf,m},---, m;),‘

0" := number of odd integers in the components of m’ = (mf, mj, -, m;),
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so that
(1.9) E4+O=pand E'+ 0 =gq.

2. Statements of Theorems 1 and 2.
With the notation of section 1, we now state our basic results, Theorem 1 (when N is

odd) and Theorem 2 (when N is even). We begin with the case when N is odd.

THEOREM 1. Let N be odd, so that (cf. (1.6)) n =: 2r+1 and p+q =: 2s+1 are both odd.
Then, a necessary condition for the (m;m’) 2-periodic trigonometric interpolation problem

(1.5) to be regular is that (cf. (1.8))
(2.1) E+E -1=s=0+0"

Moreover, if the components of m and m’ are, respectively, alternately even and odd integers,
, TesSp! Y, Y

i.e. (cf. (1.2) and (1.3)),
(2.2)m; + mip1 tsodd (i=0,1,---,p—1), and m:-+m§+1 isodd (1=0,1,---,9g—1),

then (2.1) is both necessary and sufficient for this (m;m’) 2-periodic trigonometric interpo-
lation problem to be regular.

It is not yet known if condition (2.1) is, by itself, both necessary and sufficient for the
regularity of this trigonometric interpolation problem when N is odd, though we tend to
believe that it 7s. Indeed, with V odd and with (2.1) holding, there are examples showing that
the trigonometric interpolation problem is regular, without (2.2) holding. Explicit examples
of this will be given in section 4.

We continue with the case when N of (1.6) is even. Here, there are three cases to be dealt

with:
i) niseven (n=:2r), and p+g¢isodd (p+ ¢ =:2s+1),

(2.3) it) niseven (n =:2r), and p+ ¢ is even (p+ g =: 2s + 2),
i1t) nisodd (n=:2r+1), and p+ g iseven (p+ g =: 25 + 2).
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Because N is now even, the sought interpolant tas(z) is necessarily of the form (1.4'), and
e(= 0 or 1) must also be appropriately chosen in each case of (2.3). We also use the notation

[[z]] to denote the integer part of the real number z.

THEOREM 2. i) Let N be even, with (cf. (2.3%)) n =: 2r even and p+ ¢ =: 25 + 1 odd.
Then, a necessary condition for the (m;m’) 2-periodic trigonometric interpolation problem

(1.5) to be regular is that
(2.41) E4+E -1=5=0+0"

Moreover, if the alternation condition (2.2) holds, then (2.41) is both necessary and sufficient
for this (m;m’) 2-periodic trigonometric interpolation problem to be regular, with e of (1.4')
being given by

0, ¢ 18 odd,;
(2.50) e= { e

1, if pis even.
i) Let N be even, with (cf. (2.31)) n =: 2r even and p+ q =: 25 + 2 even. Then, a

necessary condition for the (m;m’) 2-periodic trigonometric interpolation problem (1.5) to

be regular is that
(2.4ii) B = ([(p+1)/2]}, and ' = [[(qg+ 1)/2]).

Moreover, if the alternation condition (2.2) holds, then (2.411) is both necessary and sufficient
Jor this (m;m’) 2-periodic trigonometric interpolation problem to be regular, with ¢ of (1.4)
being given by

(2.5i1)

0, ¢f p and q are both odd,;
£ =
1, if p and q are both even.

iii) Let N be even, with (cf. (2.3i%)) n =: 2r + 1 odd and p + q¢ =: 25 + 2 even. Then, a
necessary condition for the (m;m’) 2-periodic trigonometric interpolation problem (1.5) to

be regqular is that

(2.4iii) E+E -(0+0)=0o0r2.
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Moreover, if the alternation condition (2.2) holds, then (2.41i%) is both necessary and sufficient
for this (m;m’} interpolation problem to be regular, with € of (1.4') being given by

0, if E4E =38+2 and O+0 =g

(2.51ii) €=
1, of E4E=s+1 = 040"

Having stated above our main results, we next outline the remaining portions of this
paper. In section 3, we give some useful results on determinants having special forms. Then
in section 4, we derive in detail necessary and sufficient determinantal conditions for the
regularity of this (m;m’) 2-periodic trigonometric interpolation problem when N is odd,
from which the necessary condition of (2.1) of Theorem 1 is obtained. The remainder of
section 4 gives a detailed treatment of the sufficiency part of Theorem 1 when N is odd.
Because the methods used in establishing the results of Theorem 2 (when N is even), are
similar to those used in establishing Theorem 1 (when N is odd), only the first part i) of
Theorem 2 is given in detail in section 5.

To conclude this section, we now comment on the relationship of Theorem 1 and 2 here to
known results in the literature. In [1}, Cavaretta, Sharma, and Varga considered what can
be analogously called the I-periodic trigonometric interpolation problem on the equidistant

nodes {zx(n)};Zs, with zx(n) := 2kr/n, where the single vector
(2.6) m:= (my,mg, -+, Mmy)

has nonnegative integer components with 0 =: my < my < --- < m,. Here, n is either an
. . . -1 .
odd or even positive integer, and for arbitrary complex numbers {ax, }xZo'f—o, the associated

1-periodic lacunary interpolation problem was defined by
(2.7) U (zx) = oy, (k=0,1,-,n—1; vr=0,1,---,q),

where tp(z) is a trigonometric polynomial of the appropriate form (1.4) or (1.4'). In [1],
necessary and sufficient conditions, for the interpolation problem (2.7) to be regular, were

derived, and remarkably, these conditions depend only on the number of odd and even
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integers in m. (For a recent survey of lacunary trigonometric interpolation, see Chapter 11
of Lorentz, Jetter, and Riemenschneider [4].) ;
Curiously, if m = m’ in (1.2), one would expect that this would cover completely the case
treated in [1]. This, however, is not the case because the number of nodes in (1.1) is always
even, namely 2n, whereas the case treated in [1] allows the total number of nodes to be either
odd or even. In this sense, the results in this paper can be viewed as being complementary
to those of [1]. In addition, the necessary and sufficient conditions of Theorems 1 and 2 of

this paper require the alternation condition of (2.2), a condition which doesn’t appear in [1].

3. Some Lemmas on Determinants.

In subsequent sections, we shall need results for deciding whether certain determinants
are nonzero. For this purpose, we collect in this section some elementary but useful results on
determinants. We begin with the following well known result for generalized Vandermonde

determinants.

LEMMA 1. Let {t;}_, be positive real numbers with0 < t; <ty < - <t,, and let {u;}3,
be nonnegative integers with 0 < py < py < -+ < p,. Then, the determinant D of order s,
defined by

tlll'l i t’;l e t;sz.l

A T
(3.1) D:=| e

et

satisfies D > 0. Similarly, if the positive real numbers {t;}5_; in (3.1) are strictly decreasing,
then D # 0 with

(3.2) sgnD = (=1)°6-172,

Proof. The first part of Lemma 1 is of course the well known result for generalized Vander-
monde determinants (cf. Gantmacher [2, p. 99]). For the second part of Lemma 1, assume

{tj}5=; is a strictly decreasing sequence of positive real numbers. On interchanging the



