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ON HIGHER ORDER STABLE IMPLICIT METHODS FOR SOLVING
PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

By RicHARD S. VARGA

1. Introduction. The numerical solutions of self-adjoint parabolic partial
differential equations, such as

oulz, t) _J 9 ou
(1.1) ot {&5 p(x) 55} — o(z)ulz, t) + s(z),

a<xz<b t >0,

in one space variable where

(1.2) u(z, 0 +) = g(=), a<z=b
and
(1.3) u(a, t) = a, u(b, t) = B, t >0,

have been considered by many authors (e.g. [5], [12], [17], [19]), and concepts
such as the stability and conststency of discrete approximations, and convergence
of the discrete approximations to the solution of (1.1) have been previously in-
troduced. However, while most previous papers on this topic simultaneously
discretized both space and time variables and analysed by means of Fourier series
the properties of the resulting system of linear equations, our approach, like
that of [8], is to discretize first only the space variables, leaving the time variable
continuous, and to analyse the resulting system of ordinary differential equa-
tions by matrix methods, avoiding Fourier series arguments.

As a result of this approach, we shall introduce new numerical methods which
are unconditionally stable, and show that well known numerical methods for
solving (1.1), viz. the explicit method, the backward time implicit method
[14], and the Crank-Nicolson implicit method [19], can be generated (Theorem
2) from particular Padé rational approximations rs,.(2) of e *. These results
are applicable to a large class of parabolic partial differential equations which
are approximated on non-uniform spatial meshes.

Considering discrete spatial meshes, we also give error estimates for the dif-
ference between the continuous time problem, and the discrete time problem
used in actual numerical calculations. This consideration leads to a prior: esti-
mates of the discrete time mesh in order to achieve a particular accuracy. Finally,
because of the monotonicity of the error of Padé rational approximations for
¢~*, we consider also the best rational approximations for ¢”* in the Chebyshev
sense. The interesting feature of the associated matrix approximations is their
accuracy for any size time step (§5), and as a result, offer the possibility of ob-
taining approximations (of limited accuracy) of (1.1) for any time ¢ from a
single time step.

220
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2. The Continuous Time-Discrete Space Equations. To be explicit, we con-
sider in particular the parabolic partial differential equation of (1.1-3), where
we assume that p(z) and o(x) are given continuous functions' on o < ¢ < b
with

(2.1) plz) > 0, o(z) =2 0, a <z =bh
The given functions s(x) and g(x) arealso assumed tobe continuousona = z < b.
If {z} 1) is any set of spatial mesh points with a= z < 21 < 22 < =+- < Ty

< Ty = b, define h; = x; — 2,5 for 1 < ¢ £ n + 1. Upon integrating (1.1)
from z; = hi/2 to x; + hiy1/2, and using central difference approximations as in
[20], we obtain, denoting u(x; , t) by w.(¢),

hi + hin\d
(Bt Re) 2wt

o p(ai + $hip) | plas — 3hi) _(hi + hi+l>
R e R (e

. 1p. o 1p. ) .
PR ) g P ) 4 (),
+1 0

fort > 0,1 < 4 £ n, which, along with %;(0) = g:, defines our continuous time-
discrete space approximation of (1.1). In matrix notation, this becomes

(2.3) Ddl;(tt) — —Au(t) +5s, 120,
where
(24) u(0) = g.

The matrix D is a positive real diagonal » X n matrix, and, from (2.1) and
(2.2), A is a real symmetric and positive definite n X n matrix. More precisely,
A is a tridiagonal n X n Stieltjes matriz [3]. It should be pointed out that the
boundary conditions of (1.3) are implicit in the vector s of (2.3).

In what is to follow, we need only assume that D is a positive real diagonal
n X n matrix, and that A is a positive definite Hermitian n X n matrix. Because
of this, our results apply to parabolic partial differential equations in more space
variables, such as

ou(x, t)

(2.5) 5t

= div {p(x) grad u(x, t)} — o(X)u(x, t) + s(x),

for which there are spatial discretization {20] of the form (2.3) satisfying these
assumptions.
We now normalize the system of ordinary differential equations of (2.3). If

1 The derivation [20], based on integration, of the spatial difference equations of this
section shows that the case where p(z) and o(z) are piecewise continuous in 0 < 2z = 1
can be treated similarly. See alse [8] and [15]
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D' is the positive real diagonal n X n matrix whose square is D, let

(2.6) v(1) = D'u(t), DAD = B.
Then, (2.4) can be written as
(2.7) d:i(tt) — —Bv() + % t=0

where © = D%, and
28 v(0) = D"g =¢.

From the definition of the n X n matrix B in (2.6), we see that B is also a positive
definite Hermitian matrix. Moreover, there is a 1-1 correspondence between the
vectors u(t) and v(¢).

That the ordinary matrix differential equation of (2.7) is stable’ [2] from the
point of view of differential equations follows immediately from the positive
definite Hermitian nature of B, and the solution of (2.7), subject to the boundary
condition (2.8) is given explicitly by

(2.9) vit) = e"E+ I —e)B'E, t=0,
or equivalently,
(2.10) V(to+ A) = e *Pv(ty) + (I — e *")B™ =

where £, = 0, At = 0, the matrix ¢ being defined by the convergent matrix
series I — tB + B — ... .

It is now interesting to show the relationship between well known numerical
methods for approximating (1.1) and the continuous time-discrete space approxi-
mation of (2.7). In terms of (2.7), these well known approximations are

(2.11) Explicit: <V(t + Ai)t — V(t>> = — Bv(l) + =;
(2.11")  Backward Implicit: (v(t + AZ - v(t)) = —Bv(t + At) + I;
v(t + At) — v(t)

(2.11*)  Crank-Nicolson: < N

):—%wuww+m»+z

Solving for v(¢ -+ At) in terms of v(¢) and X(t), these expressions reduce to

(2.12)  Explicit: v(t+ At) = (I — AB)v(t) + ALZ;

(2.12")  Backward I'mplicit: v(t+ At) = (I + AtB) v (¢) 4+ AL+ AtB)T'E;

(2.12%)  Crank-Nicolson: vt + M) = (I + 1aB)(I — 3AB)v(t)
+ At(I + iAB)7'E.

Comparing with (2.10), it is clear that these three methods each give rise to a
particular rational approximation for the exponential matrix e,

2 See also [8].
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3. The Padé Table for ¢ °. The Padé table [18, 22] of a function f(2) analytic
in a region containing the point 2 = 0 is a double entry table, such that the
rational approximation for f(2),

_ Ny o(2) ,

(3.1) fe) = T2 02, |zl 0,

where 7,,4(2) and dy,q(2) are polynomials of degree ¢ and p, respectively, gives
the best approximation (highest power r) for f(z) in the neighborhood of the
origin. Except for a multiplicative factor, for fixed non-negative integers p and ¢
the polynomialsn,,,(z) andd, 4(z) are uniquely determined, andr = p + g+ 1.
For the function f(z) = ¢, the entries of the Padé table are given explicitly
[11, 18] by

: _q (p—[—q——-k)!q! Y
(32) "”"-’(z)"z;(p-l—q)!k!(q—k)!( "

and

, = (pHg—R)p
(327 dra(2) = ?:; ®+ lkilp — k)"
and if

e _ My o(2)
(3.3) CCELD + Ry,q(2),
then [18]
( _ 1)q+1z:v+q+1 1

(34) R, ,(2) = e (1 — w)? du.

(@ + @) ldpq(2) Jo
For z = 0, we can apply the mean value theorem for integrals to the expression
above, and it follows [11] that
( -1 )q+1p! q! Zp+q+le—€

0+ QUp + ¢+ 1)0dpo(2)’

The function e™* is uniformly bounded by unity for all z = 0. It is natural to
ask the same question of the Padé approximations for ¢ .

Lemma 1. For arbitrary p and ¢ 2 0, d, ,(2) = 1 for all z = 0.

Proof. The coefficients of the polynomial d,, ,(z) are all positive real numbers,
with constant coefficient unity for all p, ¢ = 0. Thus, if 2 = 0, then dp,o(2) = 1.

Y

6 = 0.

(%

(3.5) Ry () =

z

Lemma 2. p.0(2) = lforallz = 0if and only if p = q.
dyp,q(2)
Proof. Clearly, !ZPYQE:; = 0(z"") for z — 4+ if ¢ = p. Thus, the ratio
P.q .

being bounded for all z = 0 implies that p = ¢. Conversely, if p = g, then
| dp,q(2) | = [np4(2) | if
p+qg—Klpl _ (p+qg—klg 0 <
0+ Qlkllp — B!~ (0 + @lklg — k)1 -
which is obviously true.

=
IIA
=
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We remark that the error R, ,(z) of the Padé approximation (3.3) for e " is,
from (3.5) and Lemma 1, of one sign for all z = 0 for all non-negative integers
p and q.

We now consider formal Padé app:roximations3 for the exponential matrix e~
of the form

(3.6) e’ = [dp,q(tB)rl'[np.q(tB)] = M, (tB)

stemming naturally from the approximations of (3.3). We make the usual defini-
tion [5].

Defingtion 1. Let M(t) be an n X n matrix whose entries are functions of the
parameter t. Then M (%) is stable if and only if all the eigenvalues \;(f) of M (%)
satisfy l )\i(to) I é 1.

For the n X n positive definite Hermitian matrix B, let p(B) denote the
spectral radius [10] of B, i.e. p(B) = maXigica | Ai |, Where the \/’s are the (real
and positive) eigenvalues of B. Moreover, let

tB

(3.7) Tp.q = SUP {l =0 Z::EZ; <1 for 0=z= l}.
Theorem 1. Let B be an n X n positive definite Hermitian matrix, and let
(3.8) M,y (AtB) = [dy,o(AtB)] ' [ny,qo( ALB)].
Then, M, ,(AtB) is stable for all At with 0 < At = A if and only if
(3.9) A = 75.4/0(B).

Proof. If the eigenvalues of B are \;, then the eigenvalues of d,..(ALB) are
obviously d, ,( Af\;), and since Af is non-negative and each X is real and positive,
Lemma 1 show that the matrix d,. ,(AtB) is non-singular for any p and g, and
any non-negative Af. Thus the matrix M, (AtB) is defined for all Al = 0 and
all non-negative integers p and g¢.

The eigenvalues of M, (AtB) are ny,q(At\:) /dp.o(AN;). It is clear that if
0 £ At £ rp.0/p(B), the definition of 7,, shows that M, (AtB) is stable for
At in this range. Conversely, if M, ,(AtB) is stable for all Af with 0 = At = A,
* then as p(B) is an eigenvalue of B,

npyq(AtP(B)l <1
dp,o(Atp(B)) | ~

for all such Af, and thus, from (3.7), Atp(B) = Ap(B) = 75,4, which completes
the proof. '

From Lemma 2, we see that 7,,, = + c if and only if p = ¢, which gives us

Corollary 1. Let B be an n X n positive definite Hermitian matrix. Then,
M, ,(tB) is stable for all ¢ = 0if and only if p = ¢.

We explicitly list now particular entries from the Padé table for e

3 See also [13] for rational approximations of other operators useful in numerical analysis.
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19,1(2) N 0(2) 1 n11(2) 1 -1z
1 =1 -z = = =
(3 O) do,l(Z) & dl,o(Z) 1 + 2 d1,1(2) 1 + %‘Z

If we now form, using (3.6) and (3.10), the matrices M,:(AtB), My o(AtB),
and M 1(AtB) as particular approximations toe ***, and these approximations are
substituted respectively in (2.10), we obtain precisely the equations (2.12)-
(2.12*%). Thus, with Corollary 1, we have

Theorem 2. Let B be an n X n positive definite Hermitian matrix. Then, the
Padé exponential approximations M,,(AtB), and My,(AtB), and M;,,(AtB)
generate respectively from (2.10) the explicit, the backward implicit, and the
Crank-Nicolson methods of (2.12)-(2.12*). Moreover, the latter two methods
are stable for all At = 0.

Of course, it is well known (e.g. [8]) that these latter two methods are un-
conditionally stable. But it now follows that any Padé exponential approxima-
tion M, ,(AtB) with p = ¢ also gives rise to an unconditionally stable method.
It is interesting that the Padé exponential approximation M, .(AtB) generates,
in a like manner, the fourth-order Runge-Kutta method for approximating (2.7).

We now consider the cases where 0 < p < ¢. It is first of all not difficult to
algebraically determine 7, ,, and simply applying the Hadamard-Gerschgorin
Lemma to the matrix B gives an upper bound estimate of p(B) which, when
inserted in (3.9), gives a conservative estimate for a stability interval for At
To illustrate this, consider the explicit method of (2.12), which corresponds to
M1 (AtB). It is clear that 70,1 = 2, so that the explicit method has an interval
of stability 0 = At = 2/p(B). If we select a uniform spatial mesh » = Az, in
the special case of the heat equation, p(z) = 1, ¢(2) = 0in (1.1), the matrix B
obtained through normalizing, by means of (2.6), the matrix A of (2.2), is
given by

O
-1 2 -1
i
(3.11) B = oy ~ \ ,

and thus, by the Hadamard-Gerschgorin Lemma, p(B) < 4/(Ax)®. Therefore,
from (3.9), it is interesting, but not surprising, that we obtain the well known
[4, 17] stability interval

(3.12) 0=

for the explicit method, in this special case. Notice that this was obtained with-
out the use of Fourier series, and that the analysis above is equally valid for non-
uniform spatial meshes.
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4. Error Analysis for the Padé Approximations. We first write (2.10) in the
equivalent form
(4.1) v(ty + Al) = B'E + ¢ *{v(ty) — B7'E}.
With our definition (3.6) of the matrix Padé approximations M »a(AtB) of
4% we correspondingly define
(42) Wp,q((j + 1>At) = Bz + Mp,q(AtB){Wﬁ,q(jAt) - B—lz}:
for j = 0, At > 0, as discrete Padé approximations of the solution
vector v((j + 1)At), where
(42) Wp,4(0) = & = v(0).
In this form (4.2), it follows that
(43)  wl(jA) = BUE + M (MB)E — BE, jz 1

In order to carry out an error analysis between the continuous time-discrete
space solution (4.1) and the Padé discrete time-discrete space solution (4.3), we
define now the quantity

(4.4) r3(2) = SUpoges: | € — Mpa(x/m) |

for all non-negative integers p and ¢, and positive integers m. It is easy to see,
using (3.5), that for fixed p, ¢, and 2, o (z) > 0asm— 4.

If x| = (k1| 2:|")? denotes the euclidean norm of the vector x whose
components are z;, 1 < 7 < n, then the spectral norm [10] IIC]| of an arbitrary

n X n complex matrix C is defined by

(45) Nc| = sgg “H(;XH” .
Thus,
(4.5") lexl = e =l

for any vector x. It is moreover known [10] that if C is Hermitian (or normal),
then [|C|| = »(B).

Lemma 3. Let B be an n X n positive definite Hermitian matrix. For any
vector X,

(4.6) (e — My (tB/m)x|| = 75y (to(B))-lIxll,
for all non-negative integers p, g, all positive integers m, and all ¢ = 0.
Proof. From the discussion above, it is only necessary to show that
| e — M5.(tB/m) || < r3y (to(B)).

But as the matrix ¢ * — MY ,(tB/m) is Hermitian,

—tNg m t)\'l.
oz, (2)

< W (tp(B)),

¢'? — My, (tB/m) “ = max

1<ign

which completes the proof.
From (4.1) and (4.3), we have
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v(mAl) — W, (mAt) = {e ™ — Y™ (AB)}(§ — B ®),

and as an immediate consequence of (4.5") and Lemma 3, we obtain

Theorem 3. Let v(t) be the solution of the matrix differential equation (2.7),
subject to the initial condition of (2.8), and let w, ,(mAt) be defined from (4.2)
and (4.2"). Then, for all non-negative integers p and ¢, all positive integers m,
and all At > 0,

(4.7) [ v(mat) — Wy, (mat) || < 757 (mAtp(B)) - || g — B7E |.

To illustrate the usefulness of higher order implicit methods, consider the par-
ticular problem (3.11) with a uniform spatial mesh Az = 0.1, and suppose that
we seek approximations (cf. [6, p. 138]) to v(T), where T = 10°. With o(B)
bounded above in this case by 4/(Az)® = 400, we list estimates for the least
positive integer m, , = T/At for which the coefficient of || & — h || in (4.6) is less
than or equal to 0.0073, for various choices of non-negative integers p and ¢:

(4.8) moqs = 2.0 X 105,  myy = 22 X 10°,  my, = 1.2 X 10%

In general, it is now clear how @ priors estimates of m, , , the total number of
time steps, can be determined to insure a particular accuracy &k between v(7T)
and w, o(T'), where T is given. If p is an estimate of the spectral radius p(B) of
the matrix B, we algebraically determine the least positive solution m of

k

(4.9) Tpo(Th) £ 4,
lg— B2

and set At = T/m.

While stability considerations imply that p = ¢ in the Padé matrix approxi-
mations M, ,(tB) of (3.8) for ¢ ", practical considerations imply that one
would examine only the diagonal entries p = ¢ of the Padé table. This follows
from the fact that forming the matrix polynomial d, ,(¢B) of degree p requires
explicitly the matrices B”, ¢ £ v £ p which could thus also be used in the formation
of n,,4(tB) if ¢ were increased to p. Moreover, the matrix inversion of d,, ,({B)
usually outweighs in computational effort the formation of 7, ,(tB), even when
P =g

The diagonal Padé matrix approximations M, ,(tB) can also be derived as
approximants of the known continued fraction expansion [22, p. 348] for ¢ *:

— 1
T 14z
1—z
24z
3 —

€

[\

(4.10)
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and these diagonal Padé matrix approximations can also be derived from repeated
differentiations of (2.7), coupled with matrix Taylor series expansions based on
central differences.

We shall show in the next section why the particular constant & = 0.0073 was
chosen in the above discussion.

5. Chebyshev Rational Approximations. We had remarked in §3 that the
error R, ,(2) of the Padé approximation for ¢ * is of one sign for all z = 0. While
the asymptotic behavior of R, ,(z) in the neighborhood of z = 0 allows us, from
Theorem 3, to obtain arbitrarily high accuracy between the continuous time and
discrete time models, these Padé rational approximations nevertheless are not
the best rational approximations for ¢ * in the Chebyshev sense [1]. For a fixed
non-negative integer p, consider

— ny(2)
¢ T 4,6

where n,(z) and d,(z) are any real polynomials of degree p in 2, and where
dp(z) % Oforallz = 0. Now let

(5.2) A, = min H,

(5.1) H, = max

220

b

where the min is taken over all such real polynomials n,(z) and d,(2). The
celebrated theorem of Chebyshev (see [1]) states that the rational function
Q,(2) = ny(2)/dy(z) which minimizes H, is uniquely determined (assuming
that Q,(z) is irreducible), and is characterized by the property that e — Q,(z2),
with alternate change of signs, takes on the value H,not less than 2p + 2 times.
Because of this required oscillation of the error, the diagonal Padé approximations
for ¢ of §3 are evidently different from the Chebyshev rational approximations
Q,(z) for ¢ *. We now exhibit some of the rational functions @,(z) which best
approximate ¢” in the Chebyshev sense.’

1 —01081962z
0.937 355 + 1.618 9322’

0ul2) = 1 — 0189729z + 0.004 242 152"
277 1007 413 + 0.674 264 2z + 0576 492 22

The particular choice of & = 0.0073 in §4 is now clear.
For an error analysis based on these Chebyshev rational approximations, let

(5.4) w,(t) = B7'S + Q,(iB){g — B™'%}, 120,

be the Chebyshev rational approximation of (4.1) corresponding to a single
time step of length ¢, where

(5.47) w,(0) = g = v(0),
and

H, = 0.066 83

Ql(z) =
(5.3)
H, = 0073 59.

4 The author wishes to express his thanks to Mr. Fred Chapman of the Case Institute
of Technology Computing Center for obtaining these results on the IBM 650.
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(5.5) Qo (tB) = [dy(tB)] " [ny(1B)].

Theorem 4. Let v(t) be the solution of the matrix differential equation of (2.7),
subject to the initial condition of (2.8), and let w,(t) be defined from (5.3).
Then, for all t = 0

(5.6) Iv() —w(t) || < A, | g — B .
Proof. From (4.5"),
Iv(t) = wo(0) || S | = Qu(B) || - | g — Bx .
Using the fact that the matrix ¢ ** — Q,(¢tB) is Hermitian, then

—tB — —t\g np(t)\i> PN
e — Q,(tB) || = élifg e RO <4a,,

which completes the proof.

Thus, in comparison with the results in (4.7), it would appear that we can
obtain ¢n one step approximately the same accuracy with the Chebyshev rational
approximation for p = 2, as, say, that given by the Crank-Nicolson method, with
approximately 10° time steps. This requires some explanation, however. If the

quantity || E — B7'x | is very large, so that (.0073) || E — B7'= || is itself large,
it means that the Chebyshev rational approximation method p = ¢ = 2 with
one step could give rise to approximations w,(t) of v(¢) which have unacceptably
large deviations from v(¢). In this case, use of the Padé approximations is indi-

cated, as ") (2) can be made as small as possible by choosing m sufficiently

large. On the other hand, if || E — B7'x || is small, potentially large savings in
digital computer time seem possible by using Chebyshev rational approxima-
tions of ¢ " for approximating the solution of (2.7).

6. Applications. In the numerical solution of parabolic partial differential
equations in one space variable, the inversion of linear polynomials in
the matrix B, corresponding to tridiagonal matrices, is carried out di-
rectly in practical applications of methods such as the backward implicit
method, and the Crank-Nicolson method. But as quadratic polynomials in the
matrix B are in this case only five-diagonal matrices, such direct inversions are
still quite efficient. Hence, higher order methods, based either on the Padé or
Chebyshev rational approximations of ¢ °, can be used without great difficulty
in one space dimension.

In two spatial dimensions, the inversion of linear polynomials in the matrix B
is not generally carried out directly in large problems, but rather an iterative
technique, such as the Young-Frankel successive overrelaxation method [23, 7],
is used in effect to invert such polynomials. These iterative methods can also be
applied to higher order methods. For example, the case p = ¢ = 2, which requires
the inversion of quadratic polynomials in the matrix B, can be rigorously treated
by use of the iterative S2LOR [21], as well as the extension of the cyclic Cheby-
shev semi-iterative method to this case [9]. The methods which are contained in
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this paper easily give rise to theoretical generalizations in several directions.
For example, the treatment of time-varying forcing functions, as well as a certain
class of hyperbolic partial differential equations, can also be examined from this
point of view. We shall however leave such theoretical extensions and numerical
results to a subsequent paper.
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