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o

1. Introduction. For any function f(z) = Y a;z’ # 0 which is analytic in |2| < 1, let ay
=0

be its first nonzero Taylor coefficient. Then, the well-known Jensen’s formula (cf. Ahlfors (1,

p- 208]) for f(2) is

(1.1) : /2“ log | f(e”)|d6 =loglan| + 3 ‘log < : )
. — = N il
2m Jo 2 €Za(f) [
where Za(f) denotes the set of all zeros (counting multiplicities) of f(z) in 0 < |z| < 1. For

any complex polynomial p,(z) = Zajzj # 0, consider the functional J{p,,) defined by
7=0

N i i Y Pm(e”)
(12)  J(pm) = 27r/0 log |pm(¢'?)[d6 — log (J}=:O|aj|> ~2W/() log |22 1 g,

> lajl

7=0

If ay is the first nonzero Taylor coefficient of pm(z) and if {(;}}, denotes the zeros (counting

1Research supported by the National Science Foundation.
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multiplicities) of pm(2) in 0 < |z] < 1, Jensen’s formula, applied to pn(z), gives

(1.3) J(pm) =log | = i

Il Yl

where, as usual, the product above is defined to be unity if r = 0. Because of the form of

bl

the equation above, it is convenient for us to define the associated functional K{p,,) as

(1.4 K(pm) = — N
TG > el
j=1 =0

so that

(1.5) exp J(pm) = K(pm).

Recalling that the Mahler measure in the literature is defined, for any f(z) analyticin |z} < 1,

(1.6) M(f) = exp{ o [T oglr(e)a0},

it is interesting to note from the equations above that K (pn,) of (1.4) can be equivalently

expressed, in terms of the Mahler measure, as

Pm
m
> lasl
=0

Some years ago, K. Mahler [4] obtained a lower bound for K (p,,) which is dependent only

(1.7) M = K(pm).

on the degree of pm(z). We state his result in a slightly sharpened form:

THEOREM A. For any complez polynomial p,,(z) # 0 of degree at most n,

1
(1.8) K(pn) > o

with equality holding in (1.8) only if pm(z) = v(e¥ + 2)*, where v # 0 and ¥ is real.
We remark that the treatment of the case of equality in (1.8) appears in Rigler, Trimble,
and Varga [5, Lemma 1]. With (1.7), we note that (1.8) can be expressed in terms of Mahler’s

measure as

(1.9) M I:HL(Z—)— > —2-15 (pm(z) # 0, prm, of degree at most n).

> lajl

=0
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Inequality (1.8) or (1.9) is known in the literature as Mahler’s inequality, and it has im-
portant applications in the theory of transcendental numbers (cf. [4]). More recently, it has
been used in developing the theory for polynomials possessing the Beauzamy-Enflo property
(cf. [2] and [3]) of having concentration at low degrees. For a recent survey of this topic, see

[6, Ch. 6].

2. Statement of Results. For our generalization of Mahler’s inequality (1.8), we need the

following notation. For any p,,(z) = ZCL]'Zj # 0, define the nonnegative numbers 6 (pn.) by
=0

k

2 laj]
(2.1) 8u(pm) = 5 (k=0,1,--),

él%‘l

so that 8,(pm) = 1 for all £ > m. We also define the ratios

(2.2) Lk(Pm) 1= %}Z—j% (k=0,1,-- .),

where Li(pm) 1= +00 if 81(pn) = 0.
It is natural to ask, on fixing a nonnegative integer k with &k < n, if there is a lower bound,
as in (1.8) of Theorem A, for the ratio Li(pm) of (2.2) when pn(z) % 0 is a polynomial of

degree at most n. Our main result, which gives such a lower bound, is

THEOREM 1. For any complex polynomial p,,(z) % 0 of degree at most n,
1

%()

where equality holds in (2.3) for some k with k > 1 only if p(z) = (e + 2)™ where v # 0

(2'3) Lk(pm) 2

(k—:oala"'vn)v

Ma-

and  is real, and for k = 0 only if p.(2) has no zeros in 0 < |z| < 1.

Since 6p(pm) = 1 from (2.1) so that L,,(pm) = K(py), we see that the case k = n of
inequality (2.3) reduces exactly to Mahler’s result of Theorem A. Actually, we shall prove a
more general form of the inequality (2.3), in (3.39) of Theorem 2, from which Theorem 1 is

obtained. The necessary constructions are given in §3 below.

3. The Three R’s: Rotation, Reflection, and Reduction. For a any complex polyno-
mial pn(2) # 0, it follows from (1.4), (2.1), and (2.2) that Ly(ypm) = Li(pn) for any scalar
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v # 0; hence, we may assume that p,(z) is 2 monic polynomial. In addition, it follows from

(2.2) that
(3.1) Li(pm) = Leys(2°pm) (kK =0,1, ;s a nonnegative integer).

But, if the desired result (2.3) of Theorem 1 is derived for complex monic polynomials
pm(2) with the added hypothesis that p,(0) # 0, then, because the right side of (2.3) is
strictly decreasing in k (0 < k < n), we see from (3.1) that the inequality of (2.3) would
necessarily also hold for any complex polynomial p,,(z) # 0 of degree at most n. Thus,
in what follows, we assume that p,,(z) is a monic polynomial of degree m with pn,.(0) # 0

(where the restriction that p,(z) is of degree at most n will come later), and we write

m

(3.2) pm(2) = [1(G + 2),

=1
where the complex numbers (; are ordered by modulus so that
(33) 0<|Gl < <Gl <1 <G| £ S |Gm]  (where 0 <7 < m).
m . m
LEMMA 1. (Rotation). For any complez monic polynomialp,(z) = Zajz’ = H(Cj+z)
j=0 j=1

with pm(0) # 0 and with m > 1, its unique associated rotated polynomial 1‘3,,.,(2)7 defined by

m

(3.4) () = T1(G 1+ 2),

satisfies "

(3.5) Li(Pm) = Li(Pm)  (k=1,2,---,m) while Lo(pm) = Lo(Pm)-
More precisely,

(3.6) Li(pn) > Li(Bn)  (E=1,2,---,m),

unless the {;’s (1 < j < m) all lie on a ray, i.e., there exists a real 3 such that (; =

[¢;le™ (1 < 5 < m), in which case equality holds throughout in k in (3.5).

Proof. Let ¢ := ((1,(3," -+, {m) denote the row vector, in €™, which is derived from the

product representation for pn,(z) in (3.2), and let 0;(() denote the i-th symmetric function

(:=0,1,---,m) of the m components of {. From the definition of p,(z),
aj:dm—j(C) (] :‘0’17"’7m)7

and, with the ordering of (3.3), it follows from (1.4), (2.1), and (2.2) that

(3.7) Li(pm) = — ”ﬂ0| (k=0,1,---,m).

[T1¢1- gldm-i(é")l

i=1
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Since [{;| > 0 for all 1 < j < m from (3.3), then |o(¢)] = []I¢;] > 0, and on dividing, (3.7)

J=1
becomes
Li(pm) = ! (k=0,1, -, m).
IR
; i=0| Im
On defining the vector 1/¢ := (1/(1, 1/¢2y- -+, 1/¢m), it is evident that
m—1i 1 .
aam—(g)za,-(z) (i=0,1,---,m),
so that
(3.8) Li(pm) = ——-——-——1—-—-—— (k=0,1,-,m).
HKJI Z|0'z
=1 =0

In a completely analogous way, we see from (3.4) (where each (; is rotated to |(;| on the

positive real axis) that

(3.9) Li(Pm) = — ! (k=0,1,---,m),
TGl - ez

where [1/¢] := (1/|¢1],1/|C2],- -+, 1/|¢m|). But, since go(-) = 1 and since the triangle inequal-
ity clearly gives

1
(3.10) lod(Z)l < (ICI) (1=1,2,---,m),
it is evident from (3.8) and (3.9) that
(3.11) Li(pm) 2 Le(Pm)  (k=1,2,---,m) while Lo(pm) = Lo(Pm),

which gives the desired result of (3.5) of Lemma 1.
To complete the proof of Lemma 1, consider the case ¢ = 1 of (3.10). The triangle
inequality again gives
1 1 1 1
“’1(2”:!5 ] < 1C| '+m=<’1(|z|)>
with equality holding above only if all the components 1/¢; lie on a ray, i.e., there is a real
number % such that

(312) Cj = |Cj|ei¢ (] = 1727' o ,m)'

If (3.12) holds, then |oj(z)| = o;(|¢]) for all 0 < j < m, and equality holds throughout in
(3.11). On the other hand, if |o1(¢)| < lou(|Z])], then because |o1(2)| and o3(|]) occur,
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respectively, in all the sums in (3.8) and (3.9) when 1 < k < m, then (3.6} is valid. O

LEMMA 2. (Reflection). For the rotated polynomial pm = JIU¢G+ 2) of (3.4),

j=1

[

definc its unique associated reflected polynomial pm(z) b

. T 1 m
(3.13) Pm(2) 1= g(m +2) 'j}llufjl +z) whenr > 1;

IDJm(z) when r =0,

where v 1is defined in (3.3). Ifr > 1, then
(3.14) K(pm) = K (Pw),

and
(3.15) k() > 6k(Pm) (K =0,1,---,m—1) while bn(Pm) = 6m(Pm) =1,

so that
(3.16) Li(Pm) > Li(pm) (E=0,1,--,m—1) while Lp(Pm) = Lm(Bn)-

Proof. If r = 0, there is nothing to prove, so assume that r > 1. Set |(;| = R where (cf.
(3.3)) 0 < R <1, and set

m—1

Q(z) == H(|(]| + 2) Zb 20 with by := 0 =1 by,

1=2

where Q(z) := 1 if m = 1. By definition, b; > O forall 0 < j <m —1, and
Bl2) = (R+2)Q(2) = 2o(Bb; + bj-1)2’

=0

We then define the new polynomial g(z) by
9(z) = (— +2)Q(z) = Z(-~ +bj-1)

(where R is reflected in the unit circle to 1/R). As is readily seen from the definition in
(1.4),

(3.17) K(Pp) = Rb° - - bo :
UICJI Z (Rb; + bj—1) HICjI-Z:(ij+bj~1)

while

(3.18) K(g) = b°/ R = o

11l Z bn) TTIGL - S + Rb)

=2 =2 =0
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Now, because b_; := 0 =: b,,,, it can be verified that

m m

(3.19) SO(Rb; + byo1) = 3o(b; + Rby 1)
=0 =0

whence from (3.17) and (3.18),

(3.20) K(g) = K(P,.).

Next, from the definitions of 107,,1(2) and g(z), we have (cf. (21))

k k
S O(Rb; + bi-1) > (b + Rbj1)
8i(Pm) = S———— and bu(g) = T,
> (Rb; + bj1) >_(b; + Rbj1)
j=0 j=0

where, from (3.19), the above two fractions have the same denominators. It can be verified

that the numerators of the fractions above satisfy the inequality

k k
E(ij+bj-1) <Z(bj+ij—1) (k=0317‘”1m~1)7

7=0 7=0
if and only if by > Rby. But this last inequality is certainly true since b > Qfor 0 < k < m-1
and since 0 < R < 1. Thus,

(3.21) 5k(9) > 8k(Pm)  (k=0,1,---,m —1), while 6 (Pm) = 6m(g) = 1.

Now, the above mapping of the factor (|6;]+ z) into (1/|61]| + z) produces the polynomial
g(z) for which (3.20) and (3.21) are valid. But this procedure can be successively applied to

T

each of any remaining factors {(|¢;| + 2)}}..; of Igm(z), and the above analysis shows that the

final resulting reflected polynomial, p..(2), then similarly satisfies (3.20) and (3.21), which
gives the desired results of (3.14) and (3.15). O

LEMMA 3. (Reduction). For the reflected polynomial pm(z) :== [](t; + z) of (3.13),

i=1
assume that the t;’s, which satisfyt; > 1 (j = 1,2,---,m), are ordered so that

(3.22) 12t 2 2t >l =ty =tgpa=-=1p (where 0 < s < m).
Then, there is a unique associated reduced polynomial py,(z) of the form

(3.23)  pm(2)=(F +2) 1+ 2)™" with 1< p <oo and with 1 < m' <m,
such that if s =0 or s =1, then pn(2z) = pm(z), so that

(324) Lk(ﬁm) = Lk(ﬁm) (k = 07 1, 7m))
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and if s > 2, then
(3.25) K(pm) = K(pm),
and
(3.26) 8x(pm) > 6k(Pm) (k=1,2,---,m —1) while &(Pm) = ()  (k=0,m),
so that
(3.27) Li(pm) > Li(pm) (k=1,2,---,m —1) while Ly(p) = Le(pm) (k= 0,m).
Proof. If s =0 or s = 1, it is immediately evident from (3.22) that pm(z) is of the form
(3.23) with m' = m.
For the case s > 2, as the constructions are similar, but not identical, to that of the last
part of the proof in [5, Lemma 2}, we merely sketch the remainder of the proof.
If s > 2, then ¢; > {2 > 1 from (3.22), and we write

(3.28) Pm(2) = (41 + 2)(t2 + 2)Q1(z), where Q1(z) := H; (t;j+2)= quz’

=0
1t follows that ¢; > 0 for all 0 < j < m —2, and we set g3 := ¢-1 := 0 =: g1 =t gm. Next,

with ¢; > 1 and #; > 1, assume that
(3.29) 14+t 4+t — 41, <0,
and define 3 by
1 1 1
(3.30) I+ ==0+=)1+-).
ts 12 123
A calculation using (3.29) and (3.30) shows that £3 > 1. With #3, define
a1(2) := (I3 + 2)@1(2)  (a polynomial of degree m — 1),
so that g1(2) and pm(z) both have positive Taylor coefficients, and all zeros of g;(2) and
pm(2) lie in |z] > 1. Consequently (cf. (1.4)),

5Q1(0) 112,Q1(0)
(ta +1)Q1(1) (1 + 1)(t2 + 1)Qu(1)’

and, with the definition of £ in (3.30), it can be verified that

K(g:) = and K (pm) =

(3.31) K(¢1) = K(pm).

Next, we similarly have (cf. (2.1)) that
ko k
S (taq; + g-1) S ltateg; + (t1 + t2)gj-1 + -2

Grnaa %) =T Than

Si(gn) =
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for any k= 0,1, --,m, and a short calculation, using (3.30), shows that
(3.32)  &ilg1) > bk(Ppm) (k=1,2,---,m—1) while &(g1) = 6x(Pm) (k=10,m).
Next, assume that ¢; > 1 and ¢, > 1 do not satisfy (3.29), i.e.,

(333) 14t +t3 — 1ty > 0.

In this case, the construction above is modified in the following way. Define i, by
1 1 1

(3.34) 20+ =)=(1+2)1+-).
t4 31 ta

A similar calculation using (3.33) and (3.34) shows that {4 > 1 if and only if 2t,¢,/[1 + t,
+ ta — t1t2) > 1. To show that £, > 1, consider the function

w(w,y)::ﬁ_——x;forallxz1andallyz1forwhich1+x+y—:cy>0.

Note that z = 1 and any y > 1, and similarly y = 1 and any = > 1, satisfy these con-
straints. Since w(z,y) > 0 and wy(z,y) > 0 for all admissible pairs (z,y) which satisfy

these constraints, then

min{w(z,y):z > 1L,y >1+z+y—zy >0} =1=w(l,1),
and, moreover, for any admissible pair (z,y),
(3.35) w(z,y) > 1, unless z =y = 1.

Consequently, as ¢, > 1 if and only if w(t,t;) > 1, where (by hypothesis) ¢; > 1 and ¢, > 1,
it follows from (3.35) that 74 > 1.
With the definition of #4 in (3.34), we define in this case the polynomial

g2(z) == (Fa + 2)(1 + 2)@Q1(2) (2 polynomial of degree m),

where Q1(z) is given in (3.28). In a completely similar fashion to the construction involving
91(z), we deduce that

(3-36) K(g2) = K(fm),

and

(3.37)  bk(92) > bk(Pr) (k=1,2,---,m—1) and 6x(g2) = 6x(Pm) (k= 0,m).

The above construction shows that the quadratic factor (¢; + 2)(t2 + 2} of p,(z), with
t; > 1 and ¢; > 1, is mapped either into ({3 + z) with i3 > 1 when (3.29) is valid; or into
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(fs + 2)(1 4 2) with £; > 1 when (3.33) is valid, thereby producing the polynomial g;(z) or
g2(z) which satisfies, respectively, either (3.31)-(3.32) or (3.36)-(3.37). Note that the total
number (namely, s from (3.22)) of zeros of modulus greater than unity of Pm(2), has been
reduced by at least one in passing from pm(2) to gi1(z) or g2(z). Further, if we call the result
of the above construction simply g(z) (i.e., g(2) = g1(2) if (3.29) is valid, or g(2) = ga(2) if
(3.33) is valid), it may be the case that the resultant polynomial () also has two zeros, each
of modulus greater than unity. In this case, the construction above can be repeated, thereby

producing the polynomial h(z) which similarly satisfies (cf. (3.31)-(3.32) or (3.36)-(3.37))
(3.38) K(h) = K(g9) = K(Pm)

and

(3.39) 8k(h) > 6c(g) > k(Fm) (k=1,2,---,m — 1) while (k) = 8(Pm) (k =0,m).

In this way, after a finite number of steps, we arrive at the unique reduced polynomial
Pm(z) = (o' + 2)(1 + 2)™ 1 of (3.23), where 1 < p’ < co and where 1 < m' < m, and this
polynomial satisfies the desired results of (3.25)-(3.27). O

For the particular polynomial
(3.40)  Pm(2) = gmp(2) 1= (p' + 2)(1 + )™ 1 (1<p <ooandl<m <m),
derived above in Lemmas 1-3 from the monic polynomial p,»(z) with p,(0) # 0, a calculation

shows that

1 (k:Oalv"'>m,)7

(3.41) Ly(pm) = Li(gmr ) = g(mi— 1>+ i(?:;)

L K(gwy) (k2.
om —-l(l + _p_;)

Thus, from the results of Lemmas 1-3, we immediately have

THEOREM 2. Given any complez monic polynomial pn(z ZanJ = H + 2)
=1
with pm(0) # 0 and with m > 1, there is a unique associated reduced polynomzal Pmlz) =

(p' +2)(1 + 2)™ 1 with 1 < p' < 00 and 1 <m' < m, such that
(3.42) Lk(pm) 2 Li(Pm) (k= 0,1,---,m),

where Li(pm) is given by (3.41). In addition, with the definitions of (2.2), the inequalities of
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(3.42) imply that
(3.43) K(pm) > max {6x(pm) - Li(pm)}-
In essence, (3.42) shows that to minimize any Li(pm) (kK = 0,1,---,m) over the set of

all complex monic polynomials p,.(z), with p,,(0) # 0, of degree at most n, it suffices to

consider only the special monic polynomials
G (2) 1= (p' 4+ 2)(1 + 2)™ " where 1 < p' < oo and 1 < m' < n.

In particular, we see from (3.41) that each Li(gms,) is, for fixed m', a strictly increasing
function of p’ on the interval [1, +00), provided that 1 < k < n, while Lo(gm/ ) = 1, and
that Lg(gme,p) 1s, for fixed p’, a strictly decreasing function of m’ > 1, provided that & > 1.

From these observations, we come to the

Proof of Theorem 1. From the strictly increasing and decreasing nature of Li(gm ),

respectively, as a function of p’ > 1 and m’ > 1, it follows that g, 1(2) = (14 2)", as a monic
polynomial of degree n, minimizes each Li(gm,p), where 1 <m/ <n and 1 < p/ < oo, i.e.,

from (3.41) and (3.42),

1 1
(348) Lilpn) > Lulgnr) = : __
(50507 £0)
j=0 s\ =1 j=o\J
for any complex monic polynomial p,,(z) with p,(0) # 0 and m > 1, the last equality in

(3.44) following from the identity (";1) + (7;::) = (’]‘) But as observed in the introduction

(k=0717"'7n)

of §3, (3.44) then actually holds for any complex polynomial p,,(z) # 0 of degree at most n,
which establishes (2.3) of Theorem 1. Also, from Lemmas 1-3, we see that equality holds in
(3.44) for some 1 < k < n only if pn(z) = v(e*¥ + 2)" with v # 0 and ¢ real. For the case
k = 0 of (3.44), we have from (1.4) and (2.2) that

(3.45) Lo(pm) = -—Eﬁl—

1161 - laol

j=1
where {(;}7_, denotes the zeros of pn(2) in 0 < |z| < 1. The ratio in (3.45) is bounded only
if ag # 0, in which case

(3.46) Lo(pn) = —— 2 1,

I:IICJ’I

with equality holding above only if p,.(2) has no zeros in 0 < |2| < L. 0O
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4. Another Lower Bound for K(pm). While (3.42) of Theorem 2 gives a lower bound

for K (pm), it is possible to derive a lower bound for X (p.,) which does not depend upon the
calculation of an associated reduced polynomial p,,(z). This is given in

THEOREM 3. For any complez polynomial pm,(z) # 0 of degree at most n,

. 8x(pm)
(4.1) K(pm) 2 max | 5,

n b
%00
=0 \J
with equality holding in (4.1) for some k with k > 1 only if pm(2) = v(e™ + 2)" where v # 0

and 1 is real, and for k = 0 only if p(z) has no zeros in 0 < |z} < 1.

Proof. From (2.2) and (3.44),

(P 1
(42) L (P ) = Lk(pm) 2 T (k =0,1,-- ,n))
Sk(pm) n
2 J
=0
so that
6k(Pm) |
K(pm) 2 > for each §i(pm) > 0, where 0 < k < n,
n

from which (4.1) directly follows. If equality holds in (4.2),let £ be any nonnegative integer
with 0 < £ < n which gives equality in (4.2), i.e.,

1
2)
If (4.3) holds with £ > 1, it necessarily follows from Theorem 1 that pn.(z) = (e + 2)*,
with v # 0 and v real, so that in fact

Llc(Pm)’—‘T—l—-—-— forall k=0,1,---,n.

()

If (4.3) holds with £ = 0, then Lo(pm) = 1. But from (3.46), this implies that pm(z) that

has no zeros in 0 < |z] < 1. O

We first remark that the lower bound for K (pm) of (3.43) is always at least as good as the
lower bound of (4.1). However, the computation of the right side of inequality (4.1) is easy,
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since it only depends on the moduli of the Taylor coefficients of p.,{z) and does not require
finding the zeros of p,.(z). In addition, we are assured that the lower bound of K{p,) in
(4.1) is at least as good as Mahler’s lower bound (1.8), which corresponds to the single term

k = n in the braces of (4.1).

5. Some Examples. To illustrate the above results, consider the monic complex polyno-

mial
(5.1) ps(z) = (14 2)%(—4 + 2%) = —4 — 122 — 112% — 25 4 32* 4 2,

for which ps(0) # 0. For this polynomial, we readily determine that

(8 + 2)(1 + 2)* = 8 + 332z + 5222 + 382% + 122% + 25

Il

ps(2)
In Table 1, we give the associated values of K(-) and &(-) for k = 0,1,---,5 for the three

(5.2) { Ps(z) = Ps(z) = (L+ 2)3(2+ 2)? = 4 + 162 + 2522 + 192% + T4 + 25,

polynomials ps(z),;?s(z), and ps(z). The entries in all tables below have been truncated to

six decimal digits.

TABLE 1
p| bolp) é1(p) b2(p) b3(p) é(p) | 6s(p) | K(p)
ps | 0.125 000 | 0.500 000 | 0.843 750 | 0.875 000 | 0.968 750 | 1 | 0.125 000
Ps | 0.055 555 | 0.277 777 | 0.625 000 | 0.888 888 | 0.986 111 | 1 | 0.055 555
bs | 0.055 555 | 0.284 722 | 0.645 833 | 0.909 722 | 0.993 055 | 1 | 0.055 555

In Table 2, we similarly give the values of Ly(-) for k =0,1,---,5 for these 3 polynomials.

TABLE 2
p | Lo(p) | ILi(p) Ly(p) La(p) La(p) Ls(p)
Ps 1 0.250 000 | 0.148 148 | 0.142 857 | 0.129 032 | 0.125 000
1%5 1 0.200 000 | 0.088 888 | 0.062 500 | 0.056 338 | 0.055 555
1 0.195 121 | 0.086 021 | 0.061 068 | 0.055 944 | 0.055 555

Ps

These tables have been included to reflect the contents of Lemmas 1-3.

For the polynomial ps(z) of (5.1), the lower bounds for K(p) of (3.43) and (4.1) for
ps(2) are both sharp, giving the K (ps) = 0.125 000, while Mahler’s inequality of {1.8) gives
K(ps) > L = 0.031 250.

Consider next the monic complex polynomial

(5.3) o(2) 1= (L4 25 +2)(5 + 2)(~4 + 2)
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for which hs5(0) # 0. For this polynomial, we determine that

ho(z) = (14220 +2)3+2)4+2),
(5.4) he(z) = (1+2)%2+2)3+2)(4+2),
hs(z) = (4+2)(1+2)%

In Tables 3 and 4, we give the corresponding values of K(-),8k(-), and Lg(-).

TABLE 3
p | bolp) 61(p) 52(p) b3(p) 6dp) | 6s(p) | K(p)
hs | 0.025 641 | 0.198 717 | 0.589 743 | 0.916 666 | 0.961 538 1 0.153 846
]‘;,5 0.016 666 | 0.137 500 | 0.450 000 | 0.804 166 | 0.975 000 1 0.100 000
ks | 0.100 000 | 0.408 333 | 0.762 500 | 0.950 000 | 0.995 833 1 0.100 000
izs 0.100 000 | 0.425 000 | 0.800 000 | 0.975 000 1 1 0.100 000

TABLE 4

p | Lo(p) | Ii(p) La(p) Ls(p) Li(p) Ls(p)
hs | 6 |0.774 193 | 0.260 869 | 0.167 832 | 0.160 000 | 0.153 846
hs| 6 | 0.727 272 | 0.222 222 | 0.124 352 | 0.102 564 | 0.100 000
1
1

0.244 897 | 0.131 147 | 0.105 263 | 0.100 418 | 0.100 000
0.235 294 | 0.125 000 | 0.102 564 | 0.100 000 | 0.100 000

ks

hs

For the polynomial hs(z) of (5.3), we have that K (hs) = 0.153 846, and the lower bounds
for K(hs) from (3.43) and (4.1) are, respectively, 0.100 000 and 0.036 858, while Mahler’s
2

inequality of (1.6) gives K (hs) > & = 0.031 250.
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