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NUMERICAL RESULTS ON BEST UNIFORM
RATIONAL APPROXIMATION OF |x| ON [-1, +1]

R. S. VARGA, A. RUTTAN, AND A. DZH. KARPENTER [A. J. CARPENTER]

ABSTRACT. With Ej, n(|x|; [—~1, +1]) denoting the error of best uniform rational
approximation from m, , to [x| on [~1,+1], we determine the numbers
{Ea,2n(xl; [-1, —kl])};‘,‘):1 , where each of these numbers was calculated with a pre- -
cision of at least 200 significant digits. With these numbers, the Richardson extrapo-
lation method was applied to the products {e"‘/2—”E2,,,2n(|x| s [—1, —i—l])}ﬁ‘i1 , and it
appears, to at least 10 significant digits, that

? -
8L lim e™2" By, alx|; [=1, +11),

which gives rise to an interesting new conjecture in the theory of rational approxima-
tion.

§1. INTRODUCTION

The function |x|, which is continuous but not differentiable on [-1, +1], has
been the focus of much research in approximation theory over the years. To indicate
the history of the research in this area, first let E,(|x|; [-1, +1]) denote the error
of best uniform (polynomial) approximation from =, to |x| on [-1, +1] (where
n, denotes the set of all real polynomials of degree at most n (n =0,1,...)).
Because |x| is an even continuous function on [—1, +1], it is easily seen (cf. [21],
p. 2) that

(1L.1) Ean(Ix]; [=1, +1]) = Ezpi(Ix]; [=1, +11)  (n=0,1,...).

In 1913, S. Bernstein proved in [1] that there exists a positive constant f for which
(1.2) B = tim 2nEp(Jx|; -1, +1),

and, moreover, that f# satisfies

(1.3) 0.278 < < 0.286.

Bernstein remarked in [1] “as a curious coincidence” that 1/(2/m) = 0.282094...,
this number being nearly the average, namely 0.282, of the upper and lower bounds in
(1.3). This latter remark became known in the literature as the Bernstein Conjecture:
B 21 /(2v/%) . Recently in 1985, Varga and Carpenter [22] showed, via high-precision
computations, that the Bernstein Conjecture was false; in particular, it was shown in
[22] that

(1.4) 0.2801685... < < 0.2801733... .
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(Estimates derived from numerical extrapolations, which give B to fifty significant
digits, are also given in [22].) It is also conjectured in [22] that 2nE,,(|x|; [-1, +1])
admits the asymptotic series expansion
K, K;
";lz—ﬁ-l-“' (n—>oo),
where the constants K; (which are independent of #) are all positive.

Then, more than fifty years after the work of Bernstein [1], D.J. Newman [15]
in 1964 showed how decisively different best uniform rational approximation from
7n,n to |x| on [-1, +1] is, in that if

(1.6) Ep n(Ix]; [=1, +11) := inf{|[[x| = #(X) | Logi=1, 417 : 7(X) € 7,0},
then

(1.7)

(1.5)  2nEp(x|;[~1, +1) ~ g - % .

3
WSEn,n('XI’[_I5+1])S;7“; (n=4,5,...).
(Here, mm,, denotes the set of all real rational functions r(x) = p(x)/q(x) with
P € my and g € m,, where it is assumed that p and ¢ have no common factors,
that g does not vanish on [-1, +1], and that ¢ is normalized by g(0)=1.)
Since Newman’s pathfinding result of [15], it has been shown by Bulanov [7] in
1968 that

(1.8) Evn(lx];[=1, #1]) > e ™ (n=0,1,...),

and by Vyacheslavov [23] in 1975 that there exist positive constants M, and M,
such that

(1.9) My eV E, (XI5 [-1, +1) <My (n=1,2,...).
From (1.8) and (1.9), it is elementary to verify that

e"1-vD — 0.272180. ..

(1.10)
SEVIE, WX -1, 1) <My (n=1,2,..),

and, if

M := lim e™"E, ,(|x|;[~1, +1]) and
(1.11) =
M := im e™"E, ,(x|; [-1, +1]),

that also ,
(1.12) I1<M<M.

Clearly, Vyacheslavov’s result in (1.9) gives the asymptotically sharp multiplier,
namely 7, for v/n in the asymptotic behavior of E, ,(|x|; [-1, +1]) as n — oo.
What only remains then is the determination of the best asymptotic constants M
and M of (1.11).

Next, it is important to stress that deep theoretical results for the asymptotic
behavior of the best uniform rational approximation E,n(f;[-1,+1]),a8 n — o0,
have also been derived for more general continuous functions f on [—1, +1], which
include |x| as a special case. Specifically, it has been shown in 1966 by Sziisz and
Turén [18], [19], for any continuous piecewise analytic function / on [-1, +1],
that

(1.13) En n(f3[=1, +11) = O(e™ VD) (n — 0),
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and in 1967 by Gonchar [10], for any piecewise infinitely differentiable function f
on [—1, +1], that

(1.14) e @UNVI<E, J(f;[-1, +1) < s(fe @ (n=1,2,...),
where, in (1.13) and (1.14),
G(f)>0(=1,2,3,4) and y:=7(/)<1/2

In addition, Gonchar and Rakhmanov [11] recently obtained elegant results using
potential-theoretic techniques in the complex plane, which, in a special case, estab-
lished the particularly sharp asymptotic result of

1
= 9.2890254919...°

thereby completely solving the “1/9” Conjecture. (For the history and mathematical
literature associated with the “1/9” Conjecture, see [20], Chapter 7, and [21], Chapter
2.) There is optimism that the results of [11] can be eventually extended to give the
sharp asymptotic behavior of E, ,(f; [0, +o0)) for classes of functions f which are
piecewise analytic (or piecewise infinitely differentiable) on [0, +occ) . It is our hope
that the results derived from our numerical results here on the asymptotic behavior
of Eyy an(|x];[=1, +1]) as n — oo will hasten such theoretical extensions of [11].
We remark that for a recent complete treatment of Vyacheslavov’s result (1.9) and
results pertaining to the “1/9” Conjecture, see Petrushev and Popov [16], Chapter
4, which also contains interesting additional references, historical comments, and
related results.

To outline the remainder of this paper, in §2 we give the theoretical background
and numerical description for how the quantities {E», 2.(|x|; [-1, +1]) 140 were
numerically determined. In §3,the Richardson extrapolation method is applied to the
products

(1.15) lim {E, n(e™; [0, oo} = A

(€™ Ezp an(|x]5 [=1, +1]D}3

n=1>s

which gives strong numerical indications for two new conjectures concerning the
asymptotic behavior of e”mEz,,,z,,(lxh [~1,+1]) as n — oco. Then, in §4 we
discuss the location of the zeros and poles of the unique best uniform approximation,
r;’,,(t) , from =, , to V1 on [0, 1], and we graph the error function, —ﬁ+r;,,,(t) ,
on [0, 1] for the case n = 32, showing its extreme points. The same is done for the
unique best uniform approximation, Sy, 2.(x), from 7z, 2n t0 x| on [-1, +1].
Finally, to come full circle, we also show in §4 how Newman’s method of proof in
[15] is related to the determination of the unique best uniform approximation from
Ton.2n 1O |x| on [—1, +1].

§2. THE NUMBERS {E2, 2.(|x|; [-1, +1D}2,

We first consider the best uniform approximation from 7z, , to v/ on [0, 1] for
each pair (m, n) of nonnegative integers. In general, it is known (cf. Rivlin [17], p.
125) that there is a unique ry, , € Tm n such that

(2.1) Em,n(V1; [0, 1) = VT =13 2 (Dllzecto. 11
Moreover, for each pair (m, n) of nonnegative integers, it is easily verified that
(2.2) Wi ni=span{l, ¢, ..., t"; "2, 037 ., 2

is a Haar space of dimension m + n + 2 on the interval [0, 1], i.e., any function,
not identically zero, in W, , has at most m +n+ 1 distinct zeros in [0, 1]. Thus,
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in the terminology of Loeb [13], /7 is hypernormal on [0, 1]. Consequently (cf.
[13] or Meinardus [14], p. 165), for any pair (m, n) of nonnegative integers, the
unique best uniform approximation Fm.n=D*/q* in m,, , for which (2.1) is valid
has the property that dp* = m, 0q* = n (where ds denotes the exact degree of a
polynomial s), and, moreover, that the largest alternation set for /7 — o n(f) on
[0, 1] consists of m + n + 2 points.

For our applications, we restrict attention to the caseswhen m=n(n=1,2,...),
and we write r; , in m, , as 7y ,:=p}/q; , where

(2.3)  prt Za(n)tf and g} (t -1+Zb (n=1,2,...).
=0

With the hypernormality of v/t on [0, 1], we next easily establish the result of

Proposition 1. For each positive integer n, let Fn n(8) := py(2)/q;(t) be the best
uniform approximation from m, , to \/t on [0, 1]. Then, the coefficients of )2403)
and q;(t), as given in (2.3), satisfy

(2.4) aj(n)>0 (j=0,1,...,n) and bj(n)>0 (j=1,2,...,n).

Proof Fix n to be any positive integer. Since the largest alternation set for /7 —
rn »(2) in [0, 1] has length 2n + 2, it follows that there are 2n + 1 points {tk}z’”l
in (0, 1), satisfying

(25) 0<tl<"'<12n+1<1>
for which ,
(2.6) Vi +7 ) =0  (k=1,2,...,2n+1).

Hence, on writing n n = DPp/4, , and on recalling the convention (since r;; n€Mun)
that g, does not vanish on [0, 1], this implies (on dropping the dependence on n
of the coefficients in (2.3)) that

n n
(2.7) Za;ti—zb;z;j‘/z-_—\/ﬁ (k=1,2,...,2n+1),

which represents 2n + 1 linear equations in the 2z + 1 unknowns {a } o and
{b7}}_; . On setting

(2.8) Ajyp = —b (J=1,2,---,n)

and reordering these unknowns as
N,
T
(aE: a;" a;+1 ’ a;’ a;+2 (AR a;’ agn)

b

the associated coefficient matrix A, of order 2n + 1, for the reordered unknowns in
(2.7) can be expressed succinctly as

(2.9) A =[(t:)™],

where o) :=0, ay:=/(l=1,2,...,n),and ayy =1+ (I=1,2,...,n),
so that

(2.10) 0=a1<a2<---<a2n+1.

As such, A4 is (cf. Gantmakher [9], p. 99) a nonsingular Vandermonde matrix with
(2.11) det4 > 0.




BEST UNIFORM RATIONAL APPROXIMATION OF |x| ON [-1, +1] 275

Next, for convenience set

(212) (C T .__ * * * * * * * T
. 13 Cos s Cone) i=(ad, at, Gy, @5, Apyy s evvs Ay, Q5y)

From Cramer’s rule, it is well known that
(2.13) ¢j=detd;/detd (j=1,2,...,2n+1),

where A; denotes the matrix obtained from the matrix 4 when the jth column
of A is replaced by the column vector of the right side of (2.7), namely
(VT VI2, ... s Vane1)T . From this definition, it can be verified that 4; can be
represented as

(2.14) Ay = [(t)¥],

where &; = 1/2, ay=1(I=1,2,...,n),and &y =1+1/2(=1,2,...,n),
so that

(2.15) 0<C~¥1<d2<~'-<5£2n+1.

As is the case for A, A; isthen a nonsingular Vandermonde matrix with det4; > 0.
Thus, from (2.11) and (2.13), ¢; = af > 0. The same argument similarly shows that
detA, > 0; whence, ¢; = aj > 0. However, on considering A4; (where 3 </ <
2n+ 1), then A; becomes a Vandermonde matrix only after a suitable permutation
of its columns so that its associated exponents {a j(l)}ﬁﬁ]“‘ form, as in (2.10) and
(2.15), an increasing sequence of nonnegative numbers. As is readily verified, any
permutation of the columns of 4; which brings its associated exponents {« ,-(l)}?i‘[‘
into an increasing sequence of nonnegative numbers is an even permutation for /
even and an odd permutation for / odd (3 </ <2n+1). Thus,

sgndetd; = (-1} (3<I<2n+1),
so that, from (2.11) and (2.13),

(2.16) sgne; = (1) (3<I<2n+1).

With a} >0 and af > 0 from the discussion above, then (2.16), along with the defi-
nitions of (2.8) and (2.12), gives the desired conclusion that a; >0(j =0, 1, ..., n)
and that b;f>0(j=1,2,...,n). O

We remark that a stronger result for /T than Proposition 1, based on best uniform
rational approximations of Stieltjes functions, can be found in Blatt, Iserles, and Saff
(2], Lemma 3.2). Our reason for including Proposition 1 and its proof (based on
Vandermonde matrices) is that it leads to the following numerically useful result.

Proposition 2. For each positive integer n, let {t;}3*\" be any points in (0, 1) sat-
isfying
(2.17) O0<ti<tr<- <ty <1l

Then, there exist unique positive numbers {a;}!_o and {b;}]_, such that

(2.18) g(t) == —Vi+ (zn:ajﬂ) / (1 + ibjtj>
Jj=0 j=1

vanishes at the points {tk}i’:;‘. Moreover, with to:=0 and ty,.2:=1, then

(2.19) sgn g(t) = (—1) on the interval (1, t141) (I=0,1,...,2n+1).
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Proof. As in (2.7), consider the following system of 2n + | linear equations in the
2n + 1 unknowns {a;}7_, and {bc}7_, :

n h »
(2.20) Sai =S b P = (k=1,2,...,2n+1).
Jj=0 j=1

But the proof of Proposition 1 can be used to similarly show that the 2n+1 numbers
{a;}}_¢ and {b; }721 which solve (2.20) are uniquely determined and are all positive.
Consequently, 1+3"_ b;#/ is positive on [0, 1], and (XTo0ait)/(1+ 37 bt)) is
an element of 7, , for which g(¢) vanishes in the points {z;}7"+!.

Next, with b := 1, then h(1) := 37_ga;t/ — 37 b;t/*!/? is a nonzero element
(cf. (2.2)) of the linear space W, , and has, from (2.20), 2n + 1 distinct zeros in
the points {tk}i’zl in (0, 1). Since W, , is a Haar space of dimension 21 + 2,
then £(f) can have no additional zeros in [0, 1], which gives that g(¢) of (2.18) is
of one sign on each interval (¢, #,,,),/=0,1,...,2n+1.

Finally, suppose that (2.19) is false, i.e., that g(z) has the same sign on two
adjacent intervals, say (¢, ¢;.1) and (f,,, t;42), where 0 </ < 2n. This implies
that g'(#41) = 0. Now with D(¢) := 37_b;t/, it follows by definition that g(r) =

h(t)/D(t), so that
(2.21) g’(t) _ D(l)h'(%;‘(;)l(t)D’(I)

Because D(¢) > 0 on [0, 1] from the positivity of the coefficients b, and because
h(tg) =0 forall k=1,2,...,2n+1, then g'(¢,,,) = 0 implies from (2.21) that
h'(t1+1) = 0. Moreover, from Rolle’s Theorem, 4'(¢) has one zero in each interval
(¢, tjy1), where j=1,2,...,2n. Thus, #'(¢) has 2n+1 distinct zeroson (0, 1).
But, 4'(¢) is an element of the Haar space

Woi=span{l, ¢, ..., "7t o2 g2 iy

which has dimension 2xn+ 1 on (0, 1]. This implies A’() = 0, which contradicts
the fact that h(t) = Y ga;t/ — 37 objt/*1/? with a; > 0 and b; > 0 for all
Jj=0,1,...,n. Thus, (2.19) is valid. 0O

Though our interest here is in the specific function /7 on [0, 1], we remark that
the function ?*, for any real number o with 0 < a < 1, is also hypernormal on
[0, 1], and that Propositions 1 and 2 are similarly valid for *, with O <a < 1. In
this regard, see Ganelius [8] for rational approximations of * on [0, 1] when « is
a rational number with 0 < a < 1.

Proposition 2 can be used as follows in conjunction with the Remez algorithm (cf.
Rivlin [17], p. 136) for numerically determining the numbers {E, ,(v7; [0, 1])}4, .
For a fixed positive integer #, let {tk},%’jil be any points in (0, 1) satisfying (2.17).
Then from Proposition 2, there exist unique positive numbers {a;}_o and {b;}7_,
such that g(z), as defined in (2.18), vanishes at the points {tk}lzc’f_jl ,and sgng(?) =
(—1)! on each interval (¢, t;,,), where t5:=0, tryup:=1,and [ =0,1,..., 2n+
1. Setting

mp=max{|g) 1y <t<ty}  (1=0,1,...,2n+1),
there exists (from the continuity of g(¢) on (0, 1]) a u; in [f, #;,;] for which
(2.22) my = |g(u)| (I=0,1,...,2n+1).

Because g(fy) =0 for k =1,2,...,2n + 1, we have, more precisely, that u, €
[0,6),u1 € (t1,12), ..., Usns1 € (tans1, 1]. From (2.19) of Proposition 2, we
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further have that
seng(u) =(-1)"  (=0,1,...,2n+1).

This means that starting with the interpolation points {tk}2”+1 with 0 <t <th <

+ < tans1 < 1, one obtains the rational function (37_ga;¢/)/(1+ 37_;b;t/) such
that g(t) of (2. 18) has precisely the correct number, namely 2n+ 2, of sign changes
in the intervals {(#;, #;41 )}2”+1 Thus, one can move directly to the leveling procedure
of the Remez algorithm, at the distinct points {u1}2"+1 of (2.22) of [0, 1], where
one determines the new rational function (3" =04 H)1+3 j:Ib ;¢/) and a positive
number A such that

n .
> au)
(2.23) 7m+—ﬁ—°,,~f+(—1)’+lz=o (1=0,1,...,2n+1).
1+ZB,~u}
j=1

Because {u;}?"+! is a subset of [0, 1], it follows from (2.23) that

n .
Z&}"Z}
(2.24) YR N— _1>0.
1+ ZBjtj
j=1 Loo[0, 1]

With a preassigned (small) & > 0, if the above difference is less than ¢, this iteration
is terminated. Otherwise, a new set of local extrema {u1}2”+‘ in [0, 1] is determined
from —v1+ (3 Foa,tf /3 j=0b it/), and, as is well known, this procedure, when
repeated, is ultimately quadratically convergent (cf. Meinardus [14], p. 113). In this
manner, the first few of the numbers {E, ,(V7; [O 1]) >, were determined, each
with a precision of at least 200 significant digits, using Brem s MP (multiple precision)
package [5] on a SUN 3/80 at Kent State University. For larger values of n, the
following ad hoc procedure was successfully applied. Assuming that the numbers
{E;,j(v/t; 10, 1]) _n—p With n >3 have all been determined to high precision, let
{t }2'“rl denote the alternation set (of length 2n + 2), derived from the converged

abscissas (from the Remez algorithm) of the local extrema of —/7+r; (1) in [0, 1],
where

0= té’” < ti") < t(2n+] 1, and
(2.25)
1+ r;,,,(z,ﬁ >) = (=DFE, o(V1;[0,1]) (k=0,1,...,2n+1).
Now, it was numerically observed that the following ratios of these abscissas, namely
A = Y (k=1,2,...,2n-1),
were roughly unchanged with n , i.e., },i”“) = lﬁ(”) for k=1,2,...,2n—1. (These
ratios were, in fact, nearly identical for smaller values of k.) Then, initial estimates

7"+ 12n43 for the alternation set, in the case n + 1, were defined by 7" := 0
k  Tk=0 0
and 1) 7 ( 1 N2
n+ n+ n
(T =1,
where was obtained from a Newton quadratlc extrapolation of first interior
abscissas {tﬁ”'z) , tg"_” , ti”)} from the last three cases. With { (21:13) := 1, there

t(z';:ll) and t(z"ilz) , which must

i'(ln+l)

are two remaining initial abscissa estimates, namely,
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be defined, and these were computed from simple averages so that these remaining

values 7 (271111) and 7 (2’,’#2) satisfied
_ z(n+1) 7 (n+1) z(n+1) 7 (n+1) 7 (n+1) z(n+1) _
O=1o7 <177 <<y <y <305 <y =1

In all cases, these initial estimates of the alternation set of 2n + 4 equioscillating
extrema for the case n + 1 of (2.25) were sufficiently accurate so that the Remez
algorithm, when applied with these initial estimates, converged in all cases. (We
remark that we stopped for convenience at n = 40 in the determination of the
numbers E, ,(v/¢; [0, 1]), rather than from a breakdown in this procedure.) In this
way, each of the numbers {E, ,(v7;[0, 1])}4%, was obtained to a precision of at
least 200 significant digits.

Finally, since /¢ is hypernormal on [0, 1], then the unique best uniform ap-
proximation r; , = pi/q; to /¢ from 7, , on [0, 1] has its longest alterna-
tion set in [0, 1] of length 21 + 2, i.e., there exist points {t}")}lz;’g ' satisfying
0= t(()") <tW<... < tg',?Jrl =1 for which

* tn)

(2.26)  —/t" + 3"(#)) =(-1)/-E, o(Vt;[0,1)) (I=0,1,...,2n+1).

4: (1)
With the change of variables x* = ¢, set s}, ,,(x) = r; ,(x?) = %’é%% , so that
83, 2n(X) 1s an element of 7y, 5,. It is clear that 83, 2n(X), like |x|, is an even
function of x, and it is readily verified that |x|—s3, ,,(x) has an alternation set of
length 2(2n+2)~1=4n+3=:L on [-1, +1]. But, as 8¢} (x?) = 2n = dp}(x?)
and as
(2.27) L=4n+3>2+max{2n+9q;(x*);2n+8p:(x>)} =4n+2,

then (cf. [14], p. 162) s3, ,,(x) is the best uniform approximation to |x| from
Ton,2n On [—1, +1], with

Eyn,on(Ix5 [-1, +1) = E, o(V£;[0,1))  (n=1,2,...).
Similarly, since
L=4n+3>2+max{2n+1+9qg;(x?);2n+1+08p:(x*)} =4n+3,

then s3, ,,(x) is also the best uniform approximation to |x| from 7,1 2241 OnN
[—1, +1], which is similar to the polynomial case in (1.1). This gives us the following
result:

Proposition 3. For each positive integer n, let ry; (1) := p;(1)/q;(t) be the best uni-
form approximation from ., to \/t on [0, 1]. Then, s3, ,,(x) = pi(x2)/q;(x?)
is the best uniform approximation to |x| from m, 2y and Tanii ams1 on [—1, +1],
and

(2.28)  Eapon(lx]5 [=1, +11) = Eznrt, 201 (x]; [=1, +11) = En #(V15 [0, 1]).

We remark that the outer equality, i.e., Ey, 2.(|x|; [, +1]) = E, (V7 [0, 1]),
of (2.28) is well known, and can be found in Petrushev and Popov [16], p. 74.

From our numerical determinations of {E, ,(v7; [0, 11)}42 , we list in Table 1

below the equivalent numbers {Ej, 20(Jx[; [-1, +11)}22, | truncated to 25 decimal

digits, as well as the products {e"mEz,,,zn([x!; [-1, +11)}4%, , again truncated to
25 decimal digits. We remark that the first three numbers (n =1, 2, 3) of column 2
of Table 1 can be found, to about four significant digits, in the Appendix of Petrushev

and Popov [16].
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TABLE 1

Eon,on(lx]5 [=1, +1D)

™M Ey an(lx]; (1, +1])

[V-JN-- IS B N I R S

B O W W W W W W W W W RN NN NN NN e e e e s e e e =
O\OOO\)O\M&WN—‘O\OOO\IO\M&U)N'—‘O\OOO\)O’\MAWN'—‘O

4.3689012692076361570855971e-2
8.5014847040738294902974113e-3
2.2821060097252594879063105¢-3
7.3656361403070305616249126¢-4
2.6895706008518350996178760e-4
1.0747116229451284948608235e-4
4.6036592662634959571292708e-5
2.0851586406330327171110359%¢-5
9.8893346452814243884404320¢-6
4.8759575126319132435883035¢e-6
2.4855902684782111169206258¢-6
1.3043775913430736526687704¢-6
7.0223199787397756951998002e-7
3.8675577147259020291010816e-7
2.1739878201697943205320496¢-7
1.2447708820895071928214596¢-7
7.247863376755536969855738%¢-8
4.2854645582735082156977870¢-8
2.5698967632180816149049674¢-8
1.5613288569948668163944414e-8
9.6011226128422364808987184e-9
5.9708233987055580552986137¢-9
3.7523813816413163690864502¢-9
2.3814996907217830892279694e-9
1.5254732895109793748147207¢-9
9.8567633494963529958137413¢-10
6.4213580507266246923653248¢-10
4.2158848429927145758285061e-10
2.7883241651339275411060214e-10
1.8570720011628217953125707¢-10
1.2450783250744235910902360e-10
8.4005997557762786343216049¢-11
5.7022115757288620263774447¢-11
3.8929505815993459443909823¢-11
2.6724435566456537363975894e-11
1.8442995092525441602503777¢e-11
1.2792448409247089881993010¢-11
8.916358294918686087120193%¢-12
6.2438281549962812624730424e-12
4.3920484091817861898391037¢-12

3.7144265436831641393892631
4.5524741186029595765651746
5.0160481727069450372015671
5.3241385504995843582053531
5.5490650092013609961333338
5.7230860623701446149592486
5.8631639054527481203422807
5.9792197829976109154137699
6.0775103145705017015539294
6.1622095236002118350456017
6.2362266709476159517186439
6.3016618824786348671221713
6.3600754354311556855336475
6.4126547293148461644477940
6.4603220136320571274712311
6.5038062614761998676648135
6.5436925164845569527352868
6.5804566245604851075885491
6.6144902150911573323881633
6.6461190161275102141043688
6.6756165126491228856564179
6.7032142882249977256424257
6.7291099634760209110520998
6.7534733658511869861964983
6.7764513791852569033345348
6.7981717950311136695770741
6.8187464002912796750796788
6.8382734742229698180371436
6.8568398240938623267702634
6.8745224571336711172475540
6.8913899632991017639054615
6.9075036662673253080419613
6.9229185872920030400076656
6.9376842569099166681845857
6.9518454021392401752909853
6.9654425311662094614637204
6.9785124331456697053440800
6.9910886073298323319862475
7.0032016330585887701672461
7.0148794900233669056665337
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§3. RICHARDSON EXTRAPOLATION

The products {e™2"Ey, 1,(|x|; [~1, +1]) 40 themselves do not give precise es-
timates of M and M of (1.11), but with the Richardson extrapolation method (cf.
Brezinski [6], p. 7), numerical (but not exact) information about M and M can
be determined. To describe the Richardson extrapolation method, let {S,}Y
with N > 2, be a given sequence of real numbers. On setting T”) =S8, (n =

1,2,..., N), regard {T N, as the zeroth column of the Richardson extrapo-
lation table for {S,}V, The first column of the Richardson extrapolation table,
consisting of N — 1 numbers, is defined by

n+l) Xns1 Tén)

Xn = Xp+1

(
(3.1) T = X lo

(n=1,2,...,N-1),

and inductively, the (k + 1) st column of the Richardson extrapolation table, consist-
ing of N — k — 1 numbers, is defined by

Xn T]EM—I) ~ Xntk+1 T]En)

(3.2) T =

(n=1,2,...,N—-k-1),
Xn = Xntk+1

for each k = 0,1,..., N — 2, where the {x}_, are given constants. In this
way, a triangular table, consisting of N (N +1)/2 entries, is created. In our case, the
products {e”\/ﬂEzn,z,,( lx|; [=1, +1]D} . generate a triangular table of 496 entries.
To conserve space, we give below in Table 2 only the 9th and 10th columns of the
Richardson extrapolation method, applied to the numbers {rn}‘,‘l‘ilo , where

(3.3) Tni= ™ Ey ou(x]i[-1, 1) (n=1,2,...),
for the particular choice x, := 1/y/n (n =10, 11, ..., 40). Again, the numbers in

these columns have been truncated to 25 decimal digits.

It is indeed evident from Table 2 that the number 8, to various accuracies, appears
in all the entries of the 9th and 10th columns of the Richardson extrapolation of the
numbers {7,}1°,, but this turns out to be true throughout the entire associated tri-
angular Richardson extrapolation table. We have selected the 9th and 10th columns
of this Richardson extrapolation because the entries in the 9th Richardson extrapo-
lation column of Table 2 are strictly decreasing, while those in the 10th Richardson
extrapolation column of Table 2 are strictly increasing. Based on these extrapolations,
we make the following numerically plausible new conjecture:

(3.4) Conjecture 1: 8 = lim ™" Ey, ,.(|x|; [-1, +1]).

n-—-00

With the apparent success of the Rlchardson extrapolations (with x, := 1/y/n) of

the numbers {e”mEz o (x5 [-1 +1]) 40 1o it is consistent with Conjecture 1
to make the following conjecture Wthh is in the spirit of (1.5):

Conjecture 2. e”mEzn,z,,(ixh [—1, +1]) admits an asymptotic series expansion of
the form

K K K
(3.5)  e™PEy p(x];[-1, +1]) ~ 8 + Tt

+ o (n — o0).
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TABLE 2

9th Richardson extrapolation of {7,}4 - | 10th Richardson extrapolation of {zx 400

8.0000003315671961206546696
8.0000001954908160426397811
8.0000001102784540488829795
8.0000000606534067095188999
8.0000000328898056473217775
8.0000000177128920597313591
8.0000000095246104834276813
8.0000000051356329619218489
8.0000000027873890541471473
8.0000000015286155343083726
8.0000000008503621249324779
8.0000000004818513852150904
8.0000000002792857242205205
8.0000000001662223537658992
8.0000000001018861846283786
8.0000000000644065954058002
8.0000000000419621984410583
8.0000000000280990775511207
8.0000000000192489204346099
8.0000000000134077625530325
8.0000000000094285808538428
8.0000000000066398157884231

7.9999998669733737396601957
7.9999998870332782634666396
7.9999999204721918189077309
7.9999999487893701387926514
7.9999999686454709047300160
7.9999999813856490294315845
7.9999999891614761167611829
7.9999999937644296708897119
7.9999999964368836553304670
7.9999999979695900224400100
7.9999999988421666287371331
7.9999999993370575957653022
7.9999999996174919169009855
7.9999999997766671415448461
7.9999999998673924596859198
7.9999999999194597844657179
7.9999999999496419688750299
7.9999999999673808389086599
7.9999999999779992400786189
7.9999999999845068292101649
7.9999999999886129550248035

Assuming that (3.5) is valid, it would follow that

7’.'\/2_); N — o~ £<__2.. ..IS;_ oo ey
(3.6) Vi {e™ P Bz an(xls [-1, 1) = 8} m K+ T+ 2+ (n — o).

With the known high-precision approximations of the numbers 7, (cf. (3.3)) of the
second column of Table 1, we can similarly perform Richardson extrapolation (with
Xn := 1/4/7) on the numbers /7 (t, — 8), to estimate the constant K; of (3.6). In
Table 3 (see next page), we similarly give the 8th and 9th columns of the Richardson
extrapolation method, applied to the numbers (cf. (3.3)) of {v/7A(t, — 8)}12,,, for
the particular choice x, := 1/y/n (n =10, 11, ..., 40), these numbers again having
been truncated to 25 decimal digits. Here, we similarly see strict monotonicity of the
numbers in each of these two columns, and it appears that

(3.7) —6.66432 44072 27... < K| < —6.66432 44071 90... .

This bootstrapping procedure can be continued to produce, via Richardson extrap-
olation, estimates for the successive constants K; in (3.5). As might be expected,
there is a progressive loss of accuracy in the successive determination of the con-
stants K. In Table 4 (see next page), we tabulate estimates of {K j}f-:1 , Where each
number is truncated to 10 decimal digits.

Note that as K; is negative in Table 4, it would follow from (3.5) of Conjecture
2 that the product 7, := e"mEz,,,zn(lxl; [-1, +1]) would be eventually increasing
to the value 8, as n — oo, which turns out to be consistent with the behavior of the
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TABLE 3

8th Richardson extrapolation of

{Vna(tn - 8)}:0:10

9th Richardson extrapolation of

{Vn(tn - 8)}:(-),-10

~6.6643252923192288899581422
—6.6643248955588651439071779
—6.6643246696670446212354260
~6.6643245463234522051500192
—6.6643244805227254105843835
—6.6643244458511429413907191
—6.6643244276777840712247340
—6.6643244181531735877970527
—6.6643244131412380567146977
~6.6643244104834298819376785
~6.6643244090578374114941530
~6.6643244082814322566680373
—6.6643244078503439726613513
—6.6643244076053130326767931
—6.6643244074621918084852786
—6.6643244073760385664278707
—6.6643244073225197839348864
~6.6643244072882341387675361
—6.6643244072656467633538892
—6.6643244072504158643384467
—6.6643244072399678761510565
—6.6643244072327288717801809
—6.6643244072277039192319918

—6.6643238470513280068931885
—6.6643240212973578474092243
—6.6643241643076814195198379
—6.6643242618337574878424280
—6.6643243227887586915298972
—6.6643243590760481107155901
—6.6643243800547316540863275
—6.6643243919664809003072336
~6.6643243986575396699820511
—6.6643244023947567739175251
—6.6643244044784972229876582
—6.6643244056422235261938739
—6.6643244062953468702991632
—6.6643244066650174044155402
—6.6643244068769002380708173
~6.6643244070004868069058853
—6.6643244070742680700833267
—6.6643244071196396734608119
—6.6643244071485601513855522
—6.6643244071677648651080498
—6.6643244071810864075910701
—6.6643244071907349895094533

TABLE 4

K;

W b W N

~6.6643244072
+2.7758262379
-0.1460115270
—0.3599422092
+0.0728948673

numerical values in the second column of Table 2. Then, one might ask how large
no would have to be so that the inequality

(3.8) T, >28—-0.1=79 (all n>ngp)

is valid. Surprisingly, using the constants of Table 4 in the series of (3.5), the answer
to (3.8) appears to be

(3.9) no =4, 386.

This would indicate that to numerically extend the second column of Table 2 to
values of 7, which satisfy (3.8) would be computationally nearly impossible!
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§4. THE ZEROS, POLES, AND EXTREME POINTS OF 75 ,(f) AND s3, 5 (X)

With ry; ,(¢) := py(t)/4;(¢) denoting the unique best uniform approximation from
Ty, n 1O \/_ on [0, 1], our numerical results have determined the rational functions
{rn A(0)}49 | to very high precision, and we now comment on the location of the zeros
and the poles of ry ,(t). Tt turns out that the zeros and poles of each r;; ,(f) are
negative real numbers which interlace on the negative real axis, and this has been
rigorously established, for all 7, in Blatt, Iserles, and Saff [2], Lemma 3.2. In Table 5
(next page), we list specifically the zeros and poles of 75, ,4(7), according to increasing
absolute values. These numbers are truncated to 25 s1gn1ﬁcant digits. The second
column of Table 5 is now shifted downward to indicate the interlacing of these numbers.

It is also the case that the smallest (in modulus) zero and pole of r;; ,(¢) are rapidly
decreasing w1th increasing n, and, more curiously, that the largest (m modulus) zero
and pole of r} ,(¢) are increasing with increasing n. This is indicated in Tables 6
and 7 (see pp. 285 and 286 ).

With 53, ,,(x) =17, * (x?) denoting (cf. Proposition 3) the unique best uniform
approx1mat10n from 7y, 2, to |x| on [-1,+1], it is evident, from the fact that
the zeros and poles of r ,(f) are negative real numbers which interlace, that all the
zeros and poles of s2n 2n(x) are then purely imaginary, and that they also interlace
on the upper imaginary axis, as well as on the lower imaginary axis, as shown in
Blatt, Iserles, and Saff [2], Proposition 1.6.

Next, we consider the extreme points {ti")}i’:{)‘ , as deﬁned in (2.25), of the best
uniform approximation r, ,(#) from 7, , to v/t on [0, 1]. In Figure 1, we graph
—/t + r32.3(1) on the interval [0, 1], which has 66 extreme points. (We remark
that the graphs of —/f + r; () for other values of n between 1 and 40 are all
similar.) In Figure 2, we graph —|x| + sg4 64(x) on [=1, +1], which ‘has, from
(2.27), L = 131 extreme pomts What is interesting is that the distribution of -the
extreme points in Flgure 1 is far from an arcsine distribution of points on [0, 1],
which arises naturally in best uniform polynomial approximation to a continuous
function on [0, 1] (cf. Kadec [12] and Blatt, Saff, and Totik [3]). In this regard, for
a recent contribution to the distribution of extreme points in rational approximations
to continuous functions, see Borwein, Kro6, Grothmann, and Saff [4].

Next, to come full circle to connect with Newman’s method of proof in [15],
again let r; ,(¢) := p;(t)/q;(t) denote the unique best uniform approx1mat10n
from 7, , to /7 on [O, 1], so that (cf. Proposition 3) s3, ,,(x) := p;(x*)/q5(x 2)
is the best uniform approximation from 7y, 2, to |x| on [-1,+1].

1I||$‘}I!V‘j _T]l\lll\lflil\l\lll\)‘

T
5x10" f- — 5x107" — —
- ] L | { _

— - - i H i P}

L - Lo ; L | ﬁ

ox10° — — ox10” —
-sx10™" = ] —sx10™! = —
L | L 4
o IS E N NN S SO i’\ Lo b by be e 100

C.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

FIGURE 1. —VI+ 13, 5,(0) FIGURE 2. —|x|+ ¢4 64(%)
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TABLE 5

zeros of 130.20(8)

poles of 3, ,,(1)

—1.717132504303837033468428¢ — 15

—3.703182909241994291208116¢ — 13

—1.058702977887726544662722¢ — 11

—1.528636041027218768359103¢ — 10

—1.504473786955977808697303¢ — 9

—1.148303754015630053284654¢ — 8

—7.287386051910848428254556¢ — 8

—4.012965900773629805653337¢ — 7

~1.97274359955448122809480%¢ — 6

~8.832536428293582500444432¢ — 6

—3.655273011054158105143563¢ — 5

—1.414064277732104533341803e — 4

—5.159461556663256951681182¢ — 4

—1.788730790989209059308791e — 3

—5.933036743367881080101526e — 3

—1.898073956710929346948006¢ - 2

—5.936608191567615132850060¢ — 2

—1.872118509596457739259162¢ — 1

—6.488061652901187579537934¢ — 1

—3.299647801095436134442869¢0

—4.122037071924685952038642¢ — 14

—2.229921442100235702245644¢ — 12

—4.272269127018162945549833¢ — 11

—4.980439893664917877006132¢ — 10

—4.268324698437094142704743¢ — 9

—2.951118537069339235216943¢ — 8

—1.737175061105726144770955¢ — 7

—-9.011973045013955942467455¢ — 7

~4.218990352972352064682828¢ — 6

—1.813177764243892229621868¢ — 5

—7.245923952308145763899705¢ — 5

—2.719576244898443980943241¢ — 4

—9.664136796593640745905787¢ — 4

—3.274298876071245659126602¢ — 3

—1.065319593929654379259048¢ — 2

—3.361963646519704882698128¢ — 2

—1.049706200292012610503942¢ — |

~3.409911768637359993954860e — 1

—1.348736294286949598585666¢0

—1.456883309221957411173579%¢1
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TABLE 6

n | Smallest (in modulus) zero of r; ,(f) Smallest (in modulus) pole of r; , (%)

1 —1.368923031534783976006006e-2 —4.196433776070805662759262e-1

2 —5.095440950046164913548179%¢-4 —1.236229093048010694616062e-2

3 —3.668754854764301601156389¢-5 —8.814871037462490620077316¢-4

4 —3.821548098532945054547309¢-6 —9.174728550114113098656249¢-5

5 —5.095437613649789174645734e-7 ~1.223196722384140909651538e-5

6 —8.135776767581113201857043¢-8 —1.953027123111307771363052¢-6

7 —1.492867968836581654265778e-8 —3.583684048208389856216454¢-7

8 —3.062620917232778789030957¢-9 —7.351930256952474132939666¢-8

9 —6.888888944579748020677368e-10 —1.653702106290587264702107¢-8
10 | —1.674691676157399999015334e-10 —4.020156396851685957714361e-9
11 —4.351851987754064935433282¢-11 —1.044677403412738226113334e-9
12 | —1.198454897639809752244714¢-11 —2.876933205451490043826655¢e-10
13 —3.473571680400674142505709¢-12 ~8.338431195646377264044048e-11
14 —1.053631249266870628966651e-12 —2.52927893389357890521388%-11
15 —3.329118463153412218161126¢-13 ~7.991666157260343615638806¢-12
16 —1.091424949783213873155457e-13 ~2.620004043356584270891723¢-12
17 —3.70028378499204545264845%¢-14 —8.882661588536826998558918e-13
18 —1.293632302714508152801726¢-14 ~3.105409917910581318633591e-13
19 —4.652071606136310354212030e-15 —1.116746178508780598705148e-13
20 | —1.717132504303837033468428e-15 —4.122037071924685952038642¢-14
21 —6.493204306908037948411602¢-16 ~1.558716569721306645149564e-14
22 | —2.511212637658449447811252e-16 —6.028254407838885874745387¢-15
23 | —9.918111377797253165882600e-17 —2.380877578188369021273296e-15
24 | -3.994993665370975117059856¢-17 —9.590123039129199271092594e-16
25 —~1.639170960560711118083876e-17 —3.934887639548997194771480e-16
26 —6.843585470243554598866683¢-18 —1.642826802388382091074808e-16
27 —2.904482801853040010638739¢-18 —6.972313292070952075957630e-17
28 —1.251965943925848345316009¢-18 —3.005388355711813077403102e-17
29 —5.476480697718971255690096e-19 —1.314648485372852496645883e-17
30 —2.429251729561977623797927¢-19 —5.831504360433917003348557e-18
31 —1.091964153242014292546902¢-19 —2.621298420240920688320193¢-18
32 —4.970906825854820752088878e-20 ~1.193283696272594942092688¢-18
33 —2.290349139166647354491561e-20 ~5.498063798589801565372890e-19
34 —1.067512127334877980146886e-20 ~2.562600470595076629004990e-19
35 —5.030742854842496517977711e-21 —1.207647545836081648394104e-19
36 —2.295951030517160327206388e-21 —5.751564859178373936699723e-20
37 —1.152716167627621967794938e-21 —2.767135771094096855140326e-20
38 —5.600026212069963803150742¢-22 ~1.344306021349157823041807e-20
39 —2.746103613369048578300742¢-22 —6.592118470345778964292469¢-21
40 | —1.358780396791876849841798e-22 —3.261800212937462485588787¢-21

285
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TABLE 7

n | Largest (in modulus) zero of r; ,(¢) Largest (in modulus) pole of r; ,(¢)

1 —1.368923031534783976006006¢-2 —4.196433776070805662759262¢-1

2 —1.192906926906936332406069¢-1 —1.076378523043827619476925¢0

3 —2.640577400238288442074837¢-1 —1.772091188030805623721620e0

4 —4.257119677091359195052433¢-1 —2.486693073254502304149400e0

5 —5.962567801550604082353637e-1 —3.212922186202416817620196¢0

6 ~7.721764150282669289322387¢-1 —3.947259084964369332782131e0

7 —9.516676149597912387743964e-1 —4.687683028201020515194932¢0

8 —1.133698646456227804901685¢0 —5.432903907034385828756759¢0

9 —1.317629592104832120632036€0 —6.182036649546584856400985¢0
10 —1.503038235574910374167784¢0 —6.934441759088715604439639¢0
11 —1.689632068429636444622313€0 —~7.689638751833178079740678¢0
12 —1.877200296530244741596106€0 —8.447255416074735265532792¢0
13 —2.065586004852788950567396€0 —9.206996247803105556130201€0
14 —2.254669176675043063501016€0 —9.968621863026240552203745€0
15 —2.444355886460392526433957¢0 —1.073193504075731167876604¢1
16 —2.634571169916340058138727¢0 ~1.149677095232836424715549%¢1
17 ~2.825254172201641785281781¢0 —1.226299013325732616994746¢ 1
18 —3.016354756365245681484291e0 —1.303047330905229121333566¢e1
19 —3.207831075953284449719518¢0 —1.379911750849602584068894¢1
20 —3.299647801095436134442869¢0 —1.456883309221957411173579%¢1
21 —3.591774797882112527126323€0 ~1.53395414454771138617088%¢1
22 —3.784186128745445910483593¢0 —3.784186128745445910483593e0
23 —3.976859284428676641888241¢0 —1.688366659501876719663205¢1
24 ~4.169774585863404828801473¢0 —4.169774585863404828801473¢0
25 —4.362914712614906328311850¢0 —1.843102404666098337231393¢1
26 —4.556264326928174860566678¢0 —1.920579411089108860745803¢ 1
27 —4.749809770906511170871789¢0 —1.998123655668571281061711el
28 —4.943538820290648575993641¢0 —4.943538820290648575993641¢0
29 —5.137440482516175886695985¢0 —2.153399520695165797435302¢1
30 ~5.331504829754723302969704¢0 —2.231124739110224220585381¢l
31 —5.525722859850400261795768¢0 —2.308904320486567760595054¢1
32 —5.720086379689786072413115€0 —2.386735680013799059570384¢ 1
33 —5.914587906756959226112125€0 —2.464616431904602214388958¢1
34 —6.109220585539266195280818¢0 —2.542544368539493259229790¢ 1
35 —6.303978116145199158049530e0 —2.620517442344431956795667¢1
36 —6.498854693029970540636320€0 —2.698533749975341498805667¢1
37 ~6.693844952138135601265645¢0 —2.776591518459983420305286¢1
38 —6.888943925095670306938255¢0 —2.854689093008630573631162el
39 —7.084146999338062764189254¢0 —2.932824926254003169258184¢1
40 —7.279449883262351921945916€0 —3.010997568720580080176381e!
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As in (2.3), we write pi(f) == Y par(n)tt and g;(1) = Yp_obr(n)t* (where
b§(n) = 1), so that

n
> ax(n)x*
k=0
n

1+ bp(n)x*

k=1

iaxﬁ(n)xz"/bii(ﬂ)

k=0
[xZn +Zb )x2 /b ( )}

where we have used the fact (cf. Proposition 1) that b}(n) # 0. Now, because |x]|
and s3, ,,(x) are both even functions on [—1, +1], (4.1) can be written as

x (ia;’é(n)xzk‘l/bﬁ(fl)) +ag(n)/by(n)

k=1

—IX] + 830 20 (%) = —|x[ +

(4.1)

= —|x|+

b

(4.2) —[ox] + S35, 2n(X) = =X + - :
[xz" + sz<n>x2"/bz<n>]

k=0
for x in [0, 1]. Next, set

(4.3) Pon(x) := (xZ" + Zb 2’</b;;(n)) +§n:a;;(n)x2'<-1 /b (n)
k=1

which is a monic polynomial in 7y, with all its Taylor coefficients positive (cf.
Proposition 1). Clearly,

n—1
Py (x) + Pou(—x) =2 [xz" + Zb;(n)xzk/b;(n)} ,
(4.4) k=0

Pyy(x) — Pan(— [ ap(n)x*=1/by(n )}
k=1

so that on [0, 1], (4.2) becomes

=2xPyp(—x) + 2a5(n /b*(n)

(4.5) —|x]+ 83, 20(x) = Py () + Pan(—x)

Next, if {£{"'}3"+! again denotes the alternation set in [0, 1] of length 2n+2 for
the extreme points of —7+ry (1), where r; ,(¢) = p;(¢)/q;(¢), then (2.26) holds
with

(4.6) 0=t <M< <dl =

1.
Hence, because of the transformation ¢ = x? in Proposition 3, then {x;(n) :=

tf" ) 2n+1 js necessarily the alternation set for the extreme points of —|x|+s53, 2n(X)
on [0, 1], which gives that
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- IX[(H)I +S§n,2n(xl(n))
= (=V)Epy an(lx|; [-1,+1])  ((=0,1,...,2n+1).

Since xp(n) = 0, then evaluating the right side of (4.5) at the point xo(n) = 0 can
be seen to yield

(4-8) aS(”) = E2n,2n(|x|; ["1 » +1])-

With this, we now prove that all the zeros of Py,(x) of (4.3) are real and distinct in
the interval (-1, 0), for any n > 1. From (4.2), (4.7), and (4.8), we have, with the
notation of (2.3), that

(4.9) —xi(n)Pan(=x1(n)) = (=1)'[g5 (X7 () +(= 1) |- Ezn 2n (%[5 [=1, +11) /b5 (1),

forall /=0, 1, ..., 2n+1. Butsince the coefficients b} (n) of g;(x) are all positive
with b;(n) = 1 from Proposition 1, it is evident that the quantity in brackets in (4.9)
is positive for all / =1,2,... ,2n+ 1, and this shows that P,,(—x;(n)) oscillates
in sign at the consecutive 2xn + 1 points {x;(n) lzjfl of (0, 1]. Thus, P,(x) has
2n distinct real zeros in (—1, 0), and we can write

(4.7)

2n
(4.10) P(x)=[[(x+&@2n)  (n=1,2,...),

j=1

where 0 < &;(2n) < &(2n) <--- < &,(2n) < 1. Then, (4.5) can be written as

—ZXH< +X) 2a5(n)/b;(n)

+
(2n) — x P2n(x)+P2n(“‘x) ’
l+jI=-[1 (é;(Zn)—é-x)

for x in [0, 1]. Now, the ratios aj(n)/b;(n) were exceedingly small in our numeri-
cal results (for example, af(32)/b3,(32) = 7.305-10722!) and this suggests dropping
the last term in (4.11), which thereby defines a modified rational approximation,
Son,2m(x), to |x| on [—-1, +1]:

(411) “‘x“*’sgn,Zn(X)

2n)
-2 J(
"H ( &(2n) + )
i(2n) - x\

1

+H( & (2n)+
The above form, of course, reminds one of Newman’s original proof in [15], and
this form is also explicitly used in Vyacheslavov’s proof [23]. We remark, however,
that there is one small difference between the error curves of —|x| +s3, ,,(x) and
—|x|+82n,2n(x) , namely, on [0, 1], —|X|+53, 2,(x) has 2n+2 equioscillations with
one extreme point at x = 0, while from (4.12) it is evident that —|x| + 5, 2,(x)
vanishes at x = 0. In essence, —|x|+ §, 2,(x) loses the extreme point at x = 0

because of having dropped the last term in (4.11).
We mention that the high-precision coefficients (cf. (2.3)) of

{rr*z,n(t): ()/qn(t) n=1>

(4.12) —|x| 4 $2n,20(x) =
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along with their zeros, poles, and extreme points, as well as the polynomials (cf. (4.3))
{P2n(x)}49, , along with their zeros, are much too lengthy to reproduce here. These
are however available upon request from the Institute for Computational Mathemat-
ics, Kent State University, Kent, OH 44242.
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