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Abstract. We give here a rigorous formulation for a pair of consecutive simple
positive zeros of the function H, (which is closely related to the Riemann
E-function) to be a “Lehmer pair” of zeros of H,. With this formulation, we
establish that each such pair of zeros gives a lower bound for the de Bruijn-
Newman constant A (where the Riemann Hypothesis is equivalent to the assertion
that A < 0). We also numerically obtain the following new lower bound for A:

—4.379-107° < A.

1. Introduction

The purpose of this paper is fourfold:

(i) To give a rigorous formulation for a pair of consecutive simple positive
zeros of the function H,, (which is closely related to the Riemann ¢-function)
to be a “Lehmer pair” of zeros of Hy,.

(ii) To establish theoretically that each such Lehmer pair of zeros of H,
determines a lower bound for the de Bruijn—Newman constant A.

(iii) To show that such Lehmer pairs of zeros of H, do indeed exist.
(iv) To determine numerically a new improved lower bound for A.

To begin, it is known (see p. 255 of [T]) that the Riemann ¢-function can be
expressed in the form

&) _ r’

(LY ®(u) cos(xu) du (xe ),

8

0
where

(1.2) Ou):= Y (2n*n*e® — 3nn?e®) exp(—nn’e™) (0 <u < o0),

n=1
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and the Riemann Hypothesis is the statement that all zeros of & are real. Next, on
defining

(1.3) H(x):= J e"“’®(u) cos(xu) du  (teR; xe C),
0
then H, and the Riemann ¢-function are related through
, <(x/2)
(13) Ho() = =5,

so that the Riemann Hypothesis is also equivalent to the statement that all zeros
of H, are real.
In 1950 de Bruijn [B] established that:

(1) H/(x) has only real zeros for t > 1.
(i) If H/(x) has only real zeros for some real ¢, then H,(x) also has only real
zeros for any ' > t.

Subsequently, Newman [N] showed in 1976 that there is a real constant A, which
satisfies —o0 < A <4, such that
(1.4 (i) H/(x)has only real zeros if and only if t > A.

' (i) H, has some nonreal zeros if and only if t < A.
(This constant A is now called the de Bruijn—Newman constant in the literature.)
Because the Riemann Hypothesis is then equivalent to the statement A < 0, there
have been recent results giving lower bounds for A. These results are summarized
below:

—50 <A (1988, see [CNV2]),
—-5<A (1991, see [R2]),
—0385< A (1992, see [NRV]),
—0.0991 < A (1991, see [CRV]).

(1.5)

It is perhaps of interest to mention that, while each of the known lower bounds
for A of (1.5) depended on numerical calculations, the underlying mathematical
analysis for each lower bound above was different. Similarly, the new lower bounds
to be derived in this paper depend again on numerical calculations, but the
underlying mathematical analysis here (depending now on a differential equation
approach) is completely different from the techniques used in deriving the result
of (L.5).

Next, the Laguerre—Pdélya class is defined as the collection of all real entire
functions f(x) which can be expressed as

f(x) = Ce " hxxn T <1 - 2C—)e"/"j (xeC),
i=1 X

where o > 0, § and C are real numbers, n is a nonnegative integer, and the x /s
are real and nonzero and satisfy 0 < |x,| < |x,| < - with Y2 x;? < oo. (For
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any such real entire function f, we write fe€.% — 2.) It is well known that the
Riemann Hypothesis is equivalent to the statement that Hye & — 2. It is also
known (see [CRVY) that the de Bruijn—-Newman constant A has the following
characterization in terms of the Laguerre-Pdlya class:

(1.6) He¥% -2 if and only if ¢t > A.

It is known (see [CNV2]) that H, is an even real entire function of order 1 and
of maximal type, for each real ¢. Thus, from the Hadamard factorization theorem,
H(x) can be represented as

© x2
(L.7) H{(x) = H/(0) jl;ll <1 - ;;5(7)> (xeC),

where, from (1.3) and the well-known fact that ®(u) > 0 for all u, H{0) > 0 and
where its zeros, {x(t)} ;2 ;, which are numbered according to increasing moduli, i.e,

(1.8) 0 <Ix,() < Ix() <+,

satisfy

(1.8) i Ix{(0)] 72 < o0.
j=1

In 1956 Lehmer [L], from his calculations of zeros of the Riemann {-function
in the critical strip, found two consecutive simple zeros on the critical line which
were exceptionally close to one another, and this has been referred to in the
literature as “Lehmer’s near counterexample” to the Riemann Hypothesis (see
p. 177 of [E]). In our formulation here, those zeros, found by Lehmer, correspond
to the following two consecutive simple positive zeros of H,:

Xe00(0) = 14,010.125 732 349 841. . .,

(1.9)
Xg710(0) = 14,010.201 129 345293, ...

Here, and below, we find it convenient to use the above numbering system (which
differs from that of (1.8)) where the zeros of H, in Re z > 0 are numbered according
to increasing modulus, and where, from the evenness of Hy, x_(0):= —x/0)

U=12..)
We begin this paper with a rigorous formulation of Lehmer’s notion of a “close
pair” of consecutive zeros of H,,.

Definition 1. With k a positive integer, let x,(0) and x,,,(0) (with 0 < x,(0) <
X +1(0)) be two consecutive simple positive zeros of H,, and set

(1.10) A= x;41(0) — x(0).
Then {x,(0); x;+1(0)} is a Lehmer pair of zeros of H, if
(L.11) A¢ -0 <%,




110 G. Csordas, W. Smith, and R. S. Varga

where

1 1
(1.12) g 0)= 37 { + };
g j#l§<+ 1 ((x(0) — x}(o))z (xx+1(0) — x}{o))z
here (and in what follows) the prime in the above summation means that j # 0,
and the summation extends over all positive and negative integers with j # k,
k+1,0.

We remark that the convergence of the sum in (1.12) is guaranteed by the
convergence of the sum Y 2, |x40)| 2 (see (1.8).

Though no nonreal zeros of H, have to date been found, the sum in the
definition of g,(0) in (1.12) is over all zeros (real or nonreal) of H,, where it is
known (see [B]) that [Im x{0)| < 1 if nonreal zeros exist. However, because H, is
an even real entire function, then a + iff is a zero of H, if and only if +ua + if
are all zeros of H,. Consequently, g,(0) of (1.12) is always a real number. We note,
moreover, that it can be shown (as on p. 315 of [CRV]) that ¢,(0) > 0, provided
that the consecutive simple positive zeros x,(0) and x, , ;(0) of Definition 1 satisfy

0 < x(0) < x;.4+1(0) < 1,090,879,645.50.

This above result makes use of the numerical results of van de Lune, te Riele, and
Winter [LRW] on the zeros of the Riemann {-function in the upper-half critical
strip.

From density considerations, it is known (see p. 214 of [T]) that consecutive
pairs {x,(0); x;., ;(0)} of real zeros of H, can be found for which lim,_, A, =0,
ie., “extremely close pairs” of consecutive zeros of H,, certainly do exist. We
remark, however, that the inequality in (1.11) is not solely dependent on A,, so
that a Lehmer pair of zeros of Hy, from Definition 1, requires more than just close
pairs of zeros.

With the above notations, our main result (proved in Section 3) can be stated as

Theorem 1. Let {x,(0); x,,1(0)} be a Lehmer pair of zeros of Hy. If (see (1.12))
g:(0) <0, then A > 0. If g,(0) > 0, set

_ (1= 3AFg,0)*° — 1

(1.13) Ayt )

* 89,(0)
so that —1/[8¢,(0)] < A, < 0. Then the de Bruijn-Newman constant A satisfies
(1.14) A < A

As a consequence of Theorem 1, we have the following corollary (whose proof
is also given in Section 3).

Corollary 1. Suppose that H,, has infinitely many Lehmer pairs {x,(0); x;, + 1(0)}2
with g,(0) > 0 for all i > 1 and with lim,_, , A} = 0. Then

(1.14) 0<A.
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The result of (1.14') of Corollary 1 (that is, the reverse of the inequality A < 0,
which is equivalent to the Riemann Hypothesis) gives credence to the conjecture
of Newman [N] that 0 < A. Note that the existence of infinitely many Lehmer
pairs, as in Corollary 1, would not disprove the Riemann Hypothesis, but would,
in paraphrasing the words of Newman [N], yield a “quantitative version of the
dictum that the Riemann Hypothesis, if true, is only barely so.”

In Section 4 it is shown that the pair of zeros of H, in (1.9), which were originally
determined by Lehmer, is a “Lehmer pair” of zeros of H,, in the sense of Definition
1, and, on applying Theorem 1 to this pair of zeros, a new lower bound for A is
established, namely,

(1.15) 71131074 < A,

which improves the previous lower bounds for A given in (1.5).
However, in Section 5, an even more remarkable Lehmer pair of zeros of H 018
determined, and this Lehmer pair generates the following new lower bound for A:

(1.16) —4379-1076 < A,

which was given in the Abstract.

2. The Movement of the Zeros of H,, as a Function of ¢, and the
de Bruijn—-Newman Constant A

In this section, in preparation to proving Theorem 1 in the next section, we
investigate both the movement of the zeros of H,, as a function of z, and how this
movement is related to the de Bruijn—-Newman constant A. To this end, we begin
with Lemma 2.1, which shows that the movement of a simple real zero of H, is
governed by local conditions only.

Lemma 2.1. Suppose x,, is a simple real zero of H > Where ty is real. Then, in some
open real interval I containing t,, there is a real differentiable function x(t) defined
on 1, satisfying x(to) = x,, such that x(t) is a simple real zero of H, and H(x(t)) = 0
for tel. Moreover,

_ H/(x(1)

2.1) X0 = F)

(tel).

Proof. Since x, is by hypothesis a simple real zero of H,, then, by the implicit
function theorem, there is an open interval I containing to, and a real differentiable
function x(¢) defined on I, such that x(¢) is a simple real zero of H,, with x(t,) = x,,
and H(x(t)) = 0 for t € I. From (1.3), differentiating H,(x(z)) = 0 with respect to ¢
directly gives (2.1). B

The significance of Lemma 2.1 is that the movement of the simple real zero x(t)
of H, is locally determined solely by the ratio H}(x(t))/H;(x(t)) of (2.1).
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Hn(l)

V4

\,/Ik(tgv\xm(tx) \/

Fig. 1. Graph of H,(x).

To illustrate the result of Lemma 2.1, consider the graph of H/(x) in Fig. 1,
where H, has two close consecutive simple positive zeros x(t,) and x; 1(t1), and
the remaining zeros of H, are widely separated from x(t,) and x;  4(¢;). From the
graph we see that H;(x)>0 on an interval containing [x(t;), X+ {t)], and
H; (x(t)) <0, while Hj (x;(t;)) > 0. Using (2.1), we conclude from Fig. 1 that

@.1) X(t) <0 and xp,(t) >0,

and this indicates that, on decreasing t, x,(t) increases, while x, . (¢) decreases, i..,
these two zeros move toward one another, as t decreases from ¢, and, similarly,
these two zeros move away from one another, if ¢ increases from t,. (We note that
(2.1) also remains valid if the curve in Fig. 1 is inverted, ie., if H, has a positive
local maximum on [x,(t,), %, +1(t1)])

What is of interest to us is the situation where H, has two consecutive simple
positive zeros x,(t) and x,, ,(¢), and where these zeros move toward one another
as t decreases, and collide (i.e., they coalesce) when t =t,. We show, in what
follows, that this process leads to a lower bound for the de Bruijn-Newman
constant A.

We begin with the coalesced case where x,(to) = X+ 1(to), wWhich is equivalent
to H,(xto)) = Hi(xu(to)) = 0.

Lemma 2.2. Suppose, for some real t, and x,, that
22 H,(xo) = Hi(x,) = 0.
Then

(2.3) to < A.
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Proof. First assume that H;(x,) # 0. Then, for any é > 0, it follows from the
definition of H(x) in (1.3) that

* 2 w2 “ of o (“'5“2)"
H, _4x) = e ®(u) cos(xu) du = ey ®(u) cos(xu) du
° o 0 k=0 k'
o) 5’(
= kgo i (x)  (xeR),

where the termwise integration is justified from the known rapidly decreasing
property of ®(t) as t — oo (see [CNV1]). On differentiating with respect to x, the
above expression yields

. CNF .
Hg)—a(x)= Z —k-,Hif"”’(X) (j=0,1,...;xeR).
k=0 K!

If, for any real entire function g, we set

2.4) Ly(g(x)):=(¢'(x)* — g(x)g"(x) ~ (x€eR),

then the above expressions for {H{_ ,(x,)} 7, when substituted in (2.4), yield, with
the hypothesis of (2.2),

Ly(H,, - xo)) = — (H(x0))* + S*{(H(x0))> — FHD(x0)H(P(xo)} + O(5).
as 6 | 0. Hence, since Hj(x,) # 0, it is evident that
(2.5) Li(Hy,-s(x0)) <0

for all 6 > O sufficiently small. For a real entire function f in the Laguerre-Pdlya
class (written fe ¥ — 2), it is well known (see, for example, [CV]) that f must
satisfy the following Laguerre inequalities:

26)  L(f(x)=(f"x)* = f"" V) [ Dx) =20 (m=1,2,..)

for all real x. Thus, (2.5) shows that H, _;¢.% — 2 for all § > 0 sufficiently
small. Hence, from (1.6), we conclude that t, — § < A for all § > 0 sufficiently
small, which gives that ¢, < A, the desired result of (2.3), is valid whenever (2.2)
holds.

Finally, suppose that x, is a zero of H, of multiplicity k + 1 with k > 1, i,

(27) H?(x)=0 (j=0,1,....k)  with H¥"(x,)#0, where k> L.
Then, from (1.3), consider the function
hx):= H{*~(x),
where (2.7) implies
(2.8) hy(x0) = hy(x0) =0 and hy(x,) # 0.
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We note from (1.3) that h(x) can be expressed as

h(x) = Jw u* L™ ®(u) cos[(k —-21)7r + xu] du.

0

In the same manner as in the first part of this proof, it can be verified that
Ly(hy, - ox0) = —8(hy(x0))* + 0(5%),

as 010, so that L,(h,_sx,)) <O for all 6 > 0 sufficiently small. Consequently,
h,—;=H*"}is not in & — 2 for all § > 0 sufficiently small. However, since the
Laguerre-Polya class is closed under differentiation (see [Ob]), it follows that
H ¢ ¥ — P forallt <t and (2.3) again is valid. B

Remarks. (1) The function H (x), defined in (1.3), can be shown, by differentiation,
to satisfy the backward heat equation:

A(H(x)  0*H(x)
o ox?

(x, t real).

This can be used to give an alternate proof of Lemma 2.2.

(2) For the special case t, = 0, we see from Lemma 2.2 that if H, has a multiple
real zero (at some x,), then 0 < A, which is the reverse of the inequality equivalent
to the Riemann Hypothesis.

(3) The argument used in the proof of Lemma 2.2 also shows that if

H,(xo) = Hy(xo) =0  but Hjfx,) #0,

then, for sufficiently small ¢ > 0, H, ., has two simple real zeros near x,. To see
this, it can be verified, with the above assumptions, that
s

H, i olx0) = —s*HD(xo) + 5 HP(xo) + O(s°)

and
H, . o(xo & 25) = sHP(xo) F 35 H(xo0) + O(s%),

as s — 0. Since H{?(x,) # 0, the above two expressions show that H, .o has two
sign changes, and hence two simple zeros, in [x, — 25, xo + 2s5], for s >0
sufficiently small.

(4) Coupling the result of Remark (3) above with the characterization of A in
(1.6) then gives the apparently new result of

Corollary 2. For any t > A, the zeros of H, are real and simple.

Our next goal is to obtain an alternate and useful formula for the velocity, x'(z),
of a simple real zero of H,, which bypasses the direct calculation of H;(x) and
H)(x)in (2.1) of Lemma 2.1. To this end, we include the following elementary result.
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Lemma 2.3. Let g be analytic in a domain D of C, and set

(2.9) f(2)i=(z — w)gq(2), where weD and g(w)#0.
Then f'(w) # 0 and

J(w) ) q'(w)

2.10 -
210 S qw)

Proof. Since f'(z) = (z — w)¢'(z) + q(z) for all ze D, then

d @ - + 24
2 "y — =
iz O = ) T T + 40

and (2.10) follows on setting z = w.

(ze D),

This brings us to

115

Lemma 2.4. For a positive integer k, let x,(t) and x, . {(t) be two consecutive simple
positive zeros of H,, where it is assumed that t > A. Then the following convergent

series representation for x;(t) is valid:

1
. MO =2 X 0 — o)

Moreover, from (2.11) and the analogous formula for x, . ((t), it holds that

’ ’ . 4 R o . —_
(2.12) Xy 1(t) — xi(8) = + D2 1(6) — (0] Fd0) - [xps 1 () — x(0)],
where
2
(2.13) flt)= Y

JERE+1 [ — xj(t)][xk+ () — xj(t)] .

Proof. From Corollary 1, we know that, for t > A, all the zeros of H, are real

and simple. Then, for t > A, write (1.7) in the form

2.14) HL(x) = (x — 30,00,
where

X 1 o0 x?
2.15) 4/)= H;(O)(l . ka)('i”;;fi')) H (1 _ m)

By Lemmas 2.1 and 2.3, a calculation yields (2.11), where the convergence of the
series follows from the fact (see (1.8) that 72, 1/|x(f)|* < oo. Finally, a direct

verification shows that (2.12) is a straightforward consequence of (2.11).
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As noted above, the assumption ¢ > A implies that all zeros x{t) of H, are real
and simple. Consequently, as each summand in (2.13) is positive for any j # k,
k+1,

(2.16) 0<f() (t>A.

In Lemma 2.4 we have described, for t > A, the “law of motion” of a zero x,(t)
of H, in terms of the first-order nonlinear ordinary differential equation (2.11), and
in Lemma 2.2 we have demonstrated that if there is a coalescence of two real
zeros of H,, so that H, has a zero of multiplicity greater than one, then as ¢ is
decreased, a pair of complex conjugate nonreal zeros of H, is produced. Now we
expect the dominant term on the right-hand side of (2.12) to be

Lt
(% + 1(8) — x4(2)

for t near the time ¢ =1t, when the coalescence occurs. Whether or not a
coalescence will occur depends on the nature of the function f,(t) defined in (2.13).
In order to make the analysis of the movement of the zeros of H, more tractable,
we introduce the following auxiliary function:

2.17 t):= Z’ { ! ! } A
@17 gdt)= JEREF1 [xu(t) — x,(t)]z - (x4 1(8) — xj(t)]2 (> A)

As each (positive) summand in the definition of f,(¢) in (2.13) is strictly less than
the corresponding summand in (2.17), it follows that

(2.18) 0 < fillt) < gult) (t > A).

As the final result of this section, in preparation for the proof of Theorem 1 in
Section 3, we determine a lower bound for g;(t) in (2.19), and an upper bound for
gx(t) in (2.20).

Lemma 2.5. Fort > A and for any positive integer k, then (see (2.17))

(2.19) g0 > =8(g()* (> A).
In addition, if A <0, then
940) . 1
(2.20) gil(t) < T 89:0) ¢ if te(A,0]n (— m , O).

Proof. Since r > A, we know from Corollary 1 that all the zeros of H, are real
and simple. Hence, it follows from Lemma 2.1 that x(t) is defined (and is locally
analytic) for t > A. Also, on any compact subset S of (A, 0), the series for g,(t) in
(2.17) converges uniformly and absolutely, so that the termwise differentiation of
this series (for t € ) is justified. Thus, from (2.17),

[ xi(t) — (1) N Xi+1(6) — x{0)
Xt = x,0)° (i) — x0)°

Q21 gG=-2 3 ] > A)

JEk e+ 1
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Now, if j # k and if t > A, it follows, as in (2.12) of Lemma 2.4, that

, . S o : 2
(222) x40 =0 = o T DO = X012 o0 — w0

where a similar expression is valid for xj . ;(t) — x(¢) when j # k + 1. On substitu-
ting these expressions for x(f) — x(f) and x . ;(f) — x{t) into the sum in (2.21), a
calculation yields that

(223) Git) = A0 + B (1> A),

where

(2.24) At):= —8 Z’ [ ! + ! jl
. e jeik+1 Lxlt) — xj(t))4 (410 — x,(t))A '

and where, on suppressing for convenience the t-dependence of the x()’s,

225) By)=4 Y !

JEkk+1 {(xk - xj)z(xk - xk+1)(xj — Xg41)

1
+
(X1 — xj)z(xk+1 = xx; — xk)}
1
+ 4 ’ 7 {
j;tl;cﬂ i:#j,;,k%—l (xx — xj)z(xk - xi)(xj - X;)
1

- (k41— xj)z(xk+ 1 xi)(xj - xi)}.

The first sum of (2.25) then reduces to

1
4 >

bl
jrier1 (6 — xj)z(xk+1 - xj)z

and the double sum in (2.25) can be expressed, on interchanging the roles of the
summation indices i and j, as

S| ! + 1 }
jEEk+1 iFj ko k+1 (o, — xj)z(xk - xi)(xj —x) (% — xi)z(xk - xj)(xi - Xj)
1
2 {
j;egl;ﬂ i#j,%k+1 (Xg+1 — xj)z(xk+1 - xi)(xj - X;)
1

(st — xi)z(xk+1 - xj)(xi - xj)}’

-+
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and combining the above double sums yields that
(2.26)

1
B(y=4 )

jEkk+1 (xx — xj)z(xk+1 - xj)z

/ 1 1
P2LE e i 5 Gt — 50t — xj)Z}'
Since all summands in (2.26) are positive,
2.27) B()>0  (t> A
Consequently, from (2.23),
228) g > A0 > A

In order to obtain the first desired inequality of (2.19) of Lemma 2.5, note
that
1 2
(2.29) > Y -—-~——) (t > A),

jrir1 (alD) — xj(t))4 = (j¢k,k+1 (_;k—(t) - xj(t))z

and thus (see (2.24), (2.27), and (2.29))

A,(0) , 1 2 , 1 2
@30 - 8 = (j¢1§c+1 (alt) — x](t))2> * (j¢l§<+1 (x4 1(0) — xj(t))2>
, 1 1 2
= (j#l;c-i-l [(xk(t — xj(t))z * (xp+1(0) — xj(t))Z:D
=) (>N,

where the last equality follows from the definition in (2.17). Therefore, (2.30) and
(2.29) yield the desired lower bound (2.19).

We next turn to the proof of (2.20). Let s be a fixed but arbitrary point in
(A, 0] n (—1/(8g,(0)), 0). Then, from (2.18), gx(t) > 0 for all ¢t > A, and it follows

from (2.19) that
° gul(t) } f 0
— dt <8 | dr
L { o) =0 )

However, on integrating, this gives

1 1
—_—— <
g0)  guls)

which is equivalent to the desired result of (2.20). B

—8s,
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3. Proofs of Theorem 1 and Corollary 1 of Section 1

Proof of Theorem 1. Let {x,(0); x, (0)} be a Lehmer pair of zeros of H,. First,
if the zeros x0) of H,, are all real, then g,(0) of (1.11), as the sum of positive terms,
is clearly positive. Thus, if g,(0) < 0, then H, necessarily has some nonreal zeros;
whence from (1.4)(ii), A > 0.

Next, assume that g,(0) > 0. Then, since {x,(0); x,,,(0)} is a Lehmer pair of
zeros of H,, (1.11) is valid, so that 1, as defined in (1.13), satisfies —1/[84,(0)] <
A < 0. Suppose, to the contrary of (1.14), that A </, < 0. Set

(3.1 y0)= x40 = xi(t) (€[, O]),

and observe that y(t) > 0 for all te[4,, 0], since the hypothesis A < /, implies
from Corollary 2 that all the zeros of H are real and simple for any s > 4,. As a
consequence of (2.12) of Lemma 2.4 and (3.1), consider the associated differential
equation

dydr) 4 _ .
(3.2 At oyl SOyl (telh, 0D)
d0) = Ay,

where A, is defined in (1.10) and where fi(t) is defined in (2.13). On multiplying
the first equation of (3.2) by 2y,(r), this differential equation takes the form

dyi(t)
+ 2£(0)- yA(t) = 8 (telA, 0]),
(33) it fi0) " Vi [
yi(0) = AZ.
An integrating factor for the differential equation in (3.3) is exp(F(t)), where
(0]
(3.4) Fi(t)= -2 J flw) du (€[4, 0]),
and the solution of (3.3) is explicitly given by
0
(3.5) #A? — exp(Fy(1) - y£(1) = J exp(F () du  (te[4, 0])
t

To obtain the desired contradiction, we obtain a lower bound for the right-hand
side of (3.5). Since {x,(0); x;+,(0)} is a Lehmer pair of zeros of H, and since
g,(0) > 0, we know that —1/(8¢,(0)) < 4, and from (2.18) that 0 < fi(t) < gi(t)
(t > A). Thus, from (2.20) of Lemma 2.5,

FO=—2 | fiw du> —2[0 (W) du > “40 (J&) 5
W)= . k = . [ = t 1+8gk(0)u

for any t e [, 0]. On directly integrating the last term above,
Fi(t) = 3 log(l + 8g,(0)r)  (te [, 0D),
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so that

(3.6) JO exp(Fy(w) du > jo (1 + 89 (O))*/* du = - {1 — (1 + 8g(0)1)*"*}

10g,(0)

for any t € [4;, 0]. Choosing t = 4, in (3.5) and using the lower bound of (3.6) then
gives
{1 -1+ Sgk(o)’lk)sm} _ _A_ﬁz

10g4(0) S8

(3.7 §[AZ — exp(Fi(A)yi(4)] =

the last equality in (3.7) following directly from the definition of 4, in (1.13). Next,
since (2.16) gives that f(u) > 0 for all u > A, then exp(F,(4)) > 0, and we neces-
sarily conclude from (3.7) that

Veld) = (1 1 () — x(4)* <0,

which is a contradiction (see the line after (3.1)). However, this is a contradiction
to the hypothesis that A < 4, for A < 4, guarantees that all zeros of H, are real
and simple, so that y(4,) = (x4 ;(A4) — x(4))* > 0. Thus, 1, < A. B

Proof of Corollary 1. Let {x,(0); x,(0)}{2, be Lehmer pairs of zeros of H, with
g:(0) > 0 and A, > 0 for all i > 1, so that, from (1.11),
(3.8) 0<AZg,0) <2 forall i>1.

Then, setting t;:= 5A} g,(0)/4 so that 0 <, < 1 from (3.8), 4, can be expressed
from (1.13) as

Ay SIA —8)*° — 1]
A 32¢;

13

(3.9 forall i>1.

However, since 5[(1 — t)*/5 — 1]/(32t) is monotone decreasing on the interval (0, 1)
with

32 32t

5 5[1—0*—1 1
<—L)—-«]—<—~8— forall te(0,1),

it follows from (3.9) that lim, , 4, =0 if and only if lim,,, A7 = 0. Thus, as
A, < Afor all i > 1 from (1.14) of Theorem 1, then the hypothesis of Corollary 1
that lim,, , A7 = 0 implies that 0 < A, the desired result of (1.14'). B

i—*a0

4. Existence of Lehmer Pairs of Zeros of H, and a
Numerical Lower Bound for A

We now use the theoretical results of the previous sections to show that Lehmer
pairs of zeros of H, do indeed exist. We begin with
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Lemma 4.1. Asin (1.7), let

© x2
o) = 140 1 (1 - (0)),

where (see (1.8")) Y52, |x{0)| % < c0. Then
1

2
Xj

4.1) Z ) = 0.005776248 278. ...
j=1

Proof. Since H(x) is a real even entire function (so that Hy(0) = 0), a calculation
using (1.7) gives that

HoY, o Hy0) & 1
42 <Ho) ©= Hy0) g J; x3(0)”

Next, it is known (see [CNV1]) that the entire function H(x) has a Taylor series
expansion of the form

& (= 1)"bux™"
o (m)!

here, the moments l;m are defined by

4.3) Hyx) = (xeC);

b= J wrOw) du  (m=0,1,2,..),
0

where @ is defined in (1.2). As mentioned previously, @(u) > 0 for all u > 0, so that

b,>0(@m=0,1,2,...). Thus, (4.2) and (4.3) give

6 _ b e L _b

)

_— — K an 2 = R,
H,(0) b, =1 x50)  2b,

(4.4)
Now in [CNV1], the moments {b,}2%, were determined to an absolute error of
10759, and, in particular (see Table 4.1 of [CNV1]),

BO = 0.062 140097 273... and 131 = 0.000 717 873 259....

Substituting the above numbers in the last expression in (4.4) gives the desired
result of (4.1), where the truncated number in (4.1) is accurate to 45 significant
digits. |

Recalling our discussion in Section 1 of ¢,(0) in (1.12), we continue with

Lemma 4.2. For positive integers k and N with N > k + 1, set

4.5) 0= 3 [ : + : ]
: Ty L0 = x0T (e a(0) — x40 |

JFkk+1
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and set
(4.6) Ry v +1(0):= gi(0) — gi., 5(0),
where g,(0) is defined in (2.17). Then

|x12v+1(0)l " |x12v+1(0)f _+ 2}
(Ixy+ (O — |xk(0)|)2 (Ixn+1(0)] — |xx 4 1(O)])

°° 1
‘R —,
e(j=%:+ 1 XJZ(O)>

“.7) R n+10)] < 2{

50 that
(4.8) lim R, y4+.(0)=0.
N—-wo
Proof. Because H, is an even function, x_ (0):= —x(0) and, thus,

1 1
Rk N+1 0)= y
) mzZNH [(xk(O) — x£0))? " (¢ +1(0) — x(0) 2}

which can be expressed as

© 1 1
4.9 Ry n+1(0) = j:§+ . |:(xk(0) — x{0)? " (% +1(0) — xj(()))z

1 1
* (x4(0) + x,(0))* T a0 + xj(O))Z}

Now consider the first sum in (4.9), which can be expressed as

© 1 © 1 1
4.10 —_—— = : .
( ) j=§+ 1 (4(0) — xj(O))2 j=§+1 (1 — x(0)/ xj(o))z x}?‘(O)
Clearly,
1 1 1

< < S N4,
11— x0)/x0) Sa- |x,(0)/x(0)])? = (1 2 150)xy 21 O))? G=zN+1)

since, by the ordering used in (1.11), |x;(0)| = |xy 4 4(0)| for allj > N + 1. On taking
moduli in (4.10),

= 1 'xN+1(O)|2 < 1
4.11 < .
@10 j:§+1 (0) — x40)* |~ (Ixn+1(0)] — [x0))? ;=% 1 [x0)]?

We next claim that

© 1 © 1
411 <2R :
(@10 2 X OF = e<j=§“ X?(0>>
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For, on writing x{0) = o + i, a calculation shows that

" '—iA 1
@1 MU Re{x%«n}

holds, provided that «® > 3% However, since || < 1 (see [B]) and since « > 28
for all j > 1 (see p. 389 of [T]), (4.11") is valid for all j > 1. Hence, (4.11") gives
the result of (4.11), which in turn, with (4.11), gives

IXN+1(O)|2 < & 1 )
<2 R —),
j=§+1 (x(0) — Xj(o))z = (Ixy+10)] — |xk(0)|)2 ¢ j=§+ 1 x?(O)

the first product term in the desired result of (4.7). The remaining terms in the
inequality of (4.7) follow similarly. B

In searching for Lehmer pairs of zeros of Hy, close pairs of consecutive simple
real zeros, with the property that the neighboring zeros are located “relatively far
away,” are sought. In Tables A and B of [CRV] some “super close” pairs of zeros
of H, are listed. Here we consider the particular pair of close consecutive simple
real zeros of H,,, which was first observed by Lehmer [L], namely,

w12 {xmog(O) = 14,010.125 732349 841. ..,
' Xe10(0) = 14,010.201 129 345293. ..,
so that
(4.13) A6709 = x6710(0) - x6709(0) = 0075 396 995 452 “e .

It may be of interest to note here that the neighboring zeros are indeed “relatively
far away” from Xxg-00(0) and Xg+1,(0):

Xg708(0) = 14,008.087 446 998 657....,

Xg711(0) = 14,013.479 324 767 898. ...

Lemma 4.3. The pair of zeros {X¢,09(0); Xg710(0)} of Hy is a Lehmer pair of zeros
of Hy,.

Proof. With k:= 6709 and N := 14999, a computation shows (see (4.5)) that

14999 1 1
709;14999 0) = ’ 2
(4.14) Jo700:14 O j= ;1:4999 l:(xmos(o) - xj(o)) * (X6710(0) — x](o))z}

j#6709,6710

= 1.219499 547 968... .

The calculation of the sum in (4.14) makes explicit use of the numerical results of
te Riele [R1, Table 1], where the numbers {y,}125°° have been determined each
to an accuracy of 28 significant digits. Each such y, is a zero of the function ¢ of
(1.1), so that, from (1.3), Hy(2y,) = 0, i.e,, x,(0) = 27,.
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We next estimate the remainder (see (4.6))

R6709;15000 = J6700(0) — 96709;14999(0)-

To this end, a computation similar to the one used in (4.14) gives

14§99 1 . Z 91 ,
4.15) o=y — = 5.751559959199...-107°,
i=1 X?(O) * =107

so that, from (4.1) of Lemma 4.1,

© 14999
4.16) . gooo xz(O) j; 2(0) j: 20) = 2.468831965543...- 1075,
Since (see Table 1 of [R1])
4.17) X%s5000(0) = 7.885 380 542 387...- 10%
and since
4.18)

X15000(0) X15000(0)

+ 2 =9.965586691733...,

(x6700(0) = X15000(0)*  (X6710(0) — X15000(0))
we obtain from (4.7) of Lemma 4.2 that
(4.19) [Rs700.15000] < 4.920 671795 989...- 104,
Thus, with (4.19), an upper estimate for g4-04(0) is
(4.20)  96709(0) = g6709:14999(0) + Rg700.15000(0) < 1.219991 615 148. ..,
so that (4.13) and (4.20) give
(4.21) AZ700 " Go700(0) < 6.935294780918...- 1073 < &

Consequently, {X4700(0), X67,0(0)} is indeed, by definition, a Lehmer pair of zeros
of H,,. B

Our next result, on applying Theorem 1, is

Theorem 2. If A is the de Bruijn—Newman constant, then

4.22) —7.113-107* < A

Proof. Since

1
G(s, Agro0):= 85 [(1 — 3sA2,00)*° — 1]
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is a strictly decreasing function of s when 0 < s < 4/(5A2,0), a calculation, using
that sq:= 1.219991 615 148... > gg40o by (4.20), shows that

—7.112065 292 499...- 10" * = G(s¢, Ag700) < G(d6709(0), Agr00)-

However, as G(gg709(0), Ag700) =: Ag700 from (1.13), the above expression reduces
to

—7.112065292499...- 107* < g0

Thus, since {X4700(0); Xg710(0)} is a Lehmer pair of zeros of H, from Lemma 4.3,
then (1.14) of Theorem 1 gives

4.22) —7.112065292499...- 107 < Ag700 < A.

Although this lower bound in (4.22') is actually accurate to 15 significant digits,
this has been rounded down to the desired result of (4.22), since the extra digits
do not have any special significance. B

It is natural to ask how accurate the lower bound, 4, < A, of (1.14) of Theorem
1 is, in light of the seemingly generous inequalities used in (2.29) and (2.30), to
obtain this lower bound. It turns out that the lower bound, numerically determined
in (4.22) of Theorem 2, is quite insensitive to the upper bound used for g¢;00(0) in
(4.20). To indicate this, suppose that the upper bound in (4.20) is increased by
more than a factor of 10, i.e., we estimate gq-00(0) from above by

(4.23) ge700(0) < 12.2,

rather than using the upper bound of (4.20). With Ag,¢o from (4.13) and with the
upper bound from (4.23), the following lower bound for A, from (1.13) and (1.14),
was obtained:

(4.24) —7.169729 856 312...-107* < A.

Similarly, if we decrease the upper bound in (4.20) by roughly a factor of 10, ie.,
we estimate gg-00(0) from above by

4.23) Fe00(0) < 0.122,
then the following lower bound for A was obtained:
4.24) —7.106 500...- 10™* < A.

Thus, in either case, the lower bound for A still agrees with the bound of (4.22)

to two significant digits! Of course, this insensitivity can be also seen directly from

the following Taylor series of 4, of (1.13), in terms of A?g,(0) and its powers:
AL Atg0)  AgHO)  11A3630)

@.25) A= — K -
8 64 128 2048

and we note, from (4.13), that just the first term of (4.25), when k = 6709, is

AZ
- -‘5—8@ — —7.105883 654 038...- 10~
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5. Other Lehmer Pairs of Zeros of H,

In Tables A and B of [CRV] there is a list of 36 super differences of consecutive
simple zeros {} + iy,; 3 + iy,+,} of the Riemann (-function, where y,,, — 7, is
defined to be a super difference if it is smaller than all previous differences y 1V
for 1 <j<n (We remark that this list is complete for all n < 2-10°) Since
x,(0) = 2y, from (1.3"), these tables easily convert to a corresponding list of pairs
of consecutive simple positive zeros {x,(0); x,, 1(0)} of H,. Now some of the early
entries in the corresponding 36 pairs {x,(0); x,, (0)} of zeros of H,, are definitely
not “Lehmer pairs,” in the sense of Definition 1 of this paper, but most likely all
11 pairs, with n > 6709, are Lehmer pairs of zeros of H,,.

However, because the first term, ie., —A7/8, of the expansion in (4.25) is
dominant and because our interest is in finding the best lower bound for the de
Bruijn—Newman constant A, it seemed prudent to consider only the final super
pair from this list of pairs of zeros of H,, namely,

X1 115,578 = 1,326,637.016 620...,

(5.1)
X1 115570 = 1,326,637.022 538....,

which gives the smallest value (see (1.10)) of A, for all such pairs. Here, we make
use of the zeros {y,}2_'°° of the Riemann ¢-function, which had been compiled by
Odlyzko [Od]. These zeros were calculated to an accuracy of six or seven decimal
digits.

We first establish

Lemma 5.1.  The pair of zeros {x, ;15.578(0); X1.115.570(0)} of Hy is a Lehmer pair
of zeros of H,.

Proof. The proof is similar to that of Lemma 4.3. With K := 1,115,578, we first
obtain an upper bound for (see (1.12))

(52) gx0):= Y’ { ! 1 }

s 1) — 0002 T (e s(0) — x40)°

To this end, it was sufficient to use only the 5000 zeros of H, on either side of
xx(0) and xg, ,(0), i.e.,, the quantity

K+5001 1 1
53 M 0):=
(5.3) x.5000(0) sz_ZSOOO {(XK(O) — x0))* * (xg+1(0) — xj(()))z}

J¥K,K+1

= 2.476 269. ..

was numerically summed using only a portion of Odlyzko’s 2 - 10® numbers. Now
it is evident that g.(0) can be expressed as the sum

(5.4) gxl(0) = Mg 5000(0) + Ig 5001(0) + Rg -+ 5002(0),
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where (on writing, for convenience, x; for x0))

K=5001 1 1
G-) Tk 5001(0):= i= —I;- 5001 {(XK - xj)2 - (xge1— xj)z},
and where
(5.6) Rg k+5002(0):= Z { : 2T : 2}
|/l=K+5002 (xg — xj) (xx+1 — xj)

We separately bound above |Ig 5001(0)] and [Rg x4 5002(0)]-
First, from (5.5), we can generously bound |Ig s500:(0)] above by

K-5001 1 1
[k, 5001(0)] < Z' { + }

j=—-K-5001 IXK"'XAZ lxK+1—Xj|2

K—-5001 1

1

<2 —
j=—K-5001 [Xg — Xg 5001l

2-2K + 1)
< 3
|Xg — Xk-s001l
so that, with the known zeros xx and xg 500y, this gives

(5.7) Ik 5001(0)] < 0.151 205....

To similarly generously bound |Rg x4 s002(0)] above, we deduce from (4.7) of
Lemma 4.2 that

X% +5002 X% 15002 o 1
| Rk, k +500200)] <2 + E + 27 Re Y —

2 2
Xk +5002 — XK) XK+5002 7 XK+1 j=K+5002 Xj

2 2
X X it 1
< 2{ K+5002 + K+5002 + 2} Z

(cxrs002 = X (txrsoos = Xxet)® ) s=i5000 X}

so that, with the explicit constant from (4.16) and the known values of x {0), we have
(5.8) | Rk k+s002(0)] < 5.941160....

Thus, with (5.3), (5.7), and (5.8), we have the following upper bound for gg(0):
(5.9 gx(0) < 8.568 635....

However, as (see (5.1)) Ag = 0.005918..., then, with (5.9),

(5.10) AZgg(0) < 3.000969...-107* < £,

proving that the pair of zeros of (5.1) is a Lehmer pair of zeros of H,. B

As our final result, we apply Theorem 1 to (5.10), which directly gives, as claimed
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in our Abstract, the result of

Theorem 3. If A is the de Bruijn—Newman constant A, then
(511) —4.379 10-6 < 11,115,578 S A

We remark that Theorem 1, applied to (5.10), actually yields that
—4378004...- 107 % < A,

but this has been rounded down to give the result of (5.11). We also remark that

A2
(5.12) - —“lgﬁﬁ = —4.377 840 500...- 10",

which again shows that the deduced lower bound, 4, of A, is quite insensitive to
estimates of g,(0).

To conclude this paper we mention that Lehmer predicted (see p. 179 of [E])
that there are infinitely many pairs of consecutive simple positive zeros of H,,
which are incredibly close, and this prediction could be interpreted as saying that
there are infinitely many “Lehmer pairs” {x,(0); x,,; (0)} of zeros of H, which
satisfy our Definition 1. As such, it is probable that further improved lower bounds
for the de Bruijn—Newman constant A, using the vehicle of Theorem 1, will result
from new extended calculations of zeros of H,, (or of the Riemann &-function).
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