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Summary. With s,(z) denoting the n-th partial sum of e?, the exact rate of conver-
gence of the zeros of the normalized partial sums, s,,(nz), to the Szegd curve Do,
was recently studied by Carpenter et al. (1991), where Dy o, is defined by

Dyoo i={z€ C:|ze""#|=1and |z] < 1}.

Here, the above results are generalized to the convergence of the zeros and poles
of certain sequences of normalized Padé approximants R, ,((n + v)z) to 7, where
R, ,(2) is the associated Padé rational approximation to 7.
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1. Introduction

With s,(2) = E 2/ n > 1, denoting the familiar n-th partial sum of the
§=0

exponential function e?, it was shown in 1924 in a remarkable paper by Szeg6 [10]

that the zeros {z,(k)}}_;, of the normalized partial sum s, (nz), tend, as n — oo, to

the closed curve Dy o, in the closed unit disk, where

(1.1) Do ={2€C:|ze'*|=1and |2| < 1}.

Now, it is known (see [1] or [4]) that the zeros {z,(k)}7., all lie in the closed unit
disk for every n > 1, and Szegd’s result, more precisely, is that each accumulation
point (in the closed unit disk) of all these zeros must lie on Dy, and, conversely,
each point of Dy o, is an accumulation point of these zeros!

Subsequently, the rate of convergence, as a function of n, of the zeros {zn (B},
to the curve Dy o was studied by Buckholtz [2] who showed, with the notation
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dist [{zn(k)}iers Dooo) = énka;cn (dist [2,(k); Do,oo] )

that 5
e
(1.2) dist [{zn(k)}=1: Do,oo] < NG (n > 1),

which of course implies that

(1.3) lim {v/n- dist [{z.(k)} ey Docol} < 2¢ =5.436 563.

To complement the result of (1.3), it was later shown in Carpenter et al. [4] that

(14) dim {Vn- dist [{z.(k)}ioy; Doeo) } = Im £+ Re £y =0.636 657,
n—oo

where, denoting the complementary error function by

erfe(w) = % / e tdt (we),

ty is the (complex) zero of erfc(w), in the upper half-plane, which is closest to the
origin. From the numerical results of Fettis et al. [6], it is known that

t; = —1.354 810 +11.991 467.

Thus, if we express the upper bound of (1.2) as O(1/4/n), as n — oo, then (1.4)
shows that this upper bound is best possible in the sense that 1/,/n cannot be replaced
by a function of n which tends more rapidly to zero, as n — oo, than does 1//n. (It
is in this sense that we use the term best possible in what is to follow.)

It was also shown in [4] that a quantitatively faster convergence, of these zeros
to Dy oo, takes place if one stays uniformly away from the point 2 = 1. Specifically,
if we cover the point z = 1 with the open disk

(1.5 Cs={ze€C:|z—-1|<d} (O<bé<],

then it was shown in [4, Theorem 2] that, for each fixed é with 0 < § < 1,
. " Inn

(1.6) dist [{2, (k) } 5= \Cs; Do,oc] = O (T) (n — o0),

where the constant, implicit in the right-side of (1.6), is dependent only on ¢.
For a more precise location of the zeros of s,(nz), consider the arc Dy ,,, defined
in [4] for each n > 1 by

(17) Do,y = {z € C:|ze! %" = 7,,v2mn [1=2],]2] < 1 and
’ ~1 (n=2
|arg 2| > cos™! ("32) },
where 7, from Stirling’s formula, is given by the asymptotic series

n! o, b, ] 139
12n " 288n2  51840n°

Tp = = (n — 00).

B nhe~"27n

It was shown in [4, Proposition 3] that Dy, is a well-defined arc, and it is further
shown in [4, Theorem 4] that, for each fixed 6 with 0 < 6 < 1,
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1
(1.8) dist [{zn(k)}121\Cs 5 Dol = O <m> (n — o0),

so that the arc Dy ,, more closely approximates the zeros {zn(k)}7, of s,(nz), than
does the Szegd curve Dy .. The results of (1.6) and (1.8) are both known to be best
possible (cf. [4]).

Having reviewed the above results for the convergence behavior of the zeros of
the normalized partial sums of €7, it is of course well known that the partial sums
sn(2) of e* are just the special cases of the (n, 0)-th Padé approximations to e*. The
early result of Szeg6 [10] has subsequently been generalized by Saff and Varga [9]
to more general Padé approximations, where one obtains, in the spirit of Szegd, the
convergence of the normalized zeros and poles of these Padé approximants to the arcs
Dy oo and Ey; o, defined below in (1.16) and (1.17), in the closed unit disk. The goal
of this paper is to obtain the analogs of (1.6) and (1.8) in this more general Padé
setting, thereby generalizing the results of [4] and [9].

In the remainder of this section, we introduce needed background and known
results for this study of Padé rational approximation to e?.

Let 7, denote the set of all complex polynomials of degree at most n(n =
0,1,--). For each pair (n,v) of nonnegative integers, the (n,v)-th Padé approxi-
mant to e is the rational function R, ,(z) such that

Pn,u(z)
Qn,u(z) ’

(1.9) - Ryu(2) =

where
(i) Pnu(2) € m, and @y (2) € 7, with Q,,,(0) =1, and
(i) e* — R, .(2) = O(|z[""*1) as |2| — 0.

It is well known (cf. Perron [8, p. 433], or Saff and Varga [9, p. 242]) that P(2)
and @, ,(2) of (1.9) are given explicitly, for any pair (n,v) of nonnegative integers
n and v, by

n _ k
(1.10) Pou()=) (n+v—k)lnlz
k=0

(n+w)kin —k)!’

and

L (n+v— k)i(—2)F
(1.11) Qn»”(z):% (n+)kliw — k!

The polynomials P, ,,(2) and @, ,(z) are respectively called the Padé numerator and
Padé denominator of type (n,v) for e*. In what follows, we consider, as in [9], any
sequence of Padé approximants { R, ,, (z)};?jl to e® for which there exists a constant
o, with 0 < ¢ < oo, such that

(1.12) lim n; =ocoand lim v;/n; =o.

Jj—00 j—oo
For any ¢ with 0 < 0 < o0, define the two complex numbers
(1.13) 25 =1 — o) £2/5i] /(1 +0),
which have modulus unity, and consider the complex plane C slit along the two rays

PRo={ze€Ciz=z)+ir or z=2; —ir, forall7 >0},
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Fig. 1. The cut plane C\. 72,

as shown in Fig. 1.
With |

- g
Ao = ,
7 l+o

the function g,(z), defined by

(1.14) 9o(2) =/ 1+2%2 2,2,

has sz as branch points, which are the finite extremities of .%2,. On setting ¢, (0) := 1
and on extending g,(z) analytically on the doubly slit domain C\.%2,, then g,(2) is
analytic and single-valued on C\.%8,. It turns out that 1 & z + g,(z) does not vanish
on C\.%2, (cf. Saff and Varga [9, p. 244]).

Next, define (1+ 2+ go(2)**? and (1 — z + g,(2))**/™*? by requiring that
their values at z = 0 be 2/1+7) and 220/(+9)_ respectively, and by analytic continua-
tion. These functions are also analytic and single-valued on C\.92,. For 0 < ¢ < oo,
define the function w,(z) by

40/ (140) 5005(2)

(U L+ 2+ g IPTTOT — 2+ g, (2) P/ 050
0 <o <o)

(1.15) wy(2) 1=

Then, w,(2) is analytic and single-valued on C\.%2,, and is also univalent (and
starlike) in |z} < 1 (cf. [9, p. 251]). We remark, on letting ¢ — 0 in (1.15), that it is
known (cf. [9, p. 244]) that wy(2) = Iin}) wy(2) satisfies

wo(z) = ze! ™% (for |z] < 1),

which connects the above discussion to the Szegd curve of (1.1).
With the function ws(z) of (1.15) for 0 < o < oo, the two Jordan arcs, Dy o
and F, o, are defined by
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(1.16) Do := {z €Ctlws(2) =1, |2| <1, and |arg 2| > cos™! (i;g)},

and

ALID) - Booo = {ze@:wwa<z>!=1, |2/ < 1 and |arg 2| < cos™! (“”)}7

1+o
where —m < argz < m, and these arcs are symmetric with respect to the real axis. If
Jooo ={2 € C: |wy(2)| =1 and |2| < 1},
then we see from (1.16) and (1.17) that
Jo00 = Dooo| J Ere (0 < 0 < o0).

Thus, for 0 < 0 < 00, J,,00 is a Jordan curve, consisting of the two Jordan arcs
Dy o and B, o, and Jo 0 lies interior to the unit disk, except for the endpoints of
these arcs, namely, zoi, which lie on the boundary of the unit disk. (For o = 0, Jo,00
reduces to the Szegd curve Dy o of (1.1).)

With the arcs of (1.16) and (1.17), we have the following known result of [9]:

Theorem A. For any o with 0 < ¢ < oo, consider any sequence of Padé approxi-
mants {Ry, ,, (2)}32) to €* for which (1.12) holds. Then,

(1) 2 is a limit point of the zeros of the normalized Padé approximants
{an,yj ((nj + yj)z) }:1 ifand only if z € D, .

(i) If0 < 0 < o0, then z is a limit point of the poles of the normalized Padé approx-
imants {an,,,j ((nj + uj)z) };:1 if and only if z € Ey .

The special case of (i) of Theorem A with ¢ = 0 and, in addition with n; = j and
vy =0forall j > 1, reduces to Szegd’s result (cf. [9]). As previously mentioned, the
convergence rates of the zeros in this case has been treated in detail in Carpenter et
al. [4].

Since the polynomials of (1.10) and (1.11) satisfy the obvious identity
(1.18) an,uj(z) =PVj,n;(—Z))

it suffices then to investigate only the convergence behavior of the zeros of the nor-
malized Padé approximants R,, s ((nj + v )z), or equivalently, only the convergence
behavior of the zeros of the normalized Padé numerators Py, ((nj + v )z). Clearly,
all subsequent results for the zeros easily translate into results for the poles via (1.18).

2. Statements of new results

For any sequence of Padé approximants {BRn; v, (z)};?jl to e* which satisfies (1.12)
with o > 0, Theorem A above gives the precise location of the limit points of
the zeros and poles of the normalized Padé approximants { B 0, (0 + Vj)z)}jjl.
Our interest here is in determining the convergence behavior of zeros and poles of
these normalized Padé approximants, as this would extend the results of [4] which are
explicitly given for the case o = 0. But, we note that the results of [4] were specifically
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determined for the special sequence {(n;, z/j)}JO-:I with v; = 0 and n; = j for al
7 >1, so that
vj/nj = o(= 0) for each i>1.

On the other hand, when considering rational Padé approximants to e* which are
not polynomials, the second condition of (1.12) may hold, for the case o > 0, for
sequences {(n, yj)};’jl having exceedingly slow convergence of v;/n; to o, as j —
oo. To indicate this, consider the sequence of pairs of positive integers {(n;, vj)}§§3

defined by
) 10 , .
v o= Hj (1 + lnlnj>” and n; = j, for all j > 3,

(where [[z]] denotes the integer part of ), so that (1.12) is satisfied for o = 1. But,
for m = 10°, we have

M = 10° and vy, = 4,808, 374; whence, ?— = 4.808 374,
which is far removed from the limiting value o = 1. In this example, measuring the
distance of the zeros or poles of an,,,j((nj +vj)z), with respect to the limiting arc
Dy o0 o1 Ey o of Theorem A, is of little value for j = 10°.
Instead, we measure the distance of the Zeros {znj’yj (/~c)}2i'1 of an,yj ((n; +v5)z2)
from the Jordan arc D[,j,m, where

2.1 oj=vj/n; forall j > 1,

and where Dy, o is the arc of (1.16) with o replaced by o; of (2.1). Similarly, zfj
are defined from (1.13) with o replaced by 0;, and, for a fixed § with 0 < § < 1, we
set

(2.2) Cooy={2€C:|z— g <t JzeC: |z~ 25| < 8},

for all j > 1. We note that ég,g ,» consisting of two disks, is the analog of Cjs of (1.5)
for the case ¢ = 0.

With the above definition, our first result (to be proved in Sect.3), which is
patterned after the result of (1.6), can be stated as

Theorem 1. Consider any sequence of Padé approximanis { Ry, ., (z)};):1 to e* for
which

(2.3) limn; =00 and

im v;/n; =0, where 0 < o < 0.
j—o0 J—oo

If {znj,yj (k)}:il denotes the zeros of Ry, ((ny + v;)z), then for each fixed 6§ with
0<é<l,

(2.4) dist [{znj,uj (k)}Zi]\éé,aj;D(rj,oo] =0 < ) g — 00).

n; + Vj
Moreover, the result of (2.4) is best possible.

We remark that the zeros of P (0 + vj)z) in (2.4), which are outside of the
disks of (:“'570‘7., are measured relative to the arc D(,jm, where both 5’570] and D%oo

in general vary with j. Of course, there is a case where D, .. is a fixed arc for all
J 2 1, and this is covered in the following immediate corollary of Theorem 1.
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Corollary 2. If, under the hypothesis of (2.3) of Theorem 1, o is a positive rational
number and if the associated sequence of nonnegative pairs of integers {(n;, Vj)};ﬁl
satisfies

2.5) vi/nj=0o forall j > 1,
then for each fixed & with 0 < § < 1,

(2.6) dist [{an,z/j (k)}]:il\éé,o; Do,oo] =0 ( ) (j — o0).

n; +v;

Moreover, the result of (2.6) is best possible.

We remark that the case o = 0 of the zeros of the normalized partial sums of e?,
as discussed in Sect. 1, are also measured, as in Corollary 2, against a fixed curve,
Dy o, but we note with interest that the result of (2.6) for 0 < o < oo, which is the
analog of (1.6), now eliminates the (In n) term appearing in (1.6). We also remark
that essentially the special case o = 1 of Corollary 2 is obtained (via a different
technique) in [3].

+
Z32

2372

L L 1 J
—-1.00 -0.50 0.00 0.80 1.00

Fig. 2. Zeros and poles of Rg,12(202) and Rjg24(402), and the arcs D /2,00 and Fi3 /2,00

To illustrate the results of Theorem 1 and Corollary 2, we have graphed in Fig.2
the 8 zeros and 12 poles of Rg 15(202), marked by x’s, as well as the 16 zeros and
24 poles of Ri624(402), marked by dots, in relation to the arcs D3y 0 and Ej /2,009
for the case ¢ = 3/2. Note that the zeros and poles of Rg1,(20z) are, respectively,
about twice as far from the curves Ds /2,00 and Es o o, as are the zeros and poles
of Ri624(402), which is in agreement with (2.4) of Theorem 1. Similar results are
shown in Fig. 3, for R0,10(202) and Ry 20(402) for the case o = 1, and in Fig. 4, for
Ri53(202) and Ry4.16(40%) for the case o = 2/3

For our next result, we need some additional notation. As in [5, p. 22], for 0 <
o < 00 we set

@7 o= 2O L2002 oy, U o)),

/1= A2
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Fig. 3. Zeros and poles of Ryp,10(202) and Rp 20(402), and the arcs Dy oo and E oo

where it is known that N,(z) is analytic and single-valued on C\(.%2, U{0}). Then,
in analogy with the arc Dy, of (1.7), we define, for each pair (n;,v;) of positive
integers, the arcs

Daj,nj+uj = {Z eC: iwaj(z)lnj+yj = |N0'j(z)|’ |Z‘ <1, and

, v =2
29 |arg 2| > cos™! e e B
n; + Vj
and R
B myev, =12 € T lwe, ()] = [Ny, (2)],[2] < 1,and
2.9 L[y v +2

)

arg z| < cos”—
l £ |_C n; +Vj

where o; = v;/n; and where —m < argz < +. It is shown in Sect. 4 that these arcs
of (2.8) and (2.9) are well-defined.

With the above definitions, our next result (to be proved in Sect.5), which is
patterned after the result of (1.8), can be stated as

Theorem 3. Under the hypothesis of (2.3) of Theorem 1,

. 4 ~ . 1 .
(2]0) dist I:{znj,l/j(k)}k;l \05,03'7Da_j,nj+l/j] =0 (W) (] - OO)

We remark that a special case of (2.10) of Theorem 3 was previously established
in de Bruin et al. [5]. Specifically, for the case ¢ = 1 and n; odd for all j > 1 of (2.3),
it was shown in [5, eq. (9.31)] that the negative real zero z,, ., of an,z/] ((n; +v;)2)
satisfies

~ 1 5
(211) an,Uj = zn.ivl’j +0 (W) (j B OO),

where £, ,, denotes the real point of the arc Dy, s We also remark that the
result of Theorem 3, for essentially the case o; = 1, is obtained in [3]
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2273

i 1 ! i
—1.00 -0.80 0.00 C.80 1.00

Fig. 4. Zeros and poles of Ry3,8(202) and R4,16(402), and the arcs D, /3,00 and /3,00

A 1 Il H 1
~1.00 -0.50 Q.00 0.50 1.00

Fig. 5. Zeros and poles of Ri6,24(402), and the arcs D, /2,40 and B3 3 49
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1 i i
—-41.00 —~0 .80 0 .00 0.58C 1.00

Fig. 6. Zeros and poles of Ris 15(302), and the arcs D 30 and Fy 30

L 1
-1.00 -0.850 0.00 0.80 1.00

Fig. 7. Zeros and poles of Rp4,16(402), and the arcs D; /340 and Ep 3,40
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To illustrate the result of Theorem 3, we have graphed in Figs. 5-7 the following
cases. For the normalized Padé approximant R16,24(402) to e?, for which n; = 16 and
v; =24 and ¢; = 3/2, we show in Fig. 5 the curves D3 /340 and Es 5 49, along with
the 16 zeros and 24 poles (marked by the x’s) of Ri624(402). Figs. 6 and 7 show
the corresponding results for Ri5,15(302) and Ry4,16(402). Up to plotting accuracy, it
appears that the zeros and poles of these normalized Padé approximants lie on the
respective arcs Dajynjﬂ,j and Ec,jmjwj!

3. Proof of Theorem 1

We begin with the following

Lemma 1. For any 7 with 0 < 7 < o0, consider the sectorial set

i 1— 1-—
Sy o= z:re“/’:0<r§1and cos_1< T)SwSZW——cos_l( T)},

1+7 1+7
3.1)

as shown in Fig. 8. Then,
(3.2) min{|N, ()| : z € S, } =1,

with equality holding only at the points z*. Thus (cf. (2.2)), for any fixed & with
0<o<, . )
(:3) min{|N-(2)] : 2 € S\ G-} > 1.

Proof. From the definitions of (2.7) and (1.13) and the fact that gT(z;JE) = 0, it is
readily verified that

Next, as mentioned in de Bruin et al. [5, p.22], [NT (e'¥ )| is strictly increasing in 1 on
the interval [cos“l(IT:{), 7] and |Nf(ei¢)y is strictly decreasing in 1/ on the interval

[7,27m — cos™'(4=2)]. In addition (cf. [5, p.22]), for any fixed v with cos (=0 <
Y < 2m—cos~!(A=L), | N, (re')| is strictly decreasing in  on the interval 0 < r <1,

=
where we note from (2.7) that |N,(0)| = +oo. With (3.4) and the definition of (3.1),
we see geometrically that (3.2) is valid, where from (3.4), equality holds in (3.2) only
at the points zf Finally, since Cs -, from its definition in (2.2), contains the points

2, then (3.3) follows directly from (3.2). O
This brings us to the

Proof of Theorem 1. With the hypothesis of (2.3) of Theorem 1, it is known (cf. [5,
eq. (9.24)] and [9, eq. (4.30)]) that if 2 is any zero of an)yj ((nj + Vj)Z), then

N 1
(3.5) |, ()| = [Ny, (2)] - { 1+0 ( )} (G — 00),
nj + Z/j

uniformly on any compact subset of C\(.72, U {0}). Furthermore, it is known (cf. [9,
Theorem 1.1]) that, for vy 2 0 and n; > 2, all zeros of an%, ((nj + v;)z) must lie
in the infinite sector

oy
{ze C:|argz| > cos™! (M>},
g+ V;
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Fig. 8. The sectorial set S

and that (cf. [9, Theorem 2.3}) these zeros must have a positive density in the sectorial
set S,.

For the zero z of Ry, v, ((nj+v;)z), we may assume from the above discussion that
z isin S, and that |z| < 1. Writing z = re'?, let 7 := 7'’ be such that |w,, (%) = 1,
e, Z € Dy, oo. On defining z — 7 =: sel?, [s| then measures the distance between z
and Z. Because Wy, (2) is analytic and single-valued on C\ A2, ;» the Taylor expansion
of w,,(2) about the point  is

(3.6) We, (2) = Wy, (2) + seww;j (2) + O(s?),

and, since the nearest singularities of We;(2) to Z in C\. S, occur at the points z;—“j,

this Taylor expansion is convergent in the open disk with center # and radius
s fls ot e
min{|Z — 27 |52 - Zy |}
With [9, eq. (4.2)], it is known in general that
(3.7) wl(u) = w,(w)g,(u)/u (any 0 <7 < oo, any u € C\.2,).

Thus, with 7 = 0; and u = # in (3.7), we can express (3.6), on factoring out Wo (Z),
as

(3.8) Wy (2) = Wy, (2) {1 + 228

+ 0(32)} ,

where, since W, (0) = 0 from (1.15), this modified Taylor expansion in (3.8) is now
convergent in the open disk with center # and radius

(3.9 min{|Z — 27 |1 |2 — 2, |; |2]}.

Similarly, we expand Naj(z) in a Taylor series about Z. Because in general (cf. [5,
eq.(9.23))),
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(3.10) N(u) = =N (w)/(g-(w) - w) (any 0< T < oo, any u € C\(22, U {0}),
the Taylor expansion for Naj(z) can be analogously expressed as

S
Fgo'j (5)

where, as Naj (2) is analytic and single-valued in C\(.92,, U{0}), the modified Taylor
expansion of (3.11) is convergent in the same open disk with center 3 and radius
given by (3.9). With the expressions of (3.8) and (3.11), we derive from (3.5), since
\we, (2)] = 1, that

(3.11) N, (2)=N,,(2) {1 - +0(52)} ,

{1 + ;Re (gaj(g)) + O(sz}njwj

:fNU.(z))|{1—§Re< 1~>+O(32)}{1+O< ! )}
J 7 gaj(z) n; +v;

On taking logarithms in the above display and on dividing by (n; + v;), we obtain

{1+ “Re (g,,(2) + o)

_lan"i(g)’+ ! )ln{l—iRe( ! )+O(82)}

(n; +vy) (n; + vj 7 9o (%)

[
+o <(nj + Vj)z) ’

and for s small, this reduces to

In|No, @] _ sRe(l/go,(2) ( 1 )

(nj +v;) (nj +v;) (nj +v;)?

S ~
=Re (g5,(2)) + O(s)) =
Thus, we see that

(3.12)

(J — 00).

_ [N, 37 . ( 1 >
(nj +v;) - Re (g,,(%)) (n; +v;)?
Now from [9, eq. (4.1)], it is known that Re (9-(2)) > 0 on C\,, and as g.(2)
vanishes only at its branch points z;t, then 1/Re(g,(2)) is uniformly bounded at all
points of the unit disk not in Cjs . Next, since IN-(2)] > 1 on S;\Cs,, from Lemma 1
and since (cf. (1.16)) D, o never passes through z = 0 because w,(0) = 0, it follows

from (3.12) that
1
1z + vy

(3.13) s=0 < ) for any zero z of Ry 0, ((nj + v5)2) not in C~’57Uj

(7 — o0). But as |s| measures the distance from z to a particular point, Z, of ngyoo,
then dist [z; Dy, sl < |s] for any zero z of Ry, v;((n; +v;)2) not in C*gygj and it
follows from (3.13) that

dist [{an,ifj (k)}zil\é(s,o'j;Doj,oo] =0 ( > (] - OO),

n;+vy
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which is the desired result of (2.4) of Theorem 1.

We also remark that since all the factors, appearing in the first term on the right
in (3.12), are positive, then s > 0 (for all j sufficiently large), which means, from our
construction, that the associated zeros of Ry, ., ((nj +vj)z) must lie to the left of the
atc Dy, . Similarly, because of (1.18), the associated poles of Ry, . ((n;+ vj)z)
must lie to the right of the arc Fj, o. This can be explicitly seen in Figs. 2-4.

Finally, to show that the result of (2.4) of Theorem 1 is sharp, the multiplier of
(nj +v;)~ ! in the first term on the right in (3.12) is but a special case of o; = T of

(In [N, () - 2]
Re (g-(2))

But from the discussion above, it also follows that, for any 7 with 0 < 7 < 00 and
any fixed 6 with 0 < § < 1, there exist constants M;(7) and M, (7, 6) such that

, where Z € DT,OO\CN’&T.

(n|N,(2)]) - 2]
Re (g,(2))
Hence, because 0; — g as j — o0 (where 0 < ¢ < oo) and because of the bounds of

(3.14), it follows that the first term on the rightin (3.12) is exactly of order (n; +1/j)“,
as j — oo, which shows that the result (2.4) of Theorem 1 is sharp. [

(3.14) 0< Mi(n) < < My(r,8) for all 7 € Dy o \Cs 7.

4. The arcs Dy, 40, and Eg; i,

Here, we show that the arcs Do, 5+, and Eg; nj+v; defined in (2.8) and (2.9), are
well-defined for j sufficiently large, where we assume, as in Theorem 1, that (2.3) is
valid. Because the treatment of the arcs Eo; 40, is similar, we consider below only
the arcs Dy, nj4v;-

For a given 7 with 0 < 7 < oo, consider the function defined by

“.1) Urn(2) = (e ()™ /N2 (2)

for any positive integer m. It can be verified that Ur (%) is analytic and single-valued
on C\.2,. On fixing any 6 with

1— 1 -
cos! ") <9 <27 —cos™ 7y,
1+7 1+7

we know from the discussion in Sect.3 that |U, ,,(re'?)| is strictly increasing on the
interval 0 < r < 1, where U ,,(0) = 0. In addition, since the arc D  lies completely
in the open unit disk (except for its endpoints), we have that |w- (e} > 1, and from
Lemma 1, we similarly have |N,(e?)] > 1. It follows from (4.1) that, for all m
sufficiently large, say m > mo(7,0),

Urm ()] > 1 (m > mo(7,0)).

But the strict increase of \Uﬁm(reie)t, as a function of  on [0,1], gives that there is
a unique 7 = #(0, 7,m) with 0 < 7 < 1, such that

U, (el = 1,
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ie., from (2.8), #¢!’ necessarily lies on the arc D;pm. It is also evident that
0, 7,m') < #6,7,m) for m’" > m > m,(r,0), since, by definition, |w, (7¢')|™ =
[N, (7e!?)| > 1, where the last inequality follows from Lemma 1.

Next, with the assumption of (2.3) in Theorem 1, we see that the arcs DOJ,QO,
defined in (1.16), converge, uniformly as j — oo, to the fixed arc D, .., where
0 < o < oo. But as the arcs D, o lie in the open unit disk (with the exception of
its endpoints) for any j, then for any € > 0 sufficiently small and for any 0 satisfying
cos_l(g:—;’) +e< <21 — cos"l(llj—g) — ¢, it follows that lng(eie)| > 1 for all j
sufficiently large, so that

we, ()" /| Ny, (7)) > 1 for all j sufficiently large.

Hence, the argument above shows that, for all j sufficiently large, there is an r(j)
with 0 < r(j) < 1 such that |w,, (r(j)e”)|" 7 = | N, (r(j)e!?)], ie., r(j)e? lies on
Dy, nj+v;- This thus establishes

Lemma 2. Under the hypothesis of (2.3) of Theorem 1, the arcs Do njav, and
Eo;n;vv; of (2.8) and (2.9), are well-defined, for all j sufficiently large.

5. Proof of Theorem 3

Under the hypothesis of (2.3) of Theorem 1, the sets ng)njwj and By, ni4, are
well-defined from Lemma 2 for all j sufficiently large, say 7 > jo. For 7 > jo, let
z be any zero of Ry, ., ((n; +v;)z) in the unit disk and write 2 = re'’. Then, let
2 =7e¢' be on the arc Dy, .4, and, as before, set z — 2 = sel’, where [s| measures
the distance between z and 2. Since z is a zero of R, ,,((n; +v;)z), we have from
(3.5) that

. 1
waj<z>|"ﬂ+”f=|Naj<z>l~{”o< - >} U =00,
’I’Lj -+ I/j

or, in the notation of (4.1),

1
5.1 Jos v =1
5.0 |U Iy J(z)[ +O<n "

itV

>, (j — 00).

Similarly, as in the proof of Theorem 1 in Sect. 3, we expand Us, n;+v; (2} in a Taylor
series about 2, i.e.,

Usjinyiny (2) = Usy gy (B + 56U L, (2)+ O(s7).

Tj,ny +l/j
Using the definition of Uy, 4., in (4.1), along with the identities of (3.7) and (3.10)
for the derivatives of w,(z) and N(2), it can be verified that
UJj,TLj+Vj(Z)

(52) — Ucrj,nj«l-u]- (ZA,) . {1 + seiG I:(nj + V])gcfg(é) n 1 :1 . 0(52)} .

2 9o, (B)- 2

But since |Us; n;4+v,(2)| = 1, it follows from (5.1) and (5.2), on taking moduli, that
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s . 1 2 _ 1
(53) 1+ P (n; +v;)Re (g(,j(z)) +Re (g%(é))} +0(s)=1+0 (nj +Vj> .

As in Sect.3, we know in general that Re(g-(2)) and 1/Re(g,(z)) are uniformly
bounded at all points of the unit disk not in Cs ;. In particular, for any zero z of
Ry, v, ((nj +v;)2)) in the unit disk not in Cs,0;, we see from (5.3) that

1 .

But since the arc Dy n;+y; cannot pass through 0 and since 7 is bounded above by

unity, then
1
s=0| ———
’ <(nj + Vj)2> ’

for any zero z of Ry, ., ((n; + v;)z) not in Cs,0,0 as j — co. Again, as |s| measures
the distance from z to a particular point, 2, of Dy 5 4., , then dist [z; D, ,njﬂ,j] <s]
for any zero of Ry, ,,((nj +v)2), in the unit disk not in C’é)o-j, and it follows that

> ®»

1

dist [{an,z/j (k)}Zil\C&oj;Daj,nj+uj} =0 (W

) oo

which is the desired result of (2.10) of Theorem 3. [J

6. Final comments

The results of the previous sections deal with the convergence of the zeros (and
poles) of the Padé approximants {an’yj ((nj + Z/j)z)};zl in relationship to the arcs

ngyoo and Do) n 40, outside of the disks C‘aygj. It is thus natural to ask what the
convergence rate of these zeros is in the neighborhood of the points z;—Lj, which are
explicitly excluded in the results of (2.4) of Theorem 1 and (2.10) of Theorem 3. It
turns out that, on applying a result of [9, eq.(1.9)], we also have the following result:

Theorem 4. Under the hypothesis of (2.3) of Theorem 1, the Padé approximant
Ry, v, ((nj + z/j)z) has zeros and poles of the form

(6.1) 25, +0 (;1—> (j — o0).

(nj + I/j)z/3

The importance of Theorem 4 lies in the fact that (6.1) is valid for any o with
0 < ¢ < oo, and Theorem 4 shows that there is a substantially slower convergence
of the zeros and poles of Ry, ., ((n; +1;)z) to Ds; 00 and Eo ) oo in neighborhoods
of the branch points, zf, of g,(z), which are exactly the points which have been
excluded with our use of the disks 06,0- of (2.2). In this sense, (6.1) of Theorem 4 is
the analog of result (1.2) of Buckholtz [2]. We conjecture that the results of (6.1) are
best possible!

Next, we remark that a careful examination shows that the arcs D oo and Fj o in
Fig.3 make an angle of 27/3 as they meet at the points . This has been theoretically
established in Olver [7, p.336, Fig. 3] for the special case o = 1, and we remark that
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Table 1.

k arg(z16,24(k)) |216,24(k)] [216,24(k)|

1} 114.677512621653575 | 0.924518801046013 | 0.923788102974373
2 | 125.542379165422707 | 0.864754514607011 | 0.864321571680979
3| 134.974717991547015 | 0.825049238737003 | 0.824715883665449
4 | 143.729355307749157 | 0.796647826203171 | 0.796364645259408
5| 152.091849890036330 | 0.776141233642082 | 0.775887263220768
6 | 160.211234669319259 | 0.761805526883314 | 0.761569325056279
7 | 168.181077469080952 | 0.752680657788123 | 0.752454813408059
8 | 176.069064193694423 | 0.748237220620139 | 0.748016178753669

this same angle appears also in Figs.2 and 4. We similarly conjecture that this same
angle will appear in all cases where 0 < ¢ < 00, because of the fact that (6.1) of
Theorem 4 is valid for all 0 < o < oc.

Finally, because the results of Figs. 5~7 are almost too good to believe, we consider
again, as in Fig. 5, the actual zeros {216,24(/@}2:1 of Ri624(402) in the upper half-
plane, ordered by increasing argument. In columns 2 and 3 of Table 1 above, we give
respectively the arguments and moduli of these eight zeros. Then, 216 24(k) is defined
(as in the proof of Theorem 3 in Sect.5) as the point on the arc Ds /2,40 having the
same argument as zig 24(k), and the last column of Table 1 gives the corresponding
moduli of the points {216,24(/@}2:1‘ The differences of these corresponding moduli in
columns 3 and 4 vary between 7.3- 10~ and 2.2 104, which is why, up to plotting
accuracy, the zeros of Ri6,24(402) appear to lie on the arc D33 40!
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