An Extension of a Result of Rivilin
on Walsh Equiconvergence

R. Briick, A. Sharma and R.S. Varga

Abstract. Considering certain best polynomial approximation of a function in
12-sense, Rivlin [7] has proved an extension of Walsh equiconvergence theorem.

.

Special cases of the main result proved here lead to the foregoing result of Rivlin
and a result proved in Cavaretta, Sharma and Varga [2].

§1 Introduction

Let f be a function holomorphic in the disk Dg := {z € @ : |z| < R} for some
R > 1. For a non-negative integer n, we denote by Ln(+; f ) the Lagrange interpolant
to f in the (n+4 1)" roots of unity and by Sa(:, f) the n't partial sum of the power-
series expansion of f about the origin. Then the Walsh equiconvergence theorem
[8, p. 153] asserts that

Y}E%O[Ln(z;f) — Sa(2;f)] =0, z€ Dpge, (1.1)

the convergence being uniform and geometric in every disk D, with p < R?.

Rivlin [7] extended (1.1) by considering the polynomial P (-, f) of degree n
which best approximates f in the £;—sense over all polynomials of degree n in the
(m + 1) roots of unity, where m = ¢(n + 1) — 1, ¢ € IN. Rivlin showed that

nlLrI;O[Pm,n(z;f) — Sp(2; )] =0, 2€ DRita (1.2)
with uniform and geometric convergence in every disk D,, p < R'*9.
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In [1], the first author showed that Walsh Theorem (1.1) cannot be carried over
to the following more general situation. Let E be a compact subset of the complex
plane with a complement E¢ which is simply connected in the extended complex
plane. According to the Riemann mapping theorem, there exists a conformal map
of {w € €' |w| > 1} onto E€ normalized at infinity by )(c0) = oo and C' := ' (00) >
0, where C is called the capacity of E. For R > 1, let Cp := {P(w) : |w| = R} be
an outer level curve of E and let Ag denote the class of functions f holomorphic in
Gr := Int Cr, having at least one singularity on Cr. We denote by F} the k—th
Faber polynomial, and for f € Ar, we denote by S,(+; f) the n** partial sum of the
Faber expansion of f with respect to E. For the definition and properties of Faber
polynomials, we refer to Curtiss [4] or Gaier [5].

For a non-negative integer n let the interpolation nodes z;, € F (k=0,---,n)
be given and let L, (-; f) denote the Lagrange interpolant to f € Ag in these nodes.
The interpolation is to be understood in the Hermite sense if some of these nodes
coincide. If we set

: n
wp(z) = H(z — Zkn) (1.3)
k=0
we require that the nodes z;, are chosen such that

. Wn 1/)("‘))
nIer;o _C—';"El—w’;% =1, |w|>1, (1.4)

holds uniformly on every closed subset of {w € @' : |w| > 1}. It follows from a more
general result in [1] that if (1.1) holds for all f € A and all z € G, for some p > R,
then E must be a disk. '

Now the question arises whether it is possible to obtain an equiconvergence
result, if we replace Ly,(-, f) by a polynomial of the type P, ,(-; f) in certain nodes
zkm € E. Rivlin [7] proved a similar result when E = [~1,1] and z,, are the
zeros of the m'® Chebyshev polynomial. Furthermore he showed that Prn(s5 f) =
Sn(-;Lm(z;f)) when E is the unit disk D and 2k, are the (m + 1)* roots of
unity or when E = [—1,1] and 2j,, are the Chebyshev nodes. We do not know
if this relationship prevails in the general situation described above. Therefore we
set Qm,n(;f) := Sy (-;Lm(z;f)) and prove an equiconvergence theorem for the
difference Qm n(; f) — Sn(+; f) provided E is “nice” and the nodes zx,, are suitably
chosen.

In Section 2, we state the main result for Lagrange interpolants and some
known special cases. In Section 3, we sketch an outline of the proof. Section 4 deals
with statements of two theorems which can be proved by using the properties of
Faber polynomials given in Section 3. The detailed proofs will appear elsewhere.
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§2 Lagrange interpolation

Using the notation of Section 1, let the boundary F of E be an analytic Jordan
curve. Then the conformal map 1 is continuable to a homeomorphism of {w €
C : |w| > 1} onto @\(Int E), so that we may define z;,, := Y(wkm ), where
Wikm = exp (2mik/(m + 1)), (k = 0,1,...,m). The points z,, are called the
(m+1)*" Féjer nodes with respect to E. Following Pommerenke [6], we say that OE
is an yo—analytic curve (0 < 4y < 1), if the conformal map ¢ admits a univalent
continuation to {w € @ : |w| > y¢}. For f € Ap, let

o0

f(z) =) aFi(2), z€Gg(= IntCp)

k=0

be the Faber expansion of f with respect to E. Then S,(z; ) =% arFr(2), is
the n*h —section of the Faber expansion of f. For non-negative integers m,n and j

with m > n, we set
n

Smn,j(2; f) = Zak+j(m+l)Fk(2) (2.1)
k=0
and for £ € IN, let
£—-1
Dinnt(23 f) = Su(2 Lin(5 £) = Y Smym,i(2; f). (2.2)
J=0

Clearly Sm n0(z, f) = Sn(z; f) and S, (z; L(z; f)) is the n*" Faber section of
the expansion of L,,(z, f) in terms of Faber polynomials. We are now in a position
to state

Theorem 1. Let F be an +yy—analytic curve for some v, € [0,1), f € Ag,
m =gq(n+1) —1, with ¢ € IN and let D,, ,, ¢(2; f) be as defined in (2.2). Then

Bm Doz f) =0, z€Gh, (2.3)
n—oo

the convergence being geometric and uniform on every subset G, for 1 < p < A,
where

A= min {R"**, R/y§, R /7§7") (2.4)
with 0F := 0 for any non-negative integer k and 1/0 := oo.

Remarks. (1) If ¢ =1 and 7y > 0, then A = R so that Theorem 1 gives no
overconvergence. For arbitrary g, if 79 — 1, then A\ — R and again there is no
overconvergence. In the special case vy = 0, i.e. E = D, we have A = R!*t%_ For
¢ =1, we obtain the result of Rivlin [7, Theorem 1] and for ¢ = 1, we obtain a
result of Cavaretta, Sharma and Varga [2, Theorem 1]. If ¢ > ¢+ 1 and Y% < 77,
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then A = R4 that is we have the same ) as in the case of the unit-disk, if g is
sufficiently close to D.

(2) We do not know if A is best possible. However, we are able to Improve oyr

resultif £ = Es; (6 > 1)is an ellipse with half axis a := %(5—{—-}5-) and b := %(&ml.)

1

Le., 0E; is the image of the circle {w € (@ : |w| = ¢} under the map w = F(w + 1

1
In this case we have ¢(w) = —2—(6w + 31—) Then JE; is a yg—analytic curve with,
w
Yo = -Z: and

1

o () = (™ = 1)1 - )

2
which is an improvement on (3.1) (see Sec. 3).
Furthermore, we have

1
Fk(%b(w)) =wk + TR

so that the coefficients ay, in (3.4) are explicitly known. Now an examination of
the proof of Theorem 1 shows that in this case ) is given by

A = min {R1*, R1*0 /530 R2a=1/,8a=1)y

This is best possible, as can be seen by the example f(z) := J(‘EIT—TZ‘ If ¢ =1, then
A = R. Furthermore, we have A = R!t4 provided ¢ > £+ 1 and ¢ < @1—:}- . In
particular, A = R'*9 for all v, € (0,1) if £ =1 and ¢ > 2.

(3) The previous remark also applies when § = 1,ie., E =[-1,1]. (Note that
the Fejér nodes on [—1,1] are not mutually different.) Then we obtain A = R for

g =1and A = R for all ¢ > 2. If we use the zeros of the Chebyshev polynomials
as interpolation nodes, we have

1

wn (P(w)) = (%)"’J’lwm+1 (1 = =)

The proof of Theorem 1 runs through with minor modifications and yields
R*1-1  for =1
A=<¢R for ¢=1
R1tY for ¢, 0> 1.

so that we obtain a generalization and a new proof of Theorem 2 of Rivlin [7].
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§3 Proof of Theorem 1

a) Some Properties of Faber Polynomials : Since OF is a ~vo—analytic
Lemma 3.1 in [3] for any p > 7o, we have

wm () = C™H (@™~ 1)(1+ 0(p™)

uniformly on closed subsets of {w € @' : |w| > yo}. If

is the Faber expansion of f, then the Faber coefficients ay are given by

1 f®©)

27 Sy €

de, (k=0,1,2,...),

ar =

where 1 < p' < R, so that

S5 =g [T

From (3.1) we obtain

Wi (P(€)) = wm (v(t)) _ gmtl _ gm
Wi (1(€)) gm+l — ]

Z£k+l , zed.
k=

|=7'

(14 0(p™))

uniformly on closed subsets of the set

(e ¢ >1x{te:|t]>1}.

229

curve, by

(3.1)

(3.2)

(3.3)

Also for the Faber polynomials F} the following relation holds ([4, Equation (2.7)])

Fr(p(w)) =+ apw™, |w|>1
rv=1

(3.4)

uniformly on closed subsets of {w € @ : [w| > 1} with certain coefficients ak, € C.

b) Integral Representation of Dy, n¢(2; f) : From the well-known Hermite interpo-

lation formula [5; p. 59] we obtain for any v' € (1, R)

'lb’(f) Wm(¢(£)) B wm('z)

Lin(z; f) = /m 7f(@b(f)) -7 om0 d¢, ze @ (3.5)



230 R. Brick et q

with wp, defined by (1.3). Then the expansion of L,(2; f) in terms of Faber poly-
nomials is given by

Su(z5Ln(3 1) = 5 /| o)

k=0
_ 1 L _ ¥
= ot Jgor T PO o /m .y WO -5

 #nl) 0 (911) §~ F(2)

o (90) T @A, 2€ @ (3.6)
m k=0

where we choose vy and 4’ such that 1 <y <+’ < R.
Furthermore, (3.2) implies that

F .
Sm,n,ji(2 f) = By K€l=7 ("v[’(g) €](m+1) Z giizl)d‘f, ze (. (3.7)

Thus we have

£—1
El(m-i-l) -1 Fk(z)
;Smn]( f) 2’/TZ lE|=~ ( (6))€(l 1)(m+1)(§m+1 _.1 Z £k+1 df, z €.
(3.8)
Using the residue theorem, we obtain
1 (6 a1
g Mo SR
so that (3.8) can be written as a double integral. Thus we get
1 pie) €
J}; Sm n,](z f) 27!'2 \/||=7' f(¢(§)) (27.” A|=7 ¢(§) . l/)(t) ¢ (3 9)

é-l?(m—f-l) Fk(z
5(( 1)(m+1)(§m+l _ 1) Z €k+1

dt)d¢, z€d.

Combining (3.6) and (3.9) we are able to obtain an integral representation for
D ne(2; f)- It can be verified that using (3.5), (3.9), (3.3) and (3.4), we can write

10 e .
Do) =55 [ S0 g [ Gy K ,a,ndt):tgm)
3.
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The kernel K, n¢(w,£,t) can be broken into four parts. We set Ko, , o(w, €, 1) :=
E {(J)n (w, &, t) where

/

I{(l) o 6171-{-1 — ¢m+l ) O n oo —Vth—l
mne(w,€7 ) = é‘m-H 1 ( + (p ));;akyw
6 6k(m+1) e
(£—-1)(m+1)(gm+1 _ Z Zak,,w £
< ‘e S = (3.11)

§m+1(t"+1 _ wn—H)
(t =)™ =D

é (é‘n—i-l _wn+1) é-Z(m-{-l) 1
+ (€ — w)éntl 6(@ D(m+1)(gm+1 _ 1)

Kr(rf)nf ’6 t)

(£m+1 _ tm+l)(tn+1 - wn—i—l)

~(3) _
I\m n f(w,f,t) =O0(p™) (t — w)tnF1(gm+T — 1)
and (3.12)
) B g1 (gl Wi
Am n [(w,f,t) - (t _ w)tn+1(€m+1 _ 1)'
Thus we have )
Dm,n‘,l(z; f) = ZD(])n E(Z f)
1=1
where
pw _ 1 1 _ ¥ 0 p
e = g0z o 0O G [ G s KD e e

¢) Bstimates of D\, , (j =1,2,3,4) : We begin with D{!) . Letting n — oo and

m,n {

observing that [t| < |€], we obtam

Ki(w,€,t) := hm K() n (@, &, 1)

o0 (e o] .
—y —k— —ve—k—1
Zakuw T 2 ™
k=1 rv=1 k=0 v=1

where the double sums on the right hand side are convergent uniformly on closed
subsets of {w € @' : |w| > 1} x {t € @ : |t| > 1}. Now the residue theorem implies

that
1 »'(€)
2m |t|l=v ¢(f) - ¢(t)

o |y

Kl(w,f,t)dt = 0, (313)
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for all ¢ € @ with |[£] > v > 1. Thus lim,— Dg)n ¢ = 0 uniformly on .

Similarly, again using the residue theorem, we have

1 PO
o /| K

t|=~ ¢(§)—1/)(t) 7nn£( ,g’t)dt_llfvfnl( é’ é‘)

§n+l _ wn+1

" (€~ )@ DNt (grn1) Z )
— o) (=L,

(y')1+t

(3.14)
if Jw| > 4'. This yields lim,— o D(; ne(z; f) = 0 uniformly on G, for every ;i <
Rl+£q

In order to estimate D'® )n (z; f) we observe that for |w| > +', we have
(3 lwlp?\n
Ko 03 68) = 0() () (3.15)

and that lim,_, ., D® (z; /) =0 uniformly on G, for every u < R/~{.

m,n, £
Similarly, in order to estimate D(* (z; f), we recall ([4], Eq. (2.9)) that

m,n,l

(&) —p(t) f——t+;; ukt "¢ (3.16)

uniformly on closed subsets of {t € @' : |t| > 1} x {¢ € @ : |¢| > 1}, where the
coefficients v, are defined by (3.4). Again applying the residue theorem, we get

. i)
m n( 6) /ltl — 1/)(6) (t)I mnf( aSat)dt

- g’m—+}___’j‘ Z Z @€

p=1pr=0

Since 9F is yp—analytic, we have [4, Eq. (4.2)] aur = O(1)p#** for all p, k € IN
and any p > «y. Thus

Fm,n(w’g) = 0(1)((?3%;)"

which implies that lim,,_, o D(4)n t( ; f) = 0 uniformly on G for all 4 < Rq/’yo

Combining the estimates for D(])n ¢ (J =1,2,3,4), we obtain the result which
completes the proof. H
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§4 Hermite interpolation

We shall state without proof two similar results for Hermite interpolation. For
f € Agr and for s € IN, we denote by Hy(m4+1)-1(; f) the Hermite interpolatory

polynomial to f, f',..., ¢~ in the (m+1)""Fejér nodes on E. Then for p,q € IN
with m = ¢(n + 1) — 1 and with sq > p, we set

Afﬁ?n(z; f) = Sp(n+1)——1 (Z; Hs(m+1)—1('; f)) - Sp(n+1)-—1(2§ f)- (4'1)
We can then prove

Theorem 2. Under the assumptions on OF in Theorem 1, the following holds:

nlin;o AR (2, f)=0 for ze€ G\ (4.2)

the convergence being uniform and geometric on every subset G, forl < p < A
where

s 9 _
min{R'* 5 R/18/? Realr /vy 71, q>p
A=

min{RETHD/P, R 48P R/ )1~ [1 - x])}, ¢ <p,
with 07 := 0 for any non-negative real number & and 1/0 := oco.

Finally, we consider a case of mixed Hermite and Lagrange interpolation. For
positive integers p and s with s > max{p, 2}, we set

D;,s,n(z; f) = Sp(n+l)—l (Z; Hs(n-}-l)—l('; f) - Ls(n-H)—-l('; f))
Then we can prove

Theorem 3. Under the assumptions of Theorem 1, the following holds:

lim Dy, (2 f) =0, ze€G, (4.3)

n—oo

the convergence being uniform and geometric on every subset G, for 1 < p < \,
where if vy = 0

/\.:{RS+2 for p=1 and s odd
. RGHD/P otherwise

and if 4y > 0, we have
A := min {R/’yé/p,Rs/”}.

Proofs of Theorems 2 and 3 will be given elsewhere.
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