1962
Reprinted from Pacific Journal of Mathematics, Vol. 12, No. 4

David G. Feingold and Richard S. Varga

Circle Theorem
Generalizations of the Gershgorin Block Diagonally Dominant Matrices and
For the definition of an A-matrix, see § 4 or § 8.

Received April 11, 1962.

This subspace the vector norm $\|x\|$ into itself, we associate with the n-dimensional vector subspace \mathcal{V} of the linear transformation \mathcal{V} as a linear transformation

$$[\mathcal{V}] = \mathcal{V}$$

(2.1)

For reasons to appear in § 3, the partitioned choice $\mathcal{V} = \mathcal{V}$ of where the diagonal summatiess \mathcal{V} are square of order n, where

$$\begin{pmatrix} \mathcal{V} & \cdots & \mathcal{V} \\
\cdots & \ddots & \cdots \\
\mathcal{V} & \cdots & \mathcal{V} \end{pmatrix} = \mathcal{V}$$

(2.2)

I. Block diagonally dominant matrices. Let A be any $n \times n$ matrix.

2. Block diagonally dominant matrices. Let A be any $n \times n$ matrix.

Cesàro-Horni-Madeira's work on providing bounds for the eigenvalues of A.

Exclusion regions can give significant improvements over the usual diagonalization process. But one of our major results (§ 3) is that these new diagonalization regions of the simple concept of a diagonally dominant matrix A. By the generalization of the simple concept of a diagonally dominant matrix A, through not fundamentally different, establish the non-diagonality of A. Through comparisons with A-matrices, our approach, nonsingularly of A, through comparisons with A-matrices, our approach.

Evidently, confirms no eigenvalues of A. In a like manner, the following results:

$$I \succ ||A - (I - I^2)||$$

Non-singular. Hence, the set of all complex numbers z for which A is a non-singular diagonal matrix, then Hausdorff distance is z. Such exclusion regions arise naturally from results which establish the non-singular of A. For example, if $A + D = \mathcal{V}$, where \mathcal{V} is a non-singular diagonal matrix, then Hausdorff distance is z. Such exclusion regions for the eigenvalues of an arbitrary square matrix A.

I. Introduction. The main purpose of this paper is to give generalizations of the well-known theorem of Cesàro-Madeira's work on providing bounds for the eigenvalues of A.

David C. Fringado and Richard S. Yang.

Circle Theorem

Generalizations of the Cesàro-Madeira Block Diagonally Dominant Matrices and
\[a / I (a I x) \equiv \| x \|^d \text{ to denote the } l^d \text{ norm of } x \]

Later, we shall use the notation \(| x |^{f + \eta} \]

Consider the case \(n = 1 \) of \(f \) and \(\eta \).

An example of a matrix which is block strictly diagonally dominant, which is the usual definition of diagonal dominance.

\[N \triangleq f \triangleq I \text{ for all } \| x \|_{\Lambda} \leq \| (f + \eta) x \|_{\Lambda} \]

Whenever \((f + \eta) x \) is nonsingular. The inequality \((f + \eta) x \) is singular.

In the special case that all the matrices are \(f \times f \) matrices and \(f \) is block diagonally dominant, relative to the partitioning \((1) \) then \(N \triangleq f \triangleq I \text{ for all } \| x \|_{\Lambda} \leq \| (f + \eta) x \|_{\Lambda} \)

By continuity, to be zero whenever \((f + \eta) x \) is singular.

The case \((f + \eta) x \) can also be characterized form \((1) \).

If we wish to point out the quantity appearing on the right

\begin{equation}
\left(\frac{\| x \|}{\| x^{f + \eta} \|} \right)_{\text{in} x} \leq \| f \| \quad \text{for all } \| x \| \leq \| (f + \eta) x \| \)
\end{equation}

If the diagonal submatrices \((f + \eta) x \) are nonsingular, and \(f \) is also nonsingular, then we shall drop the subscripts on the different vector norms.

If the diagonal submatrices \((f + \eta) x \) are

\begin{equation}
\left(\frac{\| x \|}{\| x^{f + \eta} \|} \right)_{\text{in} x} \leq \| f \| \quad \text{for all } \| x \| \leq \| (f + \eta) x \| \)
\end{equation}

The point here is that we can associate different vector norms with \(f \) and \(\eta \).

Then, if \(\| x \| \) is defined as usual by \(f \) and \(\eta \) for any \(f \) and \(\eta \), the dual definition states that the column vectors are different subspaces \(f \) and \(\eta \). Now, similarly considering the rectangular matrix

\begin{equation}
N \triangleq f \triangleq I \quad \| f \| \| x \| + \| f + x \| \| \quad \text{for any } \| x \| \leq \| f + x \|
\end{equation}

Theorem 4.
where \(\lambda, \gamma \) are square nonnull submatrices. For strongly connected directed graphs,

\[
p = \begin{bmatrix} \gamma^T & \lambda \end{bmatrix}
\]

Therefore, the results no permutation matrices \(P \in \mathbb{R}^{N \times N} \) such that \(P \) preserves the block diagonal structure of the matrix \(M \).

Since \(M \) is a nonzero vector, normalize \(\| M \| = \frac{1}{\kappa} \) so that \(M \) is a normalized vector.

\[
\| M \| = \frac{1}{\kappa} \text{ and } \| M \| = \frac{1}{\kappa} \text{ for all } i, j \in [N]
\]

Thus, \(\| M \| = \frac{1}{\kappa} \) or \(\| M \| = \frac{1}{\kappa} \).

But this is equivalent to

\[
\| M \| = \frac{1}{\kappa} \text{ or } \| M \| = \frac{1}{\kappa}
\]

Theorem 2. The extension to the case where \(M \) is block diagonal is also block diagonal.

Proof. The extension to the case where \(M \) is block diagonal is also block diagonal.

Theorem 1. If the partitioned matrix \(A = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \) is block diagonal, then \(A \) is structurally dominant.

Definition 2. The partitioned matrix \(A = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \) is block diagonal if the matrix \(A = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \) is block diagonal.

Obviously, \(A \) is structurally dominant in the sense of Definition 2.
Definition 8. For the partitioned \(n \times n \) matrix \(A \) of (2.1), let the

\[N \subseteq f \subseteq I \]

satisfy (2.10) for at least one \(f \), I. We say that the diagonal entries of an arbitrary \(n \times n \) complex matrix \(A \) necessarily

reduce to the well known (zero) diagonal matrices. In Theorem 2, we shall

show that if \(f \) is such that all

\[\sum_{k=1}^{n} \frac{1}{|\alpha_k|} \supseteq 1 - (|I - f A|) \quad (2.10) \]

We again remark that if the partitioning of (2.1) is such that all

\[\sum_{k=1}^{n} \frac{1}{|\alpha_k|} \supseteq 1 - (|I - f A|) \quad (2.10) \]

Theorem 2. For the partitioned \(n \times n \) matrix \(A \) of (2.1), each eigenvalue

of \(A \) satisfies

\[\lambda \in \mathbb{C} \quad (2.10) \]

dominant, which gives us

\[\lambda \in \mathbb{C} \quad (2.10) \]

is an eigenvalue of \(A \), then \(A \) cannot be block strictly diagonally

Thus, we have from Theorem I that \(A \) is non-singular. Hence, if

\[N \subseteq f \subseteq I \]

for all \(f \), then

\[\sum_{k=1}^{n} \frac{1}{|\alpha_k|} \supseteq 1 - (|I - f A|) \quad (2.10) \]

Identity matrix, suppose that

\[I \quad (2.10) \]

If \(I \) is the partitioning of (2.1), and \(I \) is the block

in the introduction, the above theorem leads naturally to

\[I \quad (2.10) \]

Theorem I here is a special case of a more general result by Ostrowski

Theorem I here is a special case of a more general result by Ostrowski.

\[I \quad (2.10) \]

is the block

and for the block

\[I \quad (2.10) \]

of (2.1) and for the block

\[I \quad (2.10) \]

to this result in the case that all the matrices

Theorem I here is a special case of a more general result by Ostrowski.

Actually, we can regard Theorem I as block diagonally dominant case.

completes the proof for the block strictly diagonally dominant, which

\[Z = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \]

but as \(a \) is non-singular by hypothesis, then putting

\[\sum_{k=1}^{n} \frac{1}{|\alpha_k|} \supseteq 1 - (|I - f A|) \quad (2.10) \]

(2.10)

David C. Felingold and Richard S. Varca
Another familiar result of Gershgorin can also be generalized. The proof, depending on a continuity argument, follows that given in [13], p. 287.

To complete the proof of Theorem 1, a similar argument can be applied. A similar argument can be repeated with a repeated by \(f \). Moreover, if \(f \) is a bounded point of \(G \), then

\[
\left\| f^* V \right\|_N \leq \left\| M \right\| \left\| f^* V \right\|_N \leq \left\| I - (1 + I z - f^* V) \right\|
\]

(3.8)

If \(f \), then as before, since \(f \) is an eigenvalue of \(V \), then

\[
M f = f^* V \quad f \in \mathfrak{N}
\]

and

\[
M f = f^* V \quad f \in \mathfrak{N}
\]

Since \(f \) is an eigenvalue of \(V \), then

\[
M f = f^* V \quad f \in \mathfrak{N}
\]

Theorem 2. Let the partitioned matrix \(V \) of (2.1) be block irreducible.

This result of Theorem 2, which is similar to the above of a well-known result, is block irreducible. Which is the analogue of a well-known result of this argument. In this case, Theorem 2 gives exact information about the eigenvalues of \(V \).

[II] Theorem 2

\[M f = f^* V \quad f \in \mathfrak{N} \]

(2.9)

Thus, we can speak of the boundary of \(G \), as well as the boundary of

\[
\bigcap_{N} G = G
\]

Thus, from (2.9), we conclude that the Gershgorin set \(G \) is closed and bounded. Hence, so

\[
\mathfrak{N} \subseteq f \subseteq \mathfrak{N}
\]

(1.8)

Gershgorin set \(G \) be the set of all complex numbers \(z \) such that
Since $G = G'$ as shown in the figure below, the usual (Gerschgorin) circles, so that G' is the union of two disjoint circles, the same is true for G.

By definition, the set G' then consists of the points z for which

$$
I_{\mathbb{C}} \subseteq |z - \bar{z}| \quad I_{\mathbb{C}} \subseteq |z - 6|
$$

That is, $G' = \{(z - \bar{z}, |z - 6|) : \min_{\mathbb{C}} = \frac{1}{\bar{z} - (1 - i')\bar{z}} \}$

That is, $I_{\mathbb{C}} = 1$. On the other hand, direct computation shows that the vector norm $||x||_{\mathbb{C}}$ is apparent implying now the vector norm x.

$$
\begin{bmatrix}
\bar{v} & \bar{w} \\
\bar{w} & \bar{z} \\
\bar{v} & \bar{z}
\end{bmatrix}
\begin{bmatrix}
v \\
w \\
v
\end{bmatrix}
= v
$$

Illustration, consider the partitioned matrix from the generalized form of Gerschgorin's Theorem. To give another example of the matrix of G', the eigenvalues of G'.

$$
H \text{ is diagonal, then } \text{the remaining } N - m \text{ Gerschgorin sets for the}
$$

David G. Feingold and Richard S. Varca
Let n be a positive integer and define A and B as in Theorem 1. Let $n \times n$ complex matrices A and B be partitioned as in (2.1).

Result by Ostrowski [9].

In an attempt to characterize completely the eigenvalues of a generalized matrix A under the condition that the partitioning of A is such that A is block diagonal, we present the following main theorem. As results in the literature suggest, both A and B have been replaced by A^T.

Let x be a boundary point of each of the point sets C such that $x \in C \cap B$. Define $N \equiv \sum_{\gamma \neq \gamma'} \sum_{\gamma' \neq \gamma} \sum_{\gamma'' \neq \gamma'} \sum_{\gamma''' \neq \gamma''} \sum_{\gamma'''} \sum_{\gamma''''} \sum_{\gamma'''''}$ where $I \equiv \sum_{\gamma \neq \gamma'} \sum_{\gamma' \neq \gamma} \sum_{\gamma'' \neq \gamma'} \sum_{\gamma''' \neq \gamma''} \sum_{\gamma'''} \sum_{\gamma'''''}$.

Moreover, if f is block irreducible, and (3.5) holds for some $\epsilon > 0$ and $\delta > 0$, then $N \equiv \sum_{\gamma \neq \gamma'} \sum_{\gamma' \neq \gamma} \sum_{\gamma'' \neq \gamma'} \sum_{\gamma''' \neq \gamma''} \sum_{\gamma'''} \sum_{\gamma'''''}$.

There, all the eigenvalues of A in the union of the C-faces of A where C is the union of all C-faces of A are partitioned as in (2.1).

Theorem 6. Let $n \times n$ complex matrices A and B be partitioned as in (2.1).

Carothers, O. An example of a C-face on a complex $n \times n$ matrix.

Proof. Let the eigenvalues of A be of $\epsilon > 0 > \delta > 0$. Since A is $\epsilon > 0 > \delta > 0$ and B is $\epsilon > 0 > \delta > 0$, we can write, which, combined with the final result, we have that the union of all C-faces of A where C is the union of all C-faces of A are partitioned as in (2.1).

Thus, a special case of the result of Carothers is considered in this paper. This is a significant improvement over the usual Carothers circle in providing bounds for the eigenvalues of A in the union of all C-faces of A where C is the union of all C-faces of A are partitioned as in this case.

\[\| A \| \leq \epsilon \leq \delta \leq 1 \leq \gamma \]

This is a circle of radius ϵ with center at $\epsilon = 1$. The previous example was such that the final result gives the circle $\epsilon = 1$. From this figure, we can conclude that the block Carothers circle in the plane.

For the matrix A of (2.4) are all given by the single circle $\epsilon = 1$.
\[\| x \|_2 = \| x \| \] (2.3)

If \(x \) denote the vector with components \(|x_i| \) let \(|x| \) be a column vector with complex components which depends upon the use of complex norms. By this, we mean based on our previous results, we now give a generalization of this result

\[u \leq f \leq I \quad 0 < \| H \| \]

(4.1)

Another generalization. A further result, due to Tranusk

partitions, and the purpose can be used to advantage.

We wish to emphasize that, unlike the cases we treated here,

\[N \leq f \leq I \]

(6.3)

relations:

whenever one occurs on the left-hand side, we agree to put 0/0. Theorem 8. Let the \(n \) complex matrices \(V \) be partitioned as in

\[f \leq I \quad 0 < \frac{f}{I} \quad \text{and} \quad \frac{f}{f} \leq \frac{f}{I} \]

(2.1)

Theorem 8. Let the \(n \) complex matrices \(V \) be partitioned as in

\[N \leq f \leq I \]

(3.8)

Theorem 8. Let the \(n \) complex matrices \(V \) be partitioned as in

\[N \leq f \leq I \]

(3.6)

David C. Pincus and Richard S. Varca
PHILOLOGICAL

If \(\lambda > 0 \), then the determinant of \(\mathbf{A} \) is not an eigenvalue of \(\mathbf{A} \), which completes the proof.

In other words, for any \(z \) with \(\Re z > 0 \), then the matrix \(\Gamma - z \mathbf{I} \) is continuous

\[
\lim_{t \to 0}(\|e^{t\mathbf{A}}\|) = \lim_{t \to 0}(\|e^{t(\Gamma - z \mathbf{I})}\|)
\]

so that from (2.3)

\[
\|\mathbf{x}\| \|e^{t\mathbf{A}}\| \leq \|\mathbf{x}\| \|e^{t(\Gamma - z \mathbf{I})}\|
\]

Next, with (4.4) and the assumption of absolute norms, it follows from

\[
\|\mathbf{x}\| \|e^{t\mathbf{A}}\| \leq |(2)^{1/4}|
\]

and that (2.4) and (2.4)

From the assumption that \(\mathbf{A} \) is an \(M \)-matrix, that \((\mathbf{A}) \) follows from (2.8) = \(1 - (\Gamma - z \mathbf{I}) \) and (2.8) = \(\mathbf{A} \) with \(\Re z > 0 \). If \(\mathbf{A} \) strictly diagonally dominant, let \(z \) be any complex number.

For simplicity, we shall consider again only the case where

\[
\Re \lambda < 0
\]

then \(\lambda \) is any eigenvalue of \(\mathbf{A} \), and the vector norms for each subspace \(\mathcal{N} \) are absolute norms.

Furthermore, assume that each submatrix \(\mathbf{A} \) is an \(M \)-matrix, for at least one \(i \), and block diagonally dominant with strict inequalities in (2.4) and let \(i \) be block strictly diagonally dominant (or block irreducible) matrix \(\mathbf{A} \) be partitioned as in

\[
[\mathbf{A}]
\]

then \(\mathbf{A} \) is said to be an \(M \)-matrix.

Next, if \(\mathbf{A} \) is a real \(n \times n \) matrix with \(\Re \mathbf{A} = \mathbf{A} \) and if is nonsingular with \(\mathbf{A} \) in exactly one component of \(\mathbf{A} \) and if is nonsingular with \(\mathbf{A} \) for all \(\Re \lambda < 0 \), then

\[
|\mathbf{x}| = |\mathbf{A}| \mathbf{x} \leq |\mathbf{A}| |\mathbf{x}|
\]

to the property that if \(\mathbf{I} \)

13. Some upper conceraining bounds for eigenvalues of
finite matrices, Survey of

10. A. M. Ostrowski, On some results of properties of operator matrices and matrices

