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ABSTRACT

Recently, Martinez, Michon, and San Martin introduced the new class of (sym-
metric) strictly ultrametric matrices. They proved that the inverse of a strictly
ultrametric matrix is a strictly row and strictly column diagonally dominant Stieltjes
matrix. Here, we generalize their result by introducing a class of nonsymmetric
matrices, called generalized ultrametric matrices. We give a necessary and sufficient
condition for the regularity of these matrices and prove that the inverse of a
nonsingular generalized ultrametric matrix is a row and column diagonally dominant
M-matrix. We establish that a nonnegative matrix is a generalized ultrametric matrix if
and only if the matrix is a certain sum of at most rank-two matrices. Moreover, we
give a characterization of generalized ultrametric matrices, based on weighted trees.
The entries of generalized ultrametric matrices then arise as certain “distances”
between the leaves and the root of the tree.
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1. INTRODUCTION

One of the most beautiful properties of a nonsingular M-matrix is that its
inverse is a nonnegative matrix. However, the converse of this result is not in
general true, i.e., the inverse of a nonsingular nonnegative matrix is not in
general an M-matrix. First, Thomas Markham [7] established in 1972 a
sufficient condition for a nonnegative symmetric matrix to be an inverse of a
Stieltjes matrix (a nonsingular symmetric M-matrix). He introduced a class of
nonnegative symmetric matrices called matrices of type D, which are inverses
of Stieltjes matrices. Since his paper appeared, several authors have studied
this so-called inverse-M-matrix problem [3, 5, 6, 12]. However, only a few
sufficient conditions were developed. An overview of the inverse-M-matrix
problem is given by C. R. Johnson [3].

Recently, Martinez, Michon, and San Martin [8] introduced a new class of
symmetric matrices. They proved in [8] that the inverse of a so-called strictly
ultrametric matrix is a strictly row and strictly column diagonally dominant
Stieltjes matrix. Stimulated by the beauty of this result, Nabben and Varga
[10] gave a short proof of it using more familiar tools from linear algebra.
Moreover, in [10] a characterization of this class of strictly ultrametric
matrices was given. This characterization and the use of a rank-one update,
which was also used in [10], are the main tools for certain generalizations of
the result in [8]. A first generalization was given in [11], where the authors
introduced the class of symmetric ultrametric matrices. They showed that the
inverse of a nonsingular symmetric ultrametric matrix is a (not necessarily
strictly) row and column diagonally dominant Stieltjes matrix. Even more, it
turns out that the class of matrices of type D, introduced by Markham [7], is
contained in the class of symmetric ultrametric matrices; see Section 2.

In this paper we generalize the result of [8] by introducing a class of
nonsymmetric matrices, called generalized ultrametric matrices. We give
here a necessary and sufficient condition for the regularity of these matrices
and prove that the inverse of a nonsingular generalized ultrametric matrix is a
row and column diagonally dominant M-matrix. Moreover, we establish that
a nonnegative matrix is a generalized ultrametric matrix if and only if the
matrix is a certain sum of at most rank-two matrices; see Section 3.

Another aim of this paper is to show how generalized ultrametric matrices
arise and how they can be characterized. Therefore, we establish another
characterization of this class of matrices based on weighted graphs. The
entries of generalized ultrametric matrices then arise as “distances” between
the leaves and the root of the tree; see Example 2.2 and Theorem 3.3.

After we obtained some of the result in this paper, we learned that
McDonald, Neumann, Schneider and Tsatsomeros [9] have considered simi-
lar classes of matrices, and that they have obtained some overlapping results.
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2. GENERALIZED ULTRAMETRIC MATRICES AND EXAMPLES

In this section, we derive the class of generalized ultrametric matrices and
give some examples of these matrices. However, we start by describing the
subclasses mentioned above. At the end of this section, we introduce further
needed notation.

Martinez, Michon, and San Martin [8] introduced the following class of
strictly ultrametric matrices:

DEFINITION 2.1. A matrix A = [ai’j] in R™" is a strictly ultrametric
matrix if
G) Ais symmetric and has nonnegative entries;

(ii) a;; > minfa, ;; ak,].} for all 4, j, k € N (where N = {1,2,...,n}):
(i) a@,, > max{a, ; : k € N\ {i}} for all i € N,

where, if n = 1, (iii) is interpreted as a,; > 0.

They proved in [8] that the inverse of a strictly ultrametric matrix is a
strictly (row and column) diagonally dominant Stieltjes matrix. Moreover,
they established that the sets consisting of the zero entries of a strictly
ultrametric matrix and that of its inverse are exactly the same.

In [11], the authors defined the class of symmetric preultrametric matri-
ces, where equality in (iii) of Definition 2.1 is allowed. Adding a certain
regularity condition, the class of symmetric ultrametric matrices was defined
in [11]. The inverse of such a matrix becomes a (row and column) diagonally
dominant Stieltjes matrix. This class of symmetric ultrametric matrices con-
tains the class of type-D matrices introduced by Markham [7]:

DEFINITION 2.2. A symmetric matrix A = [di’j] € R™" is of type D if
there exist real numbers {a,}". 1 such that

a, if i<y, 1
a. .= . , , where o > o > e > .
iy a; if i>j, n n=1 1

Markham proved that with @, > 0, a matrix of type D is nonsingular and
its inverse is a (symmetric) tridiagonal Stieltjes matrix.

On comparing Definitions 2.1 and 2.2, we see that if A = [ai’j] in R™" is
a type D matrix (with «, > 0), then A certainly satisfies (i) and (i) of
Definition 2.1, but the diagonal entries a;; (1 <i<n)of A fail to satisfy
(iii) of Definition 2.1. However, while a type-D matrix (with a; > 0) is not a
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strictly ultrametric matrix, it can be verified to be a symmetric ultrametric
matrix in the sense of [11].

Considering nonsymmetric matrices is another way to generalize the
result in [8]. This leads to the more general problem of determining which
nonsingular nonnegative matrices in R™" have inverses which are M -matrices.
Before we establish our sufficient condition, we mention a necessary condi-
tion, due to Fiedler and Ptak [1], which states that the entries of the inverse
A = [a; ;] of a strictly row diagonally dominant M-matrix satisfy

a,; > max{a; ;- k € N\ {i}} (alli € N).
However, Example 2.1 below shows that the inverse of a matrix A, which
satisfies

A has nonnegative entries; (2.1a)

a;; > min{a,;, a;}  forall i,j,keN, (2.1b)

a;; > max{a, , -k € N\ {i}} forall ieN, (2.1c)
a,; > max{a; ;. k € N\ {i}} forall ieN, (2.1d)

where, if n =1, (2.1c) and (2.1d) are interpreted as a,, > 0, is not in
general an M-matrix.

ExampPLE 2.1. Consider the matrix

[ s 1 —11
L_ -8 24 -11 -7
» Wwhere A 6] 0 0o 24 -8

0 0 -8 24

OO - W
OO W
— G DO
L~ DN DO

It can be verified that A satisfies (2.1), but obviously A™! is not an M-matrix,
since its (1,3) element is not nonpositive. Thus, an additional property of
A = [a; ;] must be added to the assumptions of (2.1) to ensure that A™" is an
M-matrix. This additional property can be motivated from the symmetric
case, using the following observation:

OBSERVATION 2.1. Let A € R™" be a symmetric nonnegative matrix.

Then the following are equivalent:

() for each triple {q, t, s} in N3, there exists a reordering {i, j, k} of the
elements of this triple such that

Gij 2 0y = a5

(i) a;; > min{a,, a; } forall i, k, j € N.
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Proof. Since (ii) is formulated for all i, j, k € N, (ii) is equivalent with

a; ;> min{ai,k; ak,j},

z,
a; 5 > min{ai,j;aj’k}, (2.2)

ay ; > min{a; ; ai’j}

¥/

for a triple {i, j, k} € N°. Thus, if there is a reordering {i, j, k} of the
elements of each triple {g, ¢, s} such that ¢, ; > a,; = 4; ; holds, then, using
the symmetry of A, it can be verified that (2. 2) holds. Hence, (i) implies (ii).
On the other hand, if (i) or (2.2) holds, let {g, s, ¢} be any triple in N°;
from the three nonnegative numbers, a, , a,,, and a,, choose the largest,
say a,,, and set i =3, j:=1t, and k:=gq. By deﬁmtmn a;; > a,; and
j = ar ;. But on using (2. 2) and the symmetry of A, it follows that
ax > mina; 5 a;,} = a;; > minfa; ;5 g} =a,,, ie., a4 = and (ii)

ij> ¢, %k
1mphes (i). [

Using this observation, we make the following definition:

DEFINITION 2.3. A matrix A = [a ]e R™" is called a generalized
ultrametric matrix if

(i) A has nonnegative entries;

(i) a;; > min{a;;; a4 } forall i, k, j € N;
(iii) a;; > max{a,,:k € N\ {i}} forall i € N;
(iv) a;; > max{a; ;- k € N\ {i}} forall i € N;

(v) each triple {q, s, t} in N® can be reordered as a triple {i, j, k} such
that

(Vl) d ik and akJ ak i
(v.ii) max{a”; a;;} > max{alk, a i},

where, if n = 1, (iii) and (iv) are interpreted as a,; > 0. A matrix A is called
a strictly generalized ultrametric matrix if the above conditions hold with
strict inequality in (iii) and (iv).

If A is symmetric, then using Observation 2.1, conditions (ii) and (v) of
Definition 2.3 are equivalent. Thus, the set of generalized ultrametric matri-
ces includes all classes of matrices mentioned above. Moreover, if a (not
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necessarily symmetric) matrix A satisfies (i), (iii), (iv), and (v) of Definition
2.3. then condition (ii) is equivalent to the statement:

the same ordering used in (v) satisfies
min{a, ;; a;;} > min{a; ; @ i} - (2.3)

Since the definition above of a generalized ultrametric matrix may seem
nonintuitive, we give below a description of generalized ultrametric matrices
using weighted graphs, which may be more transparent.

Recall that a rooted tree G = (V, E) is a connected undirected graph
without cycles, having a root and consisting of the set of vertices V and the
set of edges E C {(x, y:x, y €V, x # y}. Let w €V denote the root of
the tree, and let B C V denote the set of its leaves, with cardinality |B| = n.
To each edge (x, y) of E, we assign two nonnegative numbers:

I(x,y) >0 and r(x,y) >0 [all (x,y) € E],

and [ and r are called weighting functions for the rooted tree. Then, for any
b € B, let p(b) denote the consecutive distinct edges {(v;, v, DI, with
b = v, and v,, = w, which form a path connecting the leaf b to the root w.
For any b and b in B, set

dl(b>5) = Z l(vi>vi+1)’

p(b)Np(h)

L(bB) = L r(n0e0). (2.4)
p(B)Np(b)

d(b,b) = max{d,(b,b);d.(b, b)},

where p(b) N p(I;) denotes the common edges of these paths from the
leaves b and b to the root w. If we number the leaves from 1 to n and define
the matrix A = [ai,].] € R™" by

d.(i,j) for i<j,
a; ;= d(i,j) for i=j, (2.5)
d,(i,j) for i>j,
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we obtain, for every rooted tree and for all weighting functions [ and r
defined on this rooted tree, a generalized ultrametric matrix; see Theorem
3.3. Conversely, we show in Theorem 3.3 that, for a given generalized
ultrametric matrix A, there exist a rooted tree and weighting functions [ and
r such that the entries of A are given as indicated in (2.4) and 2.5).

ExaMPLE 2.2. Consider the rooted tree in Figure 1 with leaves
(1), ...,(10) and weights (i, j) and I(i, j), shown respectively on the right
and left sides of the corresponding edge (i, j).

From the tree we see that p(2) N p(3) = (a, B) U (B, w), so that from
the definitions of (2.5), the associated matrix A = [q,;] € R1° below has
entries a, 4 = 3 and a3, = 9:

'3 0 0 0 0 0 0 0 0 O]
0 11 31 1 1 1 1 1 1
0 9 12 1 1 1 1 1 1 1
0 2 2 7 5 5 1 1 1 1
4]0 2 25 75 1 111
o 2 2 5 5 8 1 1 1 1
0 2 2 2 2 2 7 3 3 3
0 2 2 2 2 2 6 9 3 3
0 2 2 2 2 2 6 6 9 7
0 2 2 2 2 2 6 6 8 9
In the next sections, we use the following
NOTATION. By &,, we denote the vector [1,.. ., 1Y € R". For A = [a,.,j]

€ R™", we set

T(A) = min{ai’j i,] € N},

w = mini{a,.:a,, = T( A)},
(4) (0,020, =7(4)} 26

5(4) = w(A) — 7(4),

I

p( A) =max{a, ;:i,j € N}.

If A is symmetric, we note that 7(A) = w(A).
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Fic. 1.

3. CHARACTERIZATIONS AND THE INVERSE OF
GENERALIZED ULTRAMETRIC MATRICES

We begin this section with the following theorem which describes the
nested block structure of a generalized ultrametric matrix. Moreover, Theo-
rem 3.1 indicates a way to construct such a matrix. This theorem, which was
already given in [10] for the symmetric case, is one of main tools for
considering generalized ultrametric matrices.

THEOREM 3.1. Let A = [ai,j] € R™", n > 1, be a generalized ultramet-
ric matrix. Then there exist a positive integer r, with 1 <r <n, and a
permutation matrix P € R™" such that ’

C O
S(A)gn—rgr,r D

A],l A].,2
AQ,I A2,2

PAPT = +7(A)EE (31)

where C € R™" and D € R"™"""" are generalized ultrametric matrices and

5(A) = w(A) — 7(A).
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Moreover,
w(A ;) > w(A) and w(A4,,) > o A). (3.2)
Conversely, if C € R™" and if D € R" " with 1 < r < n, are general-

ized ultrametric matrices and if 0 < 8 < w(C) and if 0 < 8 < w(D), then

[ ¢ 9 + 7€, ET

8, & D

is a generalized ultrametric matrix for each nonnegative real 7.

Proof. First, suppose that a;; = 7(A) for some j € N. From (iii) and
(iv) of Definition 2.3, all entries in the jth row and jth column of A are
7(A). By a suitable permutation of indices, we may assume that j = 1, and
A can then be expressed, in partitioned form, as

Al,l A1,2

A =
A2,l A2,2

_ [g g] +1(A)E £, (3.3)

where A | € R"" and A,, € R"~ """ ! In this case, we see from (2.6) that
w(A) = 7(A), so that 8(A) = 0. Then (3.3) has the desired form of (3.1)
with C =0, and, as w(A;}) = 17(A) = w(A) and w(A,,) > 7(A) =
w(A), the inequalities of (3.2) are then also valid. Moreover, since (from
Definition 2.3) any principal submatrix of a generalized ultrametric matrix is
again a generalized ultrametric matrix, it follows that the block diagonal
submatrices C = O and D in (3.3) are generalized ultrametric matrices.
Thus we may assume, without loss of generality in what follows, that

i> 7(A) for all j € N.

Wlth a;; > T(A) for all j € N, a smallest entry of the nonnegative matrix
A must be a nondiagonal entry, and, as in Theorem 1.2 of [10], we may
assume, again by a suitable permutation of indices, that a,, = 7(A). Then,
define -

= {] €EN:a; ;= T(A)} and T = {] €EN:ay; > T(A)}.
Since n € S and 1 €T, S and T are disjoint nonempty subsets of N with
S U T = N. Again, by a suitable permutation of indices, we may further

assume that

T=1{1,2,...,7} and S={F+1,7+2,...,n}, where 1 <7 <mn.
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From (ii) of Definition 2.3, we have, for all j € T and k € S, that
T(A) = ayx > min{a, ;;a,,}.
But since @, ; > 7(A) for all j € T, the above relation yields
a;r = 7(A) forall je T and k € 8.

Moreover, we may assume that a;; > 7(A) for all i and j in T, ie.,
7(A} 1) > 7(A), for if there were an entry a; ; = 7(A) for i and j in T with
¢ # j, a suitable permutation of indices in T would bring this entry to the first
row of A, and leave ay; = 7(A), for all J € S, unchanged. Hence, we may
assume that 7 is minimal with respect to all such permutations. Next, we

decompose the set S into two disjoint subsets R and Q such that
a¢;y =min{a;;:j €S} forall i€ Q
and

a;; <ag, foral ieQ, seR.

Thus, we have S = R U Q. where R = ¢ is possible. Again using suitable
permutations, we can write

R={f+1,...,p} and Q={p+1Lp+2,....,n), where r<p<n.

In other words, the elements of the partial' first column of A, namely,

[ I
Fit1,15 Qi )se-vsly ],

are reordered (by a permutation of the rows and columns from S) so that the
minimal (equal) entries (corresponding to the set Q) all appear at the bottom
of this partial first column of A.
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Using these sets of indices T, R, and Q, we obtain the following partition
of A:

1
1

A, 1.2 A1,3
A= Az,l 2.2 A2,3 (3-4)
a1 Ags 3.3

In the foHowing we shall show, for R # ¢ and for R = ¢, that the partition of
A in (3.4), defined by the two distinct sets T U R and Q, satisfies (3.1) and
(3.2) of Theorem 3.1. V

Now, we consider condition (v) of Definition 2.3 and its implications and
restrictions on the structure of the matrix blocks given in (3.4).

(@ If T={1}, ie., a,, > 7(A), we obtain, using the definitions of the
sets R and Q, that
A~3’1 = Yé_ps where 7(A) < y< 'r(Aﬂz’l).

(b) Consider any triple {g, s, ¢} in N° with, say, gand ¢t in T and s in S.
Since, by construction, 7(A} ) > 7(A), it is evident from the second part of
(v.i) of Definition 2.3 that the reordering {i, j, k} of this triple is such that
k € S. But then, from the second part of (v.i) of Definition 2.3, it follows that

the columns of
Ay,
Ay,

Agy =76 &,  where 7(A) <y< 7'(A~2)1). (3.5)

are all necessarily equal. Hence,

Moreover, it can be verified from (v.ii) of Definition 2.3 that

Y < o 4y,). (3.6)

(c) The case where the triple {g, s, t} in N® has all entries in T yields no
further information about the structure of the matrix blocks of (3.4). How-
ever, A, must satisfy (v) of Definition 2.3.
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(d) Since n €S, then S # 0. However, if S = {n}, then R = 0. In
this case, the desired conclusion of (3.1) of Theorem 3.1 follows from (3.5) of
case (b).

(e) Next, consider any triple {g, s, ¢} in N*® with two elements in S and
one in T. Here, 7(A, ;) > 7(A) is no restriction for the ordering of {q, s, ¢}.
[If R = ¢, we have already established the representation (3.1).]

(el) In the following, we consider any triple {g, s, t} in N® with one
element in T, one in R, and one in Q- A reordering {i, j, k} of the triple
having k € T is not possible, since we would obtain from (v.i) of Definition
2.3 that each entry of A, is equal to each entry, y(A), of A;l, a
contradiction to our previous constructions. Similarly, a reordering of the
triple having k € R is also not possible, since (v.i) of Definition 2.3 would
give that all entries of A;, are 7(A), and that all entries of A,y and A, are
equal. But then, applying (v.ii) of Definition 2.3 would give y(A) > u(A,),
again a contradiction to our previous constructions. However, the rema}ning
orderings {i, j, k} with k € Q imply, from (V.i)~0f Definition 2.3, that Ay s
a constant block with constant 7( A), and Az, is a constant block with
constant y. With these restrictions, (v.ii) of Definition 2.3 is then satisfied.

(e2) For the case that the triple {g, s, t} in N® has two elements in Q
and one in T (which includes the case R = ¢) and for the case when this
triple has two elements in R and one in T, (v.i) of Definition 2.3 gives no
restriction on the reordering of {q, s, t}. However, for each ordering, (v.ii) of
Definition 2.3 yields

Y s a)(A~2’2) and vy < w(A_s,3)§ (3.7)
whence combining (3.7) with inequalities above gives

Y= w( A). (3.8)

() The case where the triple {q, s, t} in N* has elements all in Q, gives
no added structure to the blocks of (3.3). However, Ag3 € R"P"7P must
satisfy (v) of Definition 2.3.

The above discussion shows that the partitioned matrix of (3.4) then has
the form
A~1,1 7'( A) T( A)
- - Bl,l 7( A)
A= Az,l Az,z T(A) =i >
Y Bz,z

~

Y Y l As,:{
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where constant block submatrices are indicated by their constant values.
Then, on forming the sets T U R and Q to define a repartitioning of A, the
matrix on the right above is obtained, and this matrix has the desired form of
(3.1) of Theorem 3.1. Moreover, using (3.5)—(3.8), it follows that

w(Bl,l) = Y and CL)(BQ’z) = Y,

which gives, since y = w(A), the desired result of (3.2) of Theorem 3.1.
(Note again that the principal submatrices B, , and By, of A are automati-
cally generalized ultrametric matrices, since A is.)

Conversely, if C € R™" andif D R"™ """ 1 <r<n,are generalized
ultrametric matrices and if 0 < § < o(C) and 0 < 6 < w(D), then it is
easily verified from Definition 2.3 that the matrix

c o .
6§n—r§rT D + Tfn fn

is a generalized ultrametric matrix for each nonnegative real 7. m

Since the matrices C € R™" and D € R+ are again generalized
ultrametric matrices, the reduction process of Theorem 3.1 can be applied to
each of the matrices C and D, provided that » > 1 and n — r > 1. This
reduction process stops with 1 X 1 matrices. To further describe this process,
we change the notation in (3.1) by writing

Ty = T(A), 61 = 8(A)>
uy = gn’ Uy = (0,...,0, fnT“r)T S5 Rn, w, = (frT’O""’O)T € R

Then (3.1) of Theorem 3.1 gives the following representation of a generalized
ultrametric matrix ‘A in R™".

cC O

T::
PAP [O D

T T
} + Tyuuy + 6w, .

Using this notation for all submatrices, the procedure (or, in other words, the
nested block structure of a generalized ultrametric matrix) can be expressed
by a binary rooted tree with n leaves and 2n — 1 vertices (where, in a binary
rooted tree, each vertex has one “incoming” edge, and each vertex, not a leaf,
has exactly two “outgoing” edges). This binary rooted tree determines the
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vectors u;, v;, and w; and the scalars 7, and &, i = 1,...,2n — 1. The
following example illustrates this process.

ExaMmpPLE 3.1. The matrix A with

(5 1 1 1 1]
5 5 1 1 1
A=13 3 4 1 1
3 3 4 5 4
3 3 4 5 5,
leads to the tree in Figure 2, with
w=(LLL1LD", 0= (0,01,1,1)",  w!=(11,0,0,0),
U2 = (1,1, 07 0, O)T’ 02 = (O>1>O:O)O)T’ ng = (1’0’0’0’0)’
uy=(0,0,1,1,1)",  0;=1(0,0,0,1,1)",  wl= (0,0,1,0,0),
u4 = (1,0’ O,O’O)T, 1)4 = (O, 0,0,0, O)T, w} = (O> 07 07 Oi 0)’
us = (0,1,0,0,0)", ;= (0,0,0,0,00",  w!=(0,0,0,0,0),
u6 = (Oa O, 1> O,O)T’ UG = (0>O>O>O>O)T9 w’ﬁr = (07 O’O’ 0’0)’
ur=(0,0,0,1,1)",  v;:=1(0,0,0,0,1)",  w!=1(0,0,0,1,0),
us = (0,0,0,1,0)",  vy:=1(0,0,0,0,0)",  wl=(0,0,0,0,0),
Ug = (O>O>O:O= l)T: Uy = (0,0,0,0, O)T’ wg = (O’O’O’O’O)’

(71,...,79) = (1,0,0,4,4,3,3,1,1),

(81....,85) =(2,4,3,0,0,0,1,0,0).

Here, the vertices of the tree are numbered from 1 to 9, starting at the top
level with the first vertex (the root), and at each subsequent level the vertices
are consecutively numbered from left to right, until all leaves are reached.
The vectors u;, v;, w, (i =1,...,9) indicate the vectors which built the
related generalized ultrametric submatrices.
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{1,2,3,4,5}

Thus, Theorem 3.1 gives a representation of a generalized ultrametric
matrix A € R™" as a sum of 2n — 1 at most rank-two matrices:

THEOREM 3.2. Let A = [a,., j] € R™" be a generalized ultrametric ma-
trix. Then there exists an associated binary rooted tree for N={1,2,... n},
consisting of 2n — 1 vertices, such that

2n—1 ‘
A=Y (ruul + Sow]), (3.9
i=1 ,

where the (0,1) vectors v, w;, and u,, determined from the vertices of the
tree, are such that if there are edges in the tree from vertex i to vertex j and
from vertex i to vertex j + 1 with i <j, then w, = u, and v, = U, and
6; + 7, > 8,. Moreover, the scalars 7, and §; in (3.9) are nonnegative, with
6, = 0 for every vertex corresponding to a leaf. Conversely, given any binary
rooted tree for N = {1,.. .. n}, which determines the vectors u;, v;, w; € R™,
and given any nonnegative constants {r}2"7' and {83277, such that if any
elclige in the tree from vertex i to vertex J» with i <j, satisfies 5 + T > 0,
then -

2n—1
(ruul + Svw]) (3.10)
1

3

il

i

is a generalized ultrametric matrix.




380 REINHARD NABBEN AND RICHARD S. VARGA

We remark that the condition 8, + 7; > 8, in both parts of Theorem 3.2,
is just a manifestation of the inequalities of (3.2) of Theorem 3.1. We also
remark that because 8, = 0 for any vertex corresponding to a leaf, the total
number of parameters which actually play a role in the representation of the
matrix in (3.9) is not 22n — 1), but 3n — 2.

Note that the binary rooted tree used above illustrates the nested block
structure of a generalized ultrametric matrix. The tree determines the vectors
u;, v;, w; and the scalars 7; and §;, which are needed in the characterization
of the generalized ultrametric matrix as the sum of rank-two matrices.
However, this tree is closely related to the tree of Example 2.2 and to the way
we constructed generalized ultrametric matrices in the previous section.
Thus, we are now able to state and prove the following characterization of
generalized ultrametric matrices using weighted trees and distance functions
between the leaves of the tree.

THEOREM 3.3. A nonnegative matrix A is a generalized ultrametric
matrix if and only if there exists a rooted tree and weighting functions | and r
such that the entries of A are given as indicated in (2.4) and (2.5).

Proof. 1If A is a generalized ultrametric matrix, then with Theorem 3.2,
there exists a associated binary rooted tree which determines the nonnegative
numbers 7; and 8;. We introduce a new vertex, which becomes the new root,
and we introduce a new edge from the new root to the old root. If we
number the vertices as in Theorem 3.2 and if let 0 denote the new root, the
desired weighting functions are given by

r(0,1) =7, and (0,1) =8, + 7,
and, if there is an edge from vertex i to vertex j with i <j,

r(i,j) = 7 oand I(i,f) = § + 7, — 9.

1

[Note from Theorem 3.2 that I(i, j):=§;, + T = 5 above is necessarily
nonnegative.] Then it can be verified that the above weighting functions for
the binary rooted tree, derived from the generalized ultrametric matrix
A =[a; ;]in R™", do indeed reproduce the entries of A from the definitions
of (2.4) and (2.5).

For the converse, consider any (not necessarily binary) rooted tree
G = (V, E) for which there are two nonnegative numbers (from the weight-
ing functions [ and r) assigned to each edge. Let B C V denote the set of
leaves, with B = {1, 2,..., n}. We show below that the n X n matrix A,

defined from (2.4) and (2.5), is a generalized ultrametric matrix.
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Obviously, conditions (i), (iii), and (iv) of Definition 2.3 are satisfied.
Now, consider any triple {g, s, ¢} € N® and their related paths [i.e., p(q),
p(s), and p(¢)] from these leaves to the root of G.

We reorder the triple {q, s, t} as the triple {i, j, k} such that

lp(k) Np()l <lp(i) Nnp(j)l and [p(k) Nnp(i)l <Ip(é) Np(j)l,

where [p(k) N p(i)l denotes the cardinality of the common edges of p(k)
and p(i). This means that there are exactly | p(k) N p(i)| common consecu-
tive distinct edges from the root to a certain vertex, say ©, in both p(i) and
p(k). If | p(k) N p(i)l = 0, then @ is just the root of G.

Thus, from the structure of the rooted tree, we see that

p(k) np(f) =p(k) N p(i) cp(i) N p())-

Hence, with the nonnegative numbers assigned to each edge of the tree,
the triple {i, j, k} satisfies conditions (v.i) and (v.ii) of Definition 2.3 and the
statement (2.3), i.e.,

Qi = Qx> Aik = k>

max({ a; ;> aj,i} > max{ @i k> ak,i} , min{ a; ;> a’j,i} > min{ @i k> ak,i} .
Hence, using the statement ‘preceding (2.3), it follows that (ii) of Definition

2.3 is also satisfied, and A is thus a generalized ultrametnc matr]x [ |

It is evident that the null matrix in R™" satisfies Definition 2.3 and is thus
a singular generalized ultrametric matrix. In the following, we derive a
necessary and sufficient condition for a generalized ultrametric matrix to be
nonsingular. Therefore, we consider the relation between A and A + AT,
where A is a generalized ultrametric matrix. With the representation (3.1) of
A given in Theorem 3.1, (3.2) necessarily holds, i.e.,

o(Ay,) = w(C) +7(4) > 0(4),  0(Ay,) = o(D) +7(4) > 0(4),
and we obtain
7(A) + w(A) =7(A+ A") =27(A) + 6(A).

This observation, when applied to the principal submatrices of A which arise
in the reduction process leading to the representation of (3.9), shows that the
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binary rooted tree for A induces the same binary rooted tree for A + AT,
Consequently, A + AT has the representation

. 2n-1
A+A"= Y Fuul (3.11)
i=1

where
T, =271, + §, (i=1,2,...,2n = 1).

Using the converse part of Theorem 3.2 [with 7, := 27, + &, and &, == 0 in
(3.10)], (3.11) gives that A + AT is then a symmetric generalized ultrametric
matrix.

It was shown in [11] that a symmetric generalized ultrametric matrix A is
nonsingular if and only if

span{u;: 7, > 0} = C", (3.12)

and, moreover, A is positive definite if and only if (3.12) holds. Now for a
generalized ultrametric matrix A, define the set

U, = {u,: 7, + §, > 0},

where the vectors u; and the nonnegative scalars 7, and §; are taken from
the representation (3.9) of A. As 7; and §; are nonnegative, it is clear that
Ug = Uyrar-

This leads to the following theorem, which gives a necessary and sufficient
condition for a generalized ultrametric matrix to be nonsingular:

THEOREM 3.4. Let A = |a,. j] in R"*™ be a generalized ultrametric

1

matrix. Then the following are equivalent:

() A is nonsingular,

(ID) span U, = C™,

(II1) span Uy, ,r = C",
av) A+ AT is nonsingular.

Proof. (1) implies (ID): Assume that (II) does not hold, i.e., span U, # C™
Then there exists a vector x € C*, x # 0, with

ulx =0  forall u, e U,. (3.13)

1
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Using the representation (3.9) of Theorem 3.2, we obtain

2n—1

Ax = (ruulx + 8vw; [x). (3.14)
1

I

i

If u; € Uy, then 7, + §, = 0, and, as the 7;’s and §;’s are nonnegative, then
= 9, = 0, and its corresponding term in (3.14) is zero. If u, € U,, then
7, + 6, > 0, and its corresponding term, because of (3.13), reduces to

T
8, v,w; x.

If §, =0, the above term again vanishes, and if 8, > 0 (i.e., if v, is not a
leaf), then there is an edge, in the associated binary rooted tree, from vertex i
to a vertex j with j > i. But, because of (3.2), it follows that T+ 8> 8, >0,
which gives that u; € U,. But since u; = w; (see the statement of Theorem
3.2), then from (3.13),

Svwlx = Svu]x—-O

Thus, all terms of the sum in (3.14) vanish, and A is singular.

That (II) implies (IIT) follows immediately from the observation U, =
Uy , o7, mentioned above.

That (III) implies (IV) is proved in Lemma 2.1 of [11]. However, for
completeness, we repeat the proof. If there is an x € C™ with (A + AT)x =
0, we obtain

2n—1 2n—1
A+ AN x = Y «Huulx= ) %illuiTxllé = 0.
i=1 i=1

Thus, ufx =0 forall i = 1,...,2n — 1. Since span U, , ,r = C" by hypoth-
esis, it follows that x = 0, and A + A" is nonsingular.

(IV) implies (I): Since A + A" is a nonsingular symmetric ultrametric
matrix, A + A" is symmetric and positive definite. Thus, A is also positive
definite, in the sense that Re(x7Ax) = 2x#(A + AT)x > 0 for all x € C",
x # 0. Therefore, A is nonsingular. m
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As a corollary of Theorem 3.4, we obtain:

COROLLARY 3.1. Let A =[a,;] in R"™" be a nonsingular generalized
ultrametric matrix of the form :

Al,l Al,Z
AQ,l A2,2

2

where Ay, and A,, are square matrices, A, is a constant matrix with
constant T(A), and A, | is a constant matrix with constant w(A) = 7(A) +
8(A), with 8(A) > 0. Then A,, and A,, are nonsingular generalized
ultrametric matrices.

Proof. Since A is a nonsingular generalized ultrametric matrix, we see
from Theorem 3.4 that A + AT is a symmetric and positive definite general-
ized ultrametric matrix, and so are its principal submatrices, A, + A7,
and A,, + Al,. Thus, again from Theorem 3.4, Ay and Ay, are also non-
singular. [

We note, from the equivalence of (I) and (IV) in Theorem 3.4, that a
strictly generalized ultrametric matrix [i.e., (iii) and (iv) of Definition 2.3 hold
with strict inequality] is necessarily nonsingular. This will be used in our next
result, Theorem 3.5, below.

THEOREM 3.5.  Let A = [a, ;] € R™" be a strictly generalized ultramet-
ric matrix. Then A is nonsingular, and its inverse A™' = [e; ;] € R™" is a
strictly row and strictly column diagonally dominant M-matrix with the
additional properties

a; =0 ifandonlyif a, =0 (3.15)

and, if n > 1,
w( AVETATIE < 1, (3.16)
n(A)EATE > 1. (3.17)

Proof. The proof is an induction on the dimension n. The case n = 1 is
obviously true. Now, let us assume that Theorem 3.5 is true for all dimen-
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sions 7 with 1 <7 <n. With Theorem 3.1, A has, up to a suitable
permutation, the following representation:

Al,l A1,2
Az,l A2,2

+7(A)E &),

. C O
- {6<A)§n_r§£‘ D
where

(A) = w(A) — T(A) > Of

Moreover, C € R™ and D € R"" """, with 1 < r < n, are again strictly
generalized ultrametric matrices, since A is a strictly generalized ultrametric
matrix, with

0(A) > 0(A) and w(A,,) > w(A). (3.18)

Because the cases r =1 and n —r = 1 can be similarly treated, assume
r>1land n —r> 1. We have by induction that C™! and D~ are strictly

row and strictly column diagonally dominant M-matrices which also satisfy
(3.16) and (3.17). Thus,

§CTH >0, €T >0, &7 Do, D¢ _ >0,
(3.19)
0<o(C)§'CTE <1, 0<w(D)EL DY <1

n—r

Let

' C 0
M= S(A)fﬁ—rng Dy

Then M is nonsingular, and M~! is given by

M-l = c! O
—8(A)D7¥¢,_ £T'c™! p-iy

Since D7, and £'C™! are positive vectors and S(A) > 0, the induction
hypothesis gives that M™! is a Z-matrix, i.e., a real matrix in R™" whose

off—diagonal entries are all nonpositive.
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In the following, we show that M ™' is a strictly row and strictly column
diagonally dominant matrix. Set

c! O

P = M_lgn = [_B(A)D—lgn—rngc—l D—l gn

(1 - 6(A)§rTC—l§r)D_]§n“r .
Since (A, ;) > w(A) from (3.18), we obtain
o(C) = w(A1)) = 7(4) > 0(A) = 7(A) = 3(4A).

Thus, using the inductive hypotheses [i.e., 0(C)ETC™¢ < 1], we obtain
p=M “!% > 0. Hence, since M™' is a Z-matrix, M™! is a strictly row
diagonally dominant matrix.

Now, consider €M ™!, and set

L [a-sayer, o, yeret ]
qT — §,,TM 1 _ ( P ) .

Since w(A,,) > w(A) from (3.18), we obtain
w(D) = w(Ay,) — 7(4) > w(A) — 7(4) = 8(A).

Thus, using the inductive hypotheses [i.e., (D)¢L . CT¢€, _, < 1], we obtain
that ¢" = £ _M~! > 0. Again, since M™! is a Z-matrix, M ™' is a strictly
column diagonally dominant matrix.

Using the Sherman-Morrison formula [2, p. 511, A™! can be expressed as

7(A)
1+ r(A)ETMTE,

AT = [M+1(A)EE] =M - M7 £TM!

T(A) r
1+ 7(A)ep T

-1
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Since

LG
L+ 7(A)e, P =7

it follows from the inductive hypothesis that A~! is a Z-matrix. Thus, it
suffices to show that A~! is a strictly row and strictly column diagonally
dominant matrix, and that (3.16) and (3.17) hold. We first consider the row
sums of A. We have

T(A) _ 1 3.90
1+ r(A)gk PI% = 1+ 7(A)q P~ 0 (3:20)

AT =p -

Analogously, since g€, = éIp, we obtain

1

ETA) = g7 > 0.
1+ T(A)fnqu

Hence, A™' is a strictly row and strictly column  diagonally dominant
Z-matrix, and is thus a nonsingular M-matrix.
We now establish (3.16), i.e., w( A)ETATYE < 1. From (3.20), we have

w(A)Ep
L+ 7(A)ETp

w(A)EIATE, =

Thus, it reduces to showing that
{w(4) = 7(A)}ep < 1.
However, as w(A) — 7(A) = §( A),
{w(4) - 7(4))eTp

= [8(A)(gc )] + 1 - s(A)¢CTe][8(A) el D7, _ ]
(3.21)
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On using the inductive hypothesis, i.e.,
0<8(A)EC <1 and 0< S(A)EL D <1,

all quantities in brackets in (3.21) are nonnegative, with the middle bracketed
quantity being positive. Increasing the last factor in brackets to unity in (3.21)
then gives ‘

{o(A) = r(A)}&fp <8(A)ETCT% + [1 - s(A)eTC k] = 1,

the desired result.

Similarly, we next establish (3.17), i.e., u( A)ETATYE > 1. On using the
results above, we have

r(A)Ep
L+ 7(A)¢p

n(A)EIATE, =

Thus to establish (3.17), it is sufficient to show that {u(A) — 7(A}Ep > 1.
Then,

{u(4) = 7(A)}&lp = [{n(A) - r(A))¢c k]
18 g e ][{u(A) - r(a)}er D, ]

The middle quantity in brackets above is again positive. Since u(A) —
7(A) > w(D) and since u( D), , D7, . > 1 (by the induction hypothe-
sis), the last factor in brackets is greater than unity. Hence, decreasing the
last factor in brackets to unity then gives

{n(A) =r(A)gTp > [{n(A) —r(a))g7c ] +[1-8(A)e'C ],
and as 6(A) = w(A) — 7(A) < w(A) — 7(A), then

{n(4) —7(A)elp > 1,

the desired result.
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Finally, that the zero entries of A and A7! are the same [cf. (3.15)]
follows easily along the lines of the proof of [10], in the symmetric case, and is
omitted. |

Here, we mention that the Sherman-Morrison formula, which is another
main tool in considering these kinds of matrices, was already used in [10] for
the symmetric case. Later, this formula was used by Johnson [4] to show that
the class of inverse M-matrices is invariant under a certain rank-one update.

This update is similar to that used in [10] and also that used in the proof of
Theorem 3.5.

THEOREM 3.6. Let A = [ai, j] € R™" be g generalized ultrametric ma-
trix. If A is nonsingular, then its inverse A~! = [ai,A] € R"" is a row and
column diagonally dominant M-matrix with the additional properties

a;; =0 implies a, ;. = 0.
and, if n > 1,
w(A)§ATE <1,

pn(A)ETATIE > 1.

Proof. The proof follows immediately from Theorem 3.5, since each
generalized ultrametric matrix is a limit of g sequence of strictly generalized
ultrametric matrices. u

In considering the converse of Theorem 3.6, it can be easily verified that
any nonsingular row and column diagonally dominant M-matrix in R"! or
R?>? has an inverse which is a (nonsingular) generalized ultrametric matrix,
Examples however show that the above statement fails in general to be true
in R™" for all n > 2. A heuristic explanation for this follows. As remarked
after Theorem 3.2, the total number of parameters in the representation of
the n X n matrix in (3.9) is 35, — 2, while the total number of entries of a
general matrix in R™" is n% But 3n — 9 — n® is valid only if n =1 or
n =9,

All results of this paper were presented by the first author at the
Workshop on Nonnegative Matrices, Applications and Generalizations, held
in Haifa, Israel, 30 May—4 June 1993. There, generalized ultrametric matrices
were called pre-ultrametric matrices, and nonsingular generalized ultrametric
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matrices were called ultrametric ‘matrices. To avoid confusion, we changed
these names.

We acknowledge with thanks some conversations and a useful exchange of 1

information with J. J. McDonald, M. Neumann, H. Schneider, and M. ].
Tsatsomeros, which have improved our paper.
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