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ABSTRACT

Recently, a classification of matrices of class Z was introduced by Fiedler and
Markham. This classification contains the classes of M-matrices and the classes of N-
and Fy-matrices studied by Fan, G. Johnson, and Smith. The problem of determining
which nonsingular matrices have inverses which are Z-matrices is called the inverse
Z-matrix problem. For special classes of Z-matrices, such as the M- and N, -matrices,
there exist at least partial results, i.e., special classes of matrices have been introduced
for which the inverse of such a matrix is an M-matrix or an Ny-matrix. Here, we
define a system of classes of matrices for which the inverse of each matrix of each
class belongs to one class of the classification of Z-matrices defined by Fiedler and
Markham. Moreover, certain properties of the matrices of each class are established,
e.g., inequalities for the sum of the entries of the inverse and the structure of certain
Schur complements. We also give a necessary and sufficient condition for regularity.
The class of inverse Ny-matrices given here generalizes the class of inverse Nj-matrices
discussed by Johnson. All results established here can be applied to a class of distance
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matrices which corresponds to a nonarchimedean metric. This metric arises in p-adic
number theory and in taxonomy.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we basically deal with n X n Z-matrices, i.e., real
matrices whose off-diagonal elements are nonpositive. One well-known class
of Z-matrices is the class of nonsingular M-matrices, i.e., those matrices of
the form A = tI — B where B is a nonnegative matrix (B > O) and where
t > p(B); here, p(B) denotes the spectral radius of B. However, other
classes of Z-matrices are also of interest, and have been discussed in the
literature. Recently, Fiedler and Markham introduced in [5] a classification of
matrices in class Z. They defined the class L, for s =0, ..., n, as consisting
of real n X n Z-matrices which have the form

A=tl—B, where B3>0 and p(B) <t <p,,(B). (1.1)

Here, p,(B) denotes the maximum of the spectral radii of all s X s principal
submatrices of B, where p,(B) := —® and p,,(B) = +. Thus, the class
L, is just the class of (singular and nonsingular) M-matrices. We note that
L,_, is the class of Ny-matrices introduced by G. A. Johnson [20], and this
class contains the N-matrices introduced by Fan [4]. Moreover, L, _, is the
class of Fj-matrices defined by Smith [20].

As proved in [5], for each s with 1 <s < n — 1, the class L, is equal to
the class of Z-matrices for which all principal submatrices of order s are
M-matrices, but there exists a principal submatrix of order s + 1 which is not
an M-matrix. Additional properties of some of these classes are given in [2],
[19] and [21]. |

On the other hand, there has been interest in inverse M-matrices, i.e.,
any nonsingular matrix B > O whose inverse is an M-matrix. A survey of this
topic is given by C. R. Johnson [9]. Recently, the new class of generalized
ultrametric matrices was simultaneously introduced by McDonald, Neumann,
Schneider, and Tsatsomeros [15] and Nabben and Varga [17]. If nonsingular,
these matrices are inverse M-matrices. However, the oldest class of symmet-
ric inverse M-matrices is the class of positive type D matrices defined by
Markham [13] in 1972. A matrix A = [q; ;] € R™" is of type D if there exist
real numbers {a,} |, with @, > ,_; > - > «,, such that

a, if i<y, ,
“iT Ve if i>j (1.2)
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As shown in [13], a matrix of positive type D (i.e., with @, > 0) is nonsingu-
lar, and its inverse is a symmetric M-matrix (ie., a Stieltjes matrix). As an
example, for a; = j for 1 <j < n, where. n > 2, the associated n X n
positive type D matrix and its inverse are given by

1-1 1 1 1
1 2 2 2 2
1 2 3 3 3
A=1. . . . .
1 2 3 - n—-1 n-1
1 2 3 - n-1 n
and
) -
-1 2 -1
-1 2
ATl =
-1 2 -1

As mentioned in [17], the class of positive type D matrices (i.e., with a;, > 0)
is contained in the class of generalized ultrametric matrices.

But not only inverse M-matrices are of interest. For example, the linear
complementarity problem can be solved by a single linear problem if the
related matrix is an inverse Z-matrix [12]. Thus, it is natural to determine
classes of matrices which are inverse Z-matrices. A first step was taken by
G. A. Johnson [11], who proved that a matrix of negative type D (i.e., with
a, < 0) is an inverse Nj-matrix. Later, Chen [3] studied necessary conditions
for a matrix to be an inverse F,-matrix; however, no sufficient conditions
were developed. v

Here, we continue discussing inverse Z-matrices. Using the classification
of Z-matrices mentioned above, for each choice of s, we introduce sufficient
conditions for a matrix to be an inverse L -matrix. Thus, we define a system
of classes of matrices for which the inverse of each matrix of each class
belongs to one class of the classification on Z-matrices defined by Fiedler and
Markham. ’

Our system of classes contains the class of generalized ultrametric matri-
ces, and, as we show below, our classes are defined in terms of ultrametric
inequalities. The class of positive type D matrices is included in the class of
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inverse L. -matrices (i.e., the inverse M-matrices). We show that the concept
of type D matrices can be extended to obtain inverse L,-matrices for each s
with 0 < s < n. Moreover, we establish properties of the matrices of our
classes, e.g., inequalities for the sum of the entries of the inverse and the
structure of certain Schur complements. We also give a necessary and
sufficient condition for their nonsingularity. In Section 3, we apply these
results to a class of distance matrices which corresponds to a nonarchimedean
metric. This metric arises in p-adic number theory and in taxonomy.

We need the following additional notation. The set of positive integers
{1,...,n}is denoted by N. By £, we denote the vector [1,...,1]F € R For
A =g, ;] € R™", we set

T(A) = min{ai,].: i,j € N},
w(A) = min{aj’i: a; ;= T(A)}, (1.3)
8(A) = w(A) —1(A), sothat &(A) > 0.

For a block-partitioned matrix A € R™" with

where A, ; € R™" is nonsingular and where A, , € R*™""7" with1 <r <
n, the expression

A/A,, = Ay o — A2,1A1_,11A1,2 (1.4)

denotes the Schur complement of A with respect to A, ). Similarly, A/A, ,
is defined. Also, |B| denotes the cardinality of a set B, i.e., the number of
elements in B.

2. A SUFFICIENT CONDITION

_ The definition of our system of classes, which leads to a necessary and
sufficient condition for a matrix to be an inverse L-matrix, makes use of
ultrametric inequalities for the entries of the matrix. The differences between
the classes depend on the signs of all nonzero off-diagonal entries and on the
order of the largest principal submatrix which is a nonsingular M-matrix.
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We begin with the following common definition of [15] and [17] for a
generalized ultrametric matrix.

DEFINITION 2.1. A matrix A = [a; j] € R™" is a generalized ultramet-
ric matrix if

(i) A has nonnegative entries;
(i) a, e min{a; k5 O, j } for all i, k, j EN
(iii) each triple {g, s, t}'C N°® can be reordered as a triple {i, j, k} such
that
(iid) a;; = a;; and @4 ; = a ;,
(iii.ii) max{a, 5 6} > max{a; ;a5 ),
Gv) a; ;> max{a,],aj Jforall i,j € N.

A matrix A is said to be a strictly generalized ultrametric matrix if strict
inequality holds in (iv) for all i # j in N, where, if n = 1, this is interpreted

as a, ; > 0.

We see that if A is a generalized ultrametric matrix in R™", then the
matrix B == A + 7£, &7 satisfies (i), (iii), and (iv) of Definition 2.1 for any
real 7. This observation gives rise to

DEFINITION 2.2. A matrix A = [g, ] e R" " is a shifted generalized
ultrametric matrix if there is a real number 7 such that A + 7€ &7 is a
generalized ultrametric matrix. If strict inequality holds in (iv) of Definition
2.1 for all i € N, then A is a strictly shifted generalized ultrametric matrix.
In addition, if A = [gq, ] € R™" is a shifted generalized ultrametric matrix
which is not a generahzed ultrametric matrix, so that 7(A) < 0, then A is
said to be of type UL if

W) q, WA < 0forall i,j € N with i # j;

(vi) p is the largest positive integer such that there exists a p X p
principal submatrix of A which is a nonsingular M-matrix. If no such
positive integer exists, then p = 0.

As is easily seen, there are shifted generalized ultrametric matrices in
R™", n > 2, which are not generalized ultrametric matrices, and for which
the off-diagonal entries are mixed in sign. This shows that the sets U( 1)
represent proper subsets, of all shifted generalized ultrametric matrices not
generalized ultrametric matrices, in R™" for n > 2.
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EXAMl{LE 2.1. Consider the Z-matrix

5 —4 -6
A=|-2 2 -6 (2.1)
-2 =2 1

Since

11 2 0
A+6&5EI=14 8 0

4 4 7

can be verified to be a (strictly) generalized ultrametric matrix, then A is a
(strictly) shifted generalized ultrametric matrix, which is obviously not a
generalized ultrametric matrix, since A has some negative entries. Note that

the matrix
10 1 -1
A+56EI=13 7 -1
3

3

is also a (strictly) shifted generalized ultrametric matrix which is not a
generalized ultrametric matrix,. but this matrix is not in any U,f,g Pp for
0 < p < 3, because it has off-diagonal entries which are of mixed signs [cf.

(v) of Definition 2.2]. It is interesting to note that

. 1 45 -9 6
resed) | H g ]

so that its inverse is not a Z-matrix.

To determine the value of p for which A € U3 1_)P, we have that

1 10 —16 —36
A7l = 1 —14 7 —42|= (10 - B), (2.2)
-8 —18 -2 | ‘

where

0 16 36
B=114 3 42},

8§ 18 12
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showing that A is nonsingular and that A~! is a Z-matrix. Since some entries
of A™' are negative, A is surely not a nonsingular M-matrix. However, the
leading principal 2 X 2 submatrix of A is a nonsingular M-matrix, so that, in
the notation (vi) of Definition 2.2,

A € US7D.

Also, since A™! is a Z-matrix, it can be verified, using the notation of (1.1),
that the matrix B of (2.2) satisfies B > O with p,(B) = —» < 10 < pl(B)
= 12, so that [cf. (1.1)]

A"l eL,.
The point of this example is this: for the matrix A of (2.1), we have that

AeUZY and A*eL, , for n=3and m=1,
which couples the class U{ZY  for A to the class L , for A71. As we shall
later see, this is a special case of one of our main results, Theorem 2.10.

In Section 3, we discuss the class of (symmetric) nonarchimedean matri-
ces, which are the negatives of symmetric shifted generalized ultrametric
matrices of type U{," with zero diagonal entries, ie., A € R™" is a
symmetric shifted generalized ultrametric matrix of type U§," with zero
diagonal entries if and only if —A is a nonarchimedean matrix; see Proposi-
tion 3.3.

We next derive a subclass of each class defined above which generalizes
the concept of type D matrices due to Markham [13].

DEFINITION 2.3. A matrix A = [g; ;] € R™" is of type DY), _, if there

exist real numbers {a,}* |, with «, > an > >y >0, such that

a, if i<j,

a if i>j.

A matrix A = [ag, ] € R™" is of type D; nl)p, where 0 < p < n, if there

exist real numbers. {a}" ,with0 > a, > a,_; > *** > a, such that
1 n—1 1

o, if i<j,
%7 e if P>,
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where, if P ={i € N: q; ; > 0} and if M :={i € N: q;, <0}, then PUM
=N, p=|P, n —p =|M| and -

a;; > ) Iai,j‘ (i €P),

JEP, j#i
a; ;= o (i eM).

Matrices of type D{Y,_, are just the matrices of positive type D of (1.2),
defined by Markham, and hence are generalized ultrametric matrices (cf.
[17D. Next, for any matrix A of type D,(,fnll of Definition 2.3, it is also easy
to verify that A is a shifted generalized ultrametric matrix which is not a
generalized ultrametric matrix. Then, as the condition on the set P (with
p =|PD in the second part of Definition 2.3 creates a p X p principal
submatrix of A which is a nonsingular M-matrix, and as the remaining
diagonal elements of A (associated with the set M) are negative, there can
be no larger principal submatrix of A which is a nonsingular M-matrix. This
shows that DD is in fact a subset of U{7Y | as the notation would

p,n—p p,n—p’
suggest.

EXAMPLE 2.2. As an example of a matrix of Definition 2.3, the matrix

is in D,f,"nllp forn=4,p=2 o= —5+jforl<j<4, P= {3, 4}, and
M = {1, 2}. Its inverse, given by

105 —140 0 0
A-lo - | -140 180 -20 -—20
140 0 -2 24 —4

0 —20 -4 24

= (1801 — B)

where

75 140 0 0

140 0 20 20
0 20 156 4 1

0 20 4 156
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is such that p,(B) = 156 < 180 < pz(B) = 182.43533...,sothat A~ € L,.
Thus,

AeD{ZD and ATt eL,_, for m=2 and n = 4,

-m,m

which, as we shall later see, is a special case of Corollary 2.11.

To illustrate the classes of shifted generahzed ‘ultrametric matrices, and
especially the inequalities for the off-diagonal entries, weighted rooted trees
can be used, as indicated in [17], for generalized ultrametric matrices. -

Let G = (V, E) be a rooted tree, consisting of the set of vertices V and
the set of edges E C {(x, y): x, y €V, x # y}. Let w € V denote the root
of the tree, and let B C V denote the set of its leaves, with |B| = n. To each
edge (x, y) of E, there are assigned two nonnegative numbers:

I(x,y) >0 and r(x,y) >

and [ and r are called weighting functions for the rooted tree. Then, for any
b € B, let ‘p(b) denote the consecutive distinct edges {(v;, v, )}, with
b = v, and v,, = w, which forms a path connecting the leaf b with the root
w. For any b "and b in B, set

d(b,b) = L Uv,v),

p(B)Nph)

d(b,b) =X r(0v,0.), (2.3)

p(B)Npb)

d(b,b) = max{dy(b, b); d.(b, b)),

where p(b) N p(b) denotes the common edges of these paths from the
leaves band b to the root w. If the leaves are numbered from 1 to n, and if
the associated matrix A = [ai, ]] € R™" has its entries defined by

d.(i,j) for i<j,
a, ;= 1{d(i,j) for i=j, (2.4)
di(i,j) for i>j,

we obtain, for every rooted tree and for all weighting functions ! and r
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defined on this rooted tree, a generalized ultrametric matrix. Conversely, for
a given generalized ultrametric matrix A, there exists a rooted tree and

weighting functions [ and r such that the entries of A are given as indicated

in (2.3) and (2.4) (see Theorem 3.4 of [17]).

To extend the above connection, between weighted rooted trees and
generalized ultrametric matrices, to weighted rooted trees and shifted gener-
alized ultrametric matrices, it is only necessary to add, in the discussion
above, a new vertex, which becomes the new root, and to add a single edge
from the new root to the old root. For the associated weights, we assign to
the new edge two equal real numbers 7 (possibly negative), ie., [ =r =1
for this edge. The addition of this new root and single edge to a weighted
rooted tree analogously defines a shifted generalized ultrametric matrix, and
conversely, any shifted generalized ultrametric matrix similarly defines a
weighted rooted tree.

ExaMpLE 2.3. Consider the rooted tree in Figure 1 with leaves
(D,...,(7) and weights r(i, j) and I(i, j), shown respectively on the right
and left side of the corresponding edge (i, j). If we add a new root and a

@ ©3 @ 6 (6 (7)

Fic. 1.
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single edge to the old root, with weights [ = r = —5, and use the definitions
of (2.3) and (2.4), the associated shifted generalized ultrametric matrix
A =la, ;] € R"7 is given by

Throughout this paper, we use the following theorem, which is proved in
Theorems 3.7 and 3.8 of [17]:

‘THEOREM 2.1. Let A = [q, i1 € R™" be a strictly generalized ultramet-
ric matrix. Then A is nonsingular, and its inverse A~' € R™" is a strictly
row and strictly column diagonally dominant M-matrix, with the property
that

w(A)ETATE < 1. (2.5)

If A is a nonsingular generalized ultrametric matrix, its inverse A~ € R™"
is a row and column diagonally dominant M-matriz, with the property that

w(A)ETATE < 1. (2.6)

We begin our results with the following lemma which is a small extension
of Theorem 3.6 in [15]:

LEMMA 2.2. Let A = [a; 71 € R™" be nonsingular. Define

T, = jlgizrvl{ai’j} and p, = jnéazir({ai’j} | forall i€ N.

IfA>Oandif A™% >0, then for each i € N,
I‘Li(gnTA—l‘fn) > 1’

(2.7)
7( fnTA“lffn) < 1.
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IfA > O and if ATY¢ > 0, then for each i € N,

Mi(fnTA_lfn) > 1 unless a; j=p; fordljeEN,

| (25)
Ti(fnTA_]fn) <1,  unless a, ;= fordljeN.
Similarly, if A < O and if AT, < 0, then for each i € N,
Mi(fﬂTA“lgn) < 1)
(2.9)
T(&TATYE) = 1.
IfA<Oandif AT, <0, then for each i € N, /
m(EIATE) <1 unless a; ;=M fordljeN,
~ | (210

. 'T,.(fnTA"]fn) > 1 unless a; ;=, foral j€N.

Proof. Assuming A > O and A7 > 0, then

' ‘ My My My
& =A(ATE) < |: L |ATE = (&TATE))|
B g Mo

On comparing vector components above, it follows that 1 < u,(£TAT) for
all i € N, which is the desired first inequality of (2.7). Next, note that if
lyyeees yJF = A%, then for each i € N,

n

1= [A(A—lfn‘)]i = a; ;Y S My 2 Yj-
j=1

j=1
If y,> Oforalli € N (ie., AT, > 0, then equality can hold throughout, in

the above display, only if @, ; = u, for all j € N, and this establishes the first
inequality of (2.8). The remaining inequalities are similarly established.

As in the class of generalized ultrametric matrices, shifted generalized
ultramétric matrices also satisfy a nested block structure, as given in Theorem
2.3 below. :
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THEOREM 2.3. Let A = [a,.) j] €ER™™ n>1, bea shifted generalized
ultrametric matrix. Then there exist a permutation matrix P € R™™ and q
positive integer r, with 1 < r < n, such that

{Al,l A1,2J

PAPT =
_A2,1 Ag g

C O
= _8(A)§,,._r§rT D.J +7(A)EE =M + T(A)E ET, (2.11)

where A, | € R™" and Ay, €ERY™NPT gpe shifted generalized ultrametric
matrices. Moreover, the matrices A, ; and A, 5 are reduced in the same way
as A. The off-diagonal blocks are Ay = (A EL, and A, =
w(A)fn-rng‘ N |

The matrices M € R™", C € R" Land D € R """ gre generalized
ultrametric matrices and 8(A) = w( A) — 7(A) > 0. Moreover,

w(A; ;) > o A) and o A2,2)F> w( A). (2;12)

If A is a stricily shifted generalized ultrametric matrix, then M is a strictly
generalized ultrametric matrix.

Proof. For a generalized ultrametric matrix, this is proved in Theorem
3.1 of [17]. The general result then follows directly from the definition of a
shifted generalized ultrametric matrix in Definition 2.2. '

In what follows, we assume without loss of generality that the permutation
matrix in (2.11) is the identity matrix.

Theorem 2.3, given above for any shifted generalized ultrametric matrix,
applies of course to its subsets AR p- We remark, however, that the
decomposition of (2.11), when applied to a matrix A in Up(’"nl_) , is such that
its associated block submatrices, Ay,1 and A, , of (2.11), are shifted general-
ized ultrametric matrices which may or may not be in U-type sets. For
example, the matrix A of (2.1) is in U2(,] D but its decomposition, via (2.11),

gives

5 —4| -6 A A
A | —o 9 , 1= 1,1 1,2 ,
-9 -9 l 1 A2,l A2,2

with A, | € U{ (Y, while Ay, is a strictly generalized ultrametric matrix.
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The next lemma gives some properties of matrices of type Up(,"nl_)?, € R™"

LEMMA 24. Let A€ R™", n>1, bea shzfted generalized ultrametric

matrix given in the block form (2.11).

() If A is a nonsingular strictly shifted generalized ultrametric matrix of
type U2 for some p with 0 < p < n, then

AT <0 and ow(A)ETATE, > 1. (2.13)

Similarly, if A is a nonsingular shifted generalized ultrametric matrix of type

UL2, for some p with 0 < p <n, then

A% <0 and ow(A)ETATYE, > 1. (2.14)

(11) If A, in (211) is nonsmgular and of type UL, for some p with
0<p<r, then the Schur complement A/A, , is a generalized ultrametric
matrix. If A, is a nonsingular M-matrix, i.e., of type U, UuLb, and if
Ay 5 € US n”,_q with 0 < g < n —r, then AJ/A, | is of type U( 1), 5 fora

p with 0’ < p < q. The same holds for A/A, ,.

Proof. (i) We consider the nested block structure of (2.11) for A. Since
A is by hypothesis a nonsingular strictly shifted generalized ultrametric
matrix, then M of (2.11) is-a strictly generalized ultrametric matrix from
Theorem 2.3, which is. also nonsingular from Theorem 2.1. Using the
Sherman-Morrison formula (cf. [8, p. 52]) gives that

-1 = T 171 — 7(4) ~lp gTas-1
=M+ 7(A)£7E] 1+T(A)gnTM_,an Ik gTML,
where T(A)¢TM ¢, # —1. Thus,
1
A7k, M7k, (2.15)

-1 + r(A)ETME,

If 7(A)ETM ¢ > —1, we would obtain from (2.15) that A7 =1u is a
positive vector, since M™%, > 0 (because M~ is a strictly row diagonally
dominant matrix from Theorem 2.1). Now, the hypotheses of (i) give that A
is a Z-matrix. But as Au = £, this would imply (cf. [2, p. 136, Is]) that A is
a nonsingular M-matrix, which contradicts the hypothesis that A € U 7D



INVERSE Z-MATRICES 535

for some p with p <n. Thus, 7(A)¢TM %, < —1, and (2.15) gives A7%,
< 0, the desired first inequality of (2.13). It also follows from (2.15) that

w(A)EATE > 1 o [w(A) —7(A)]ETM T, < 1. (2.16)

From (2.11), it is evident that w(M) = 8(A) = w(A) — 7( A). Because
A is by hypothesis a strictly shifted generalized ultrametric matrix, M is a
- strictly generalized ultrametric matrix from Theorem 2.3, and hence [cf. (2.5)
of Theorem 2.1]

o(M)EIM ¥, = [0( A) — 1(A)] ETM7E, < 1.

Thus from (2.16), w(A)¢TATE, > 1, the desired final inequality of (2.13).

To establish (2.14), assume that A is a nonsingular shifted generalized
ultrametric matrix of type Up(,'nl_)p for some p with 0 < p < n. Because A is
a Z-matrix, we can write

A =tl — B, where B € R™" with B > O.

Since A is nonsingular and not a nonsingular M-matrix, then p(B) > ¢, and
for all € > 0 sufficiently small,

A+el=(t+¢€)l—B, where p(B) >t + e.

Hence, A + €l is a nonsingular strictly shifted generalized ultrametric
matrix for all € > 0 sufficiently small. On applying the two inequalities of
(2.13) to A + €I, and on letting € | 0, the desired results of (2.14) follow.

@) If A, ; is nonsingular, its Schur complement A/A, , from (1.4) and
(2.11), is given by .

AJA; L = Ay — 7( A)“’(A)(frTAl_,llfr)fn—r e

As A, , is a shifted generalized ultrametric matrix from Theorem 2.3, it
follows from (2.17) and Definition 2.2 that A/A, , also is.

Next, by hypothesis we have that A, , is of type UL, for some p with
0 < p < r. With (2.14), we have

CETATIE <0 and (A ) (ETATIE) = 1.
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As these inequalities imply that £TA7 1§, # 0, we have
ETATLE <0 and (A )EATLE > 1,

from which it follows that ( A, 1) < 0. In addition, since w( A ) > o(A)
from (2.12), we further deduce that

w(A) &AL 6 > 1.

Also, since w(A) > 7(A) from (1.3), we have 7(A) < 0. Then recalling,
from (2.11) of Theorem 2.3, that A, , = D + 7(A)¢,_ £, where D in

R*~™""" is a generalized ultrametric matrix, the expression in (2.17) can be
written as

A/Al,l =D+ [— T( A)] [ 0)( A)frTAl_,igr _ 1] gn-—r nT—,r' (218)

But, as the scalar multiplier of &,_,&" . in (2.18) is nonnegative, we see
from Definition 2.1 that A/A, , is also a generalized ultrametric matrix.

Next, let A, ; be a shifted generalized ultrametric matrix of type USSP,
ie., A, is a nonsingular M-matrix; hence ETAT 1€, > 0. Since the off-diago-
nal entries of A, ; are nonpositive, then 7(A) and w(A) are both nonposi-
tive, whence ' ' .

T(A)o(A)(EAT 16 ) 6n—r 60— > O -~ (219)

If A,, is of type US,D,_, its off-diagonal entries are nonpositive, and it

follows from (2.17) and (2.19) that the same is true for A/A, ;. From this, it
is easy to see that A/A, ; € Uf7D, _; for some p with0 <p <gq. n

Since we are interested in nonsingular matrices, we establish a necessary
and sufficient condition for a shifted generalized ultrametric matrix, with at
least one negative diagonal entry, to be nonsingular.

THEOREM 2.5. Let A = [ai; J.] € R™" be a shifted generalized ultramet-
ric matrix with a negative diagonal entry. Then A is nonsingular if and only if
A contains no zero row or zero column and no two rows or two columns
which are the same.

Proof. As it is evident that if A is nonsingular, then A contains no zero
row or zero column and no two rows or two columns which are the same, we
need only to show the reverse implication. Thus, our hypothesis is that A in
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R™" is a shifted generalized ultrametric matrix, with a negative diagonal
entry, which has no zero row or zero column and 10 two rows or two columns
which are the same, and our goal is to establish that A is nonsingular. If
n =1, this is certainly true, and we may assume that n > 2. Applying
Theorem 2.3to A = [a,., j] gives, up to a permutation of indices, that there is
a positive integer r, with 1 < r < n, such that [cf. (2.11)]

’— Al,l - T(A)grfn’r—r
A —
(J)( A) fn-—ré:rT A2,2
- | (2.20)

[ cC o |
T e e D} Fr(AEE =M+ (48],

where A, | € R™" and Ay 5 € R™™""77 are shifted generalized ultrametric
matrices, and where M € R™" C € R" band D € R* """ gre general-
ized ultrametric matrices. Because A has a negative diagonal entry, it follows
from (iv) of Definition 2.1 and from the representation in (2.20) that

7(A) < w( A) <0. | o (2.21}

First, suppose that there is a zero row or zero column in the generalized
ultrametric matrix M in (2.20). Then, there is a permutation of indices such
that A and M can be expressed, from (2.20), as

B T

T

A = . ~ - M + TfngnT
: Ay
T ,
) (2.22)

[0]0 0

0

=l . ~ +T§n§nT Ti=T A].

L, [7:=7(4)
10 i

Now, the principal  submatrix M 2o of M (which is also a generalized
ultrametric matrix) cannot have a zero row or Z€ero column, since, from (2.22),
A would then have two rows or two columns which are the same, contradict-
ing our initial hypothesis. By the same reasoning, M, , does not have two
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rows or two columns which are the same. Usmg Theorem 4.4 of [15], it
follows that M2 » is nonsingular. If we set A, , = [r(A)] € R"}, then Al
is nonsingular from (2.21), with det Al L= ( A). Using the Schur comple-
ment [cf. (14)] of A in (2.22), with respect to A, ; we have (cf. [7, p. 22
that

det A =det A, ;det( A/A, ) = 7(A) det| A, , — T(A)E,_, 7]

But as 7(A) < 0 and as [cf. 2.22)] 4, , — T(A)¢,_, £7 | = Mz’z is nonsin-
gular, the previous display gives that A is nonsingular.

Next, we consider the case where there is no zero row or zero column in
M. If M contains two rows or two columns which are the same, it would
follow from (2.20) that A has two rows or two columns which are the same,
which is again a contradiction to our initial hypothesis. Hence, it again follows
Theorem 4.4 of [15] that M is nonsingular. Let a; ; be a negative diagonal
entry of A. If a; ; = 7(A), it would follow from (iv) of Definition 2.1 that
the entries in the kth row and kth column of A are all 7( A); whence, from
(2.20), the kth row and the kth column of M would be zero, a contradiction.
Thus, a; ; > 7(A). On writing M = ] € R™", then from (2.20), m;
=a;; — 7(A), and, as q; ; <0, thls 1mp ies that

my < —7(A). (2.23)

Now, assume that A is singular, i.e., there exists an x # 0 with Ax = 0. On
setting a = ¢Tx, we have

0= Ax = Mx + 7( A) a,. (2.24)
Note that « is not zero, since M is nonsingular. Then (2.24) implies that
x=—1(A)aM™ %,  whence a=¢§&Tx=—7(A)atIM7E,.
As a # 0, this gives
—T1(A)ETMTYE =1, (2.25)

where M is a nonsmgular generalized ultrametric matrix. Thus, we have from
Theorem 2.1 that M~! is a row and column diagonally dominant M-matrix,
so that M > O and M™¢, > 0. Applying (2.7) of Lemma 2.2 to the matrix
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M gives that
C w(M)(ETMUE) > 1 forall e,

In particular, with M = [m, ;], we see from (iv) of Definition 2.1 that
my . = (M), so that the above inequality becomes my (ETMTIE) > 1,
which, with (2.23), gives — 7( AX ETM ™€) > 1. As this contradicts (2.25), A
is then nonsingular. [ |

EXaAMPLE 2.4. The hypothesis in Theorem 2.5, namely, that A has a
negative diagonal entry, cannot in general be weakened to A having a
nonpositive diagonal entry. To show this, consider the matrix

1 -1 ’ -3 -3
A |0 0| -3 -3 ’
0 0 1 -1
0 0 0 1
so that
4 2 I 0 0
3 3|0 0
A+ 3g¢l = :
& 3 3[4 2
3 3|3 4

As A + 3¢,&[ can be verified to be a generalized ultrametric matrix, then A
is a shifted generalized ultrametric matrix. Note that A is evidently singular,
but A has no zero row or no zero column, and no two rows or two columns
of A are the same.

As an application of Thearem 2.5, we have

COROLLARY 2.6. Let A = [a, ].] € R™" be a matrix of type D,(,:',,l_)_p for
some p with 0 < p < n. Then A is nonsingular.

Proof.  As previously noted, any matrix in DS~ is a shifted generalized
ultrametric matrix. If A is of type D,(,,_,,l_)_p for some p with 0 < p < n, then
from Definition 2.3, A has a negative diagonal entry, and A has no zero row
or zero column, and no two rows or two columns which are the same. Thus,
A is nonsingular from Theorem 2.5. If A is of type D{~2 with p = n, then

A is strictly diagonally dominant from Definition 2.3, and hence is nonsingu-
lar. v =
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Having characterized the nonsingular shifted generalized ultrametric ma-
trices of type U{ D we consider the determinant of these matrices.

THEOREM 2.7. Let A = [a; ;] € R™" be a nonsingular shifted general-
zzed ultrametric matrix of type U( Do If 0 <p <n, then

detA < 0.

Moreover, each principal minor of order m with p < m < n is nonpositive,
and there exists a positive principal minor of order p. If p = n (i.e., A is of

type ULGD) or if A is a nonsingular generalized ultrametric matnx then
det A > 0. ‘

Proof. If A is a nonsingular generalized ultrametric matrix, then (cf.
Theorem 2.1) A™" is a row and column diagonally dominant M-matrix, so
that (cf. [2, p. 134, A,]) det A™ 15 0.As 1 =det{ AA™)) = det Adet A7,
then det A > 0. Slmllarly, if A is of type UlyP (e, A is a nonsmgular
M-matrix), then det A > 0. This establishes the last part of Theorem 2.7.

Next, assume that A € R™" is a nonsingular shifted generalized ultra-
metric matrix of type UV with 0 <p <n. If n =1 so that p =0, 1t
follows that A =[a] € [Rl 1 with @ < 0; whence, det A < 0. For 1 <
'n, assume the inductive hypothesis that any B € R™™ which is a nonsmgu-
lar shifted generalized ultrametric matrix of type U{7"  for some g with
0 < g <m satisfies det B <0 (where, from the above dlscussmn if Be

( D then det B > 0).

m 0 >
For n > 1, A can be represented from Theorem 2.3, up to a permutation
of indices, as

Al,l A1,2

A= ,
Ay Agy

(2.26)

where A, ; € R”" and A, , € R*™""7", 1 < r < n, are shifted generalized
ultrametric matrices. Moreover, A,, = (AL, and A,, =
w(A)gn-—rng' . |

Since A is assumed to be nonsingular, then so is A + €I for all € > 0
sufficiently small. Hence, this shift allows us to assume that both A, ; and
A, , in (2.26) are nonsmgular As in the proof of Theorem 2.5, we have that

det A = det A det(A/A; )
= det A, det[ A, , — 7( A)w(A)(&,TA£{§,)§n_, ]

We now consider various cases.
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If A, is of type USGY Gie., A, is a nonsingular M-matrix), then
det A;; > 0. Now, assume that the Schur complement A/A, | = A,, —
T(Aw(ANEATIEE, &7, is a nonsingular M-matrix. If A is any lead-
ing principal submatrix of A in (2.26) whose order is greater than the order
of A, ,, the Schur complement A /A1 is a principal submatrix of A/A; -
Hence, det(A /A, |) > 0, and as det A = det A det(A/A, ), then det A
> 0. As all leading principal minors of A are then positive, A is a nonsingu-
lar M-matrix (cf. [2, p. 135, E,,]), which contradicts our assumption on A.
Therefore, A/A,, is not a nonsingular M-matrix, but again, as det A =
det A, ; det(A/A, |) where det A # 0 and where det A; 1 > 0,then A/A,
is nonetheless nonsingular. Hence,, y the inductive hypothesis, it follows
that det(A/A; ) < 0, which implies det A < 0. |

If Ay is not of type US5Y, ice., A, ; is not a nonsingular M-matrix, then
by the induction hypothesis, det A;; <0. Moreover, A/A, | is a generalized
ultrametric matrix from (i) of Lemma 2.4, so that from the first part of the
proof, det(A/A, |) > 0. Thus, det A < 0. [In all cases, we have actually
shown that det(A + €I) < 0 for any € > 0 sufficiently small, so that the
conclusion remains unchanged on letting € — 0, since A is by hypothesis
nonsingular.] \ '

Since p is the order of the largest principal submatrix which is a
nonsingular M-matrix, the remaining statements follow immediately. |

For arbitrary Z-matrices A, det A > 0 is a necessary condition for A to
be a nonsingular M-matrix. We next show that, with our additional structure
for the off-diagonal entries, det A > 0 is also sufficient.

COROLLARY 2.8. If a Z-matrix A € R™" is a shifted generalized ultra-
metric matrix, then A is a nonsingular M-matrix if and only if det A > 0.

Proof. If A is a nonsingular M-matrix, then it is well known that
det A > 0. On the other hand, if A is a nonsingular shifted generalized
ultrametric matrix, then A is a matrix of type U{,2, for exactly one integer
p with 0 <p <n. If det A > 0, we obtain with Theorem 2.7 that p = n.
Thus, A is a nonsingular M-matrix.

THEOREM 2.9. Let A = [a; j] € R™" be a nonsingular shifted general-
ized ultrametric matrix. If A is a generalized ultrametric matrix, then A" is
in L,. If Ais of type UZ)D) . for an m satisfying 1 < m < n, then A~V is in
L, _,, i.e., A7" is of the form (cf. (1.1))
A™l =1¢I - B,

with B > O and p,,_(B) <t < p_(B). Moreover, Prn-1(B) = t if and only
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if there exists a principal submatrix, of order n —m + 1, in A which is
singular.

Proof. For nonsingular generalized ultrametric matrices, this is proved
in [15] and [17]. For the other cases, let us first assume that A is a
nonsingular strictly shifted generalized ultrametric matrix of type U(ZD
where m satisfies 1 < m < n. Then from Theorem 2.3,

A=M+ 1(A)EET,
where M is a strictly generalized ultrametric matrix. Hence from Theorem

.2.1, M is nonsingular. Using the Sherman-Mornson formula, A~ can be
expressed as

A"l = [AM + T(A)f,,g,,T]"l

1 T(A) Taf—
-M - o e M hE (2.27)

where 7(A)¢TM ™% +# 1. From Theorem 2.1, M~! is an M-matrix which

satisfies M~ 1§ > 0. Since m # 0, i.e., A is not a nonsingular M-matrix, we
have from the proof of (i) of Lemma 2.4 that T(A)¢TM ¢ < —1. With this,
it follows from (2.27) that A~ is also a Z-matrix, since all the entries in the
final matrix in (2.27) are negative. If A is a nonsingular shifted generalized
ultrametric matrix of U{Z,) ., then A is a limit of strictly shifted generalized
ultrametric matrices. Therefore the inverse of A is also a Z-matrix.

It is well known (cf. [7, p. 21]) for conformally partltloned nonsingular

matrices, with square diagonal submatrices, that with

T T S S
T=| L1 L2l od T-l=g=|1! 1,2 ’
T,, T,, So.1 Sae

we have
det T, , = (det Sl_i)(det Ty, (2.98)

Then, choose T = A and § = A™' in (2.28), where A is assumed to be a
nonsingular shifted generalized ultrametric matrix of type UCY | where m

-m,m?>

satisfies 1 < m < n. From Theorem 2.7, det A < 0 [so that (det T-H <o
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in (2.28)], and each principal minor of A, of order s with n — m < s < n, is
nonpositive, while there exists a principal minor of A, of order n — m, which
is positive. But, as (2.28) gives a coupling of a principal minor of A with its
associated complementary minor of A™', it follows that each principal minor
of A7, of order j with 1 <j <m — 1, is nonnegative and there exists a
principal minor of A™!, of order m, which is negative. Recalling that A7! is
a Z-matrix, we can write that A~ = ¢I — B where B > O, and, with the
notation of (1.1), the above discussion gives that

Prm-1(B) <t < p,(B).

Hence, A™' €L,  foranyl <m <n.Ifm =1, we again have p(B) > t,
and as po(B) = —, then p,(B) >t > p,(B), whence A~} & L,.
Finally, from (2.28) we see that p,,_ (B) = ¢, for some m with 1 < m <
n, if and only if there exists a principal submatrix in A, of order n — m + 1,
which is singular. [
With Theorem 2.9, we have one of our main results.

THEOREM 2.10.  If a nonsingular Z-matrix A € R™" is a shifted general-
ized ultrametric matrix, then A~ € L _| if and only if A is of type UZY
for an m with 1 < m < n.

Proof. If A€ ULD)  for an m with 1 <m <n, then A™! L,_,
follows from Theorem 2.9.If A~' e L__, for an m with 1 < m < n, then
A™! =1¢I — B, with B > O, satisfies Pm—_(B) <t < p_ (B). Hence, there
exists a principal minor of A}, of order m, which is negative, and that each
principal minor of A7, of order m — 1, is nonnegative. From the proof of
Theorem 2.9, this implies that A has a principal minor, of order n — m,
which is positive, and that each principal minor of A, of order s with
n —m <s <n, is nonpositive. From Definition 2.2, it follows that A €
U{ZW .. The proof for the case m — 1 is similar. n

Since the classes of type D’(,'"nllp-matﬁces are subclasses of the classes of
type U;,"nl'_)p-matrices, we immediately obtain ’

_CoroLLARY 2.11. If A € R™" is of type D, _,, then AV isin L. If
A€ R™" is of type D=V | with 1 <m < n, then A~ is in L i.e.,
A7 is of the form

m— 1>

A1 = tl — B,
with B > O and p,,_(B) <t < p,_(B).
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Proof. The proof follows directly from Theorem 2.9 and Corollary 2.6,

. . -1 . —_—
which states that matrices of type Df"?  are nonsingular. If m = 1, one

diagonal entry of A~! is negative; hence, A™! € L, N

EXAMPLE 2.5. Consider the matrix

5 —4 -4 -4
—4 5 -3 -3

S VR ¢
-4 -3 -2 -1
which is in D;,fnllp forn=4,p=2d. = -5 +jforl <j<4,P:={1,2),
and M := {3,4}. The inverse of A is given by
19 —4 —32 0
Al S| -4 26 -3l 0

©239| —32 —31 230 -939
0 0 —-239 239

220 4 32 0
—7——| 4 28 31 of_,
193] e 31 9 93|~ I~ B

0 0 239 0

Using the definitions of (1.1), we have that p,(B) = 0.9205. .. ,and p,(B) =
1.0190..., so that, since p,(B) < 1 < po(B), A™! € L;, which is in agree-
ment with Corollary 2.11.

- 3. NONARCHIMEDEAN MATRICES

The results of the previous section can be applied to a special class of
distance matrices, the so-called nonarchimedean matrices, which we consider
in this section. Nonarchimedean matrices arise in p-adic number theory [22]
and in taxonomy [1]. We will show that these matrices are negative symmetric
shifted ultrametric matrices of type US,Y. Moreover, we will see that
nonarchimedean matrices are closely related to symmetric ultrametric matri-
ces. |

Recall that a valuation |-|,: K — Ry, where K denotes a field and Ry
denotes the. nonnegative real numbers, is called nonarchimed-
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ean if
la + bl, < max{|al,;|bl,} forall a,b € K.

Using a nonarchimedean valuation, we obtain a metric d on the field K
which satisfies

d(a,b) < max{d(a,c),d(c,b)}. (3.1)

for all @, b, ¢ € K. A metric, which satisfies the strong triangular inequality
(3.1), is called a nonarchimedean metric or an ultrametric metric.

EXAMPLE 3.1. Let p be a fixed prime number. If Q denotes the set of
all nonzero real rational numbers, then any @ in @ can be uniquely written as

r
a=-p" with s>0,
s

where 7 and s are integers which do not have a common divisor, p does not
divide 7s, and n is an integer (positive, negative, or zero). Then, we obtain for
any p a nonarchimedean valuation (called the p-adic valuation), defined by

la] = 0 for a=0
Ay = p™™ for a#0.

As Ostrowski [18] proved, the valuations ||, and the absolute value are
the only nonequivalent valuations of Q. Here, for two valuations |- | and || - |
to be equivalent means that |q| <|pl| if and only if [lgll <[ pll for all
p.q € Q. | |

If the set K is a finite set, we obtain a distance matrix, which we call
nonarchimedean.

DEFINITION 3.1. A matrix A = [q, ;] € R™" is called nonarchimedean
if |
Ais symmetric and A > O, (3.2a)

a, ;=0 forall i€N, (3.2b)

i,i

a;,; <max{a,y;q ;) forall i,j,kEN. (3.2¢)
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It is evident that (3.2c) implies

—ai’j>min{~ai’k; -—ak,].} forall i,j,k €N.
Hence, on comparing Definition 3.1, for a nonarchimedean matrix, and
Definition 2.2, for a matrix in U{7”, and noting that the diagonal entries of a
matrix in U{7" are all nonpositive, we directly obtain

PROPOSITION 3.1.  Let A be a nonarchimedean matrix in R™". If A is not
the null matrix, then —A is a symmetric shifted generalized ultrametric
matrix of type U§," with zero diagonal entries. Conversely, if B is a
symmetric shifted generalized ultrametric matrix of type U D with zero
diagonal entries, then — B is a nonarchimedean matrix.

Moreover, the nonarchimedean matrices and the symmetric generalized
ultrametric matrices are closely related in another easily verified way.

PRrOPOSITION 3.2. Let A be a nonarchimedean nzatﬁx in R™", Then, for
al ¢ € R with ¢ > u(A), where p(A) denotes the maximal entry of A, the
matrix B € R™" with

B=c& EN— A

is a symmetric generalized ultrametric matrix. Conversely, if B = [b,.’ j] =
R™" is a symmetric generalized ultrametric matrix, then

A=c§ & — B — diag(c — by 15...;c — b, ,), (3.3)

where ¢ > p(B), is a nonarchimedean matrix. Here, diag(c — by ;3¢ —
b, ,) denotes a diagonal matrix in R™" having ¢ — b, ; as diagonal entries.

In the following, we use the previous propositions to establish properties
of nonarchimedean matrices. We begin with a representation of nonar-
chimedean matrices.

PROPOSITION 3.3. Let A € R™" n > 1, be a nonarchimedean matrix.
Then, up to a suitable permutation, A is given by

A[g g] + p( A)(uo” + vuT), (3.4)

B e
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where C € R™" and D R*™""7" 1 < r < n, are nonarchimedean matri-
ces, and

u=[£0,...,0"€R" and v=10,...,0,¢7 " e R,

Conversely, if C € R™" and D € R*="""" 1<r<n, are nonar-
chimedean matrices, and if T € R satisfies 7 > p(C) and 7 > w(D), then

A= [g IO)] + 7(uwo” + vul) (3.5)

is a nonarchimedean matrix.

Proof. The proof follows immediately from Theorem 2.3, since, from
Proposition 3.2, there exists a symmetric generalized ultrametric matrix B
such that A = u(A)¢ ¢7 — B. ' ||

The reduction in Proposition 3.3 can be applied again to the matrices C
and D. Thus, Proposition 3.3 describes the nested block structure of a
nonarchimedean matrix. As introduced in [16] for strictly ultrametric matrices
and in [17] for generalized ultrametric matrices, an associated binary rooted
tree seems to be the most convenient way to illustrate this procedure. This
tree determines, at each vertex, the two disjoint sets of indices which

{1,2}q {3,4,5,6} u; == (1,1,0,0,0,0)T; v, :=(0,0,1,1,1,1)T

-t

{1} {2} {3,4}\ {5,6} uz :=(1,0,0,0,0,0); v, := (0,1,0,0,0,0)7
uz := (0,0, 1,1,0,0)7; v3 := (0,0,0,0,1,1)7

{5} {6} u4:=(0,0,1,0,0,0)T; v, := (0,0,0, 1,0,0)T
us := (0,0,0,0,1,0)7; vs := (0,0,0,0,0,1)T

Fic. 2.
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correspond to the matrices C and D, and to the vectors u and v, as well as
the scalar w. In contrast to generalized ultrametric matrices, the rooted tree
consists. just of n — 1 vertices, since the diagonal entries of a nonar-
chimedean matrix are zero.

ExaMPLE 3.2. The binary rooted tree shown in Figure 2, together with
(mp,--.» ) = (5,1,3,2,1), yields the nonarchimedean matrix

(uu +vu

II
T Mcn

with

AT TS =
— o L W Ul Ul
© Lo Lo Ul Ut

Sgtutut At = O
W WO Ut
LW W O D Ut Ut

Hence, we obtain

PROPOSITION 3.4. Let A = [a ]] € R™" be a nonarchimedean matrix.
Then there exists a associated binary rooted tree for N ={L2,...,n},
consisting of n — 1 vertices, such that

A= Z,u,,(uv + vul (3.6)

where the vectors u; and v, in (3.6) are nonzero vectors, having only 0 and 1
entries, determined from the vertices of the tree, and the w;’s are nonnega-
tive. Moreover, these w;’s, which correspond to a path from the root of the
tree to a leaf, build a nonincreasing sequence. Conversely, given any binary
rooted tree for N = {1, ..., n} which determines the vectors u; and v, € R",
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and given any nonnegative constants { w}'~' such that these w;’s, which
corresponds to a path from the root to a leaf, do not increase, then

n—1
T T
E p‘i(uiui + vu;
i=1
is a nonarchimedean matrix.

Since we are interested in nonsingular nonarchimedean matrices, we
formulate the following result.

THEOREM 3.5. Let A = [a; j] € R™" n > 1, be a nonarchimedean
matrix. Then A is singular if and only if a, j =0 for at least one pair (i, §)
with i #j, i, j € N. | '

Proof. The diagonal entries of a nonarchimedian matrix are, by defini-
tion, zero. Thus, it follows from the nested block structure of a nonar-
chimedean matrix that two rows or two columns in the matrix are the same if
there exists a zero off-diagonal entry. If no zero off-diagonal entry exists, then
no two rows or two columns are the same. Moreover, as we then have that
a;; < max{g, ;: k € N\ {i}}, we can apply, to —A, the same proof as in the
proof of Theorem 2.5, and the desired result follows. [ |

Using Theorem 3.5, we note that we would obtain a nonsingular matrix if
we make use of the property of a metric that

d(a,b) =0 ifandonlyif a=b

in the definition of a nonarchimedean matrix.

The relation between nonarchimedean matrices and symmetric shifted
generalized ultrametric matrices of type U§>Y, as described in Proposition
3.1, gives rise to the following theorem which summarizes properties of
nonsingular nonarchimedean matrices.

THEOREM 3.6. Let A€ R™" n> 1, bea nonsingular nonarchimedean
matrix, given in the block form of (3.4). Then A, | and A, , are nonsingular,
and the Schur complements S, = A /Ay and Sy = A/A, , are negative,
nonsingular symmetric generalized ultrametric matrices, i.e., —S , and —S,
are nonsingular symmetric generalized ultrametric matrices. The sign of the
determinant of A is given by

det A <0 if n is even, (3.7)
det A>0  ifnisodd.
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The inverse of A, A7l = [a,-,j], isa — Ny-matrix, i.e., —AVisa N,-matrix,
or equivalently —A™' € L,_|, and

a, ;=0 forallieN if n=2,

(3.8)
;<0 foralieN if n>2.

In addition, as the diagonal entries of A are all zero, all n principal
submatrices of A™', of order n — 1, are singular. Moreover, A™! satisfies

ATE >0 and o(—A)ETATYE, < —1. (3.9)

Proof. All statements of this result follow immediately with Proposition
3.1 and the corresponding results of the previous section. Equations (3.8) and

(3.9) follow from the fact that the off-diagonal entries of A and A™! are
nonnegative. |

ExaMpLE 3.3. To illustrate the results of Theorem 3.6, consider the
matrix A € R%®, of Example 3.2. From Theorem 3.5, it is seen by inspection
that A is nonsingular. Next, computation shows [cf. (3.7)] that det A =
—1732, and its inverse A™" = [a; j] € R%° is given [cf. (3.8)] by

[ —450 416 25 25 20 20
416 —450 25 25 20 20
Al 1| o5 95 —266 167 47 47
866 25 25 167 —266 - 47 47 |
' 20 20 47 47 —482 384
20 20 47 47 384 —482 |

Thus, —A~! is a Z-matrix, which can be expressed as —A"l = fﬁ(4821 =
B), where

[ 32 416 25 25 20 20
416 32 25 25 20 20
25 95 216 167 47 47|
95 95 167 216 47 47|
20 20 47 47 0 384
20 20 47 47 384 0




INVERSE Z-MATRICES “ 551

It can be verified that all six principal submatrices, of order 5, of —A~! are
singular, so that p,(B) =482, and that pe(B) = 528.1440... . Conse-
quently, from (1.1) we have that —A™! & L.. In addition,

A™%, = [56,56,45, 45, 36, 36] /866 > 0,
and
o(—A)ETATIE = —1.5819...

in accordance with (3.9).

‘We close this section with the following observations concerning nonar-
chimedean metrices again. If we have a nonarchimedean metric d on a finite
set K= {1,..., n}, then we obtain a distance matrix A R™" with a; ;=
d(i, j). This matrix is nonsingular and there exists a strictly ultrametric matrix
B such that

A=pu(A)¢ T - B.

With Theorem 3.4 of [17], there exists a weighted rooted tree such that the
entries of B are given, as indicated in (2.3) and (2.4). Since the matrices are
symmetric, we need just one weighting function 1. If p(i) denotes the path
with distinct edges from leaf i to the root of the tree, we have, for
i,j=1,...,n,

d(ij) = () = X Uo,v,,) for i#j,
P@Np(f)

d(i,i) = 0.

Thus, we have established a préof, which is based on matrix theory, of the
following known result (cf. [1]):

PROPOSITION 3.7.  Each nonarchimedean metric on a finite set is repre-
sentable by the metric on a rooted tree, as indicated above. |
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