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Weighted Polynomial Approximation
in the Complex Plane

I. E. Pritsker and R. S. Varga

Abstract. Given a pair (G, W) of an open bounded set G in the complex plane and a
weight function W (z) which is analytic and different from zero in G, we consider the
problem of the locally uniform approximation of any function f(z), which is analytic
in G, by weighted polynomials of the form {(W" (z) P, ()17, where deg P, < n. The
main result of this paper is a necessary and sufficient condition for such an approximation
to be valid. We also consider a number of applications of this result to various classical
weights, which give explicit criteria for these weighted approximations.

1. Introduction and General Result

In this paper, we will examine pairs of the form
(1.1 (G, W),

where

(i) G is an open bounded set, in the complex plane C, which can
be represented as a finite or countable union of disjoint simply

(1.2) connected domains, i.e., G = {J;_, Gy (where | <o < 00);
(i) W(z), the weight function, is analytic in G with W (z) # 0 for
any z € G.

We say that the pair (G, W) has the approximation property if,

forany f(z) whichisanalytic in G and for any compactsubset E of G,
there exists a sequence of polynomials { P, (2)}7,, with deg P, < n
(1.3) for all n > 0, such that

lim || f = WP, |l =0,
n—»00

where all norms throughout this paper are the uniform (Chebyshev) norms on the indi-
cated sets.
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476 1. E. Pritsker and R. S. Varga

Given a pair (G, W), as in (1.2), we state below our main result, Theorem 1.1, which :
gives a characterization, in terms of potential theory, for the pair (G, W) to have the
approximation property. For notation, let M(E) be the space of all positive unit Borel
measures on C which are supported on a compact set E, i.e., for any u € M(E), we
have u(C) = 1 and supp u C E. The logarithmic potential of a compactly supported
measure u is defined (see Tsuji [12, p. 53]) by

(1.4) U () == /log du(r).

|z — 1]

Theorem 1.1. A pair (G, W), as in (1.2), has the approximation property (1.3) if and
only if there exist a measure p(G, W) € M(3G) and a constant F(G, W) such that

(1.5) - UG () —log|W(2)| = F(G, W)  forany z€G.

Remark 1.2. It is well known that any open set in the complex plane is a finite or
countable union of disjoint domains, and this is more general than the assumption on the
open set G in (1.2(i)). However, we note that the approximation property (1.3) cannot
hold, even in the classical case where W(z) = 1 forall z € G, if G = Jj_, Gu,
when some G, is multiply connected (see Walsh [13, p. 25]). In this sense, our initial
assumptions on G are quite general.

Remark 1.3. The condition that W(z) # 0 for all z € G cannot be dropped, for if
W (zp) = 0 for some zg € G, where G = U}; , Gy, then the necessarily null sequence
{W"(z0) Py (20) 122, trivially fails to converge to any f(z), analytic in G, with f(z9) # 0;
- whence, the approximation property fails. Even more decisive is the result, to be proved
in Section 4, that if W(zp) = 0 for some z¢ € Gy, then the sequence {W"(2) P,(2)}52,
can converge, locally uniformly in G, to f(z), only if f(z) = 0in G,. In this sense, the
assumptions on W (z) are also quite general.

Remark 1.4. The measure (G, W) of Theorem 1.1 is, in some cases, related to the
solution of a minimal weighted energy problem, discussed in Section 3 (see Theorem 3.2).

Remark-1.5. Inthe case W(z) = | of Theorem 1.1, the result, that the approximation
property (1.3) holds, is a known classical result in complex approximation theory (see
[13, p. 26]). This also follows from Theorem 1.1 because the measure 1 (G, 1) exists
by Theorems 111.12 and 11L.14 of Tsuji [12], and is the classical equilibrium distribution
measure (in the sense of logarithmic potential theory) for G.

The topic of weighted approximation by {W"(z) P, (2)}52,, on the real line, has been
extensively and thoroughly treated in the recent books by Saff and Totik [9] and Totik [11].
Here, we emphasize weighted approximation in the complex plane, which has received
far less attention in the current approximation theory literature, with the exception of the
recent papers by Borwein and Chen [1] and Pritsker and Varga [8].

We shall present in Section 2 a number of applications of Theorem 1.1 to special pairs
(G, W). Section 3 is devoted to a weighted energy problem and weighted potentials; as
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will be clear, the major tools for our research come from potential theory. The proofs of
all results and remarks on weighted approximation, stated in Sections 1 and 2, are given
in Section 4. Finally, we conclude this paper with Section 5, where further remarks, open
problems, and a discussion of possible generalizations are given.

2. Applications

Finding the measure (G, W) of Theorem 1.1 or verifying its existence is a nontrivial
problem in general. Since U™G-W 7y is harmonic in C\supp 1 (G, W) and, since it can
be shown from (1.5), if log | W ()] is continuous on G andif G is afinite unionof G, £ =
1,2,..., £, that U@ W) (z) is equal to log |W (z)| + F(G, W) on supp u(G, W), then
UG W) (z) can be found as the solution of the corresponding Dirichlet problems. The
measure (G, W) can be recovered from its potential, using the Fourier method described
in Section IV.2 of Saff and Totik [9]. This method has already been used successfully
by the authors in [8] to study the approximation of analytic functions by the weighted
polynomials {e "< P,(2)}7%,, i.e., when W(z) := e%, and it is also used in the proof of
Theorem 2.7, given in Section 4.

In contrast to the above procedure, we next consider a different method, dealing
with specific weight functions, which allows us to deduce “explicit” expressions for the
measure (G, W) of Theorem 1.1, and to treat some important cases of pairs (G, w).
For simplicity, we assume throughout this section that G is given as in (1.2(i)), but with
o finite. We denote the unbounded component of C\G by €. Let v; and v, be two unit
positive Borel measures on C with compact supports satisfying

v 2.1 supp vy C C\G and supp vy C C\G,
such that
(2.2) v (C) =1 (C) =L
For real numbers « and B, assume that W(z), satisfying
(2.3) log |W(2)| = —(a@U"(2) + BU™(2)), z€G,

is analytic in G. Then, we state, as an application of Theorem 1.1, our next result as:

Theorem 2.1.  Given any pair of real numbers a and B, given an open bounded set
G = Ui, G as in (1.2(1)) with o finite, and given the weight function W(z) of (2.3),
then the pair (G, W) has the approximation property (1.3) if and only if the measure

2.4 po=(+a+pwo, Q) —ad — B

is positive, where w(00, -, 2) is the harmonic measure at o0 with respect to $2; here Vy
and Dy are, respectively, the balayages of vy and v, from C\G to G.
Furthermore, if i1 of (2.4) is a positive measure, then (see Theorem 1.1)

2.5) w(G, W) =u and supp u(G, W) C 9G.

We point out that the harmonic measure (oo, -, §2) (see Nevanlinna [7] and Tsuji
[12]) is the same as the equilibrium distribution measure for G, in the sense of classical
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logarithmic potential theory [12]. For the notion of balayage of a measure, we refer the
reader to Chapter IV of Landkof [5] or Section 11.4 of Saff and Totik [9].

In the following series of subsections, we consider various classical weight functions
and find their corresponding measures, associated with the weighted approximation
problem in G by Theorem 1.1.

2.1. Incomplete Polynomials and Laurent Polynomials

With Ny and N, denoting, respectively, the sets of nonnegative and positive integers, the
incomplete polynomials of Lorentz [6] are a sequence of polynomials of the form

(2.6) {Z"OPyiy (@), deg Puy < n(i), (m(i), n(i) € Ny),

where it is assumed that lim; .., m(i)/n(i) =: «, where « > 0 is a real number.
The question of the possibility of approximation by incomplete polynomials is closely
connected to that of approximation by the weighted polynomials

2.7 {2 Py (D} deg P, < n.

The question of approximation by the incomplete polynomials of (2.6) was completely
settied by Saff and Varga [10], and by v. Golitschek [3] on the interval [0, 1] (see
Totik [11] and Saff and Totik [9] for the associated history and later developments). We
consider now the analogous problem in the complex plane. Since the weight W(z) 1= z%
in (2.7) is multiple valued in C if @ ¢ Ny, we then restrict ourselves to the slit domain
Sy := C\(~o00, 0] and the single-valued branch of W(z) in S, satisfying W(1) = 1.
For the related question of the approximation by the so-called Laurent polynomials

Puin(2) |~ . . .
238 S| o degPu <n@). (m(@).n() € No),
. i=0
where lim;_. oo[m(i)/n(i)] = o, a > 0, we are similarly led to the question of the

approximation by the weighted polynomials
2.9 {27 Py (D)}, deg P, < n,

with the only difference being in the sign in the exponent of the weight function. Thus,
we can give a unified treatment of both problems by considering weighted approximation
by {Wn(Z)Pn(Z)}?,C:o» deg P, < n, with

(2.10) Wi(z) = 2%, z € § = C\(~00,0],
where o is any fixed real number and where we choose, as before, the single-valued

branch of W(z) in §) satisfying W (1) = 1.

Theorem 2.2. Given an open set G as in (1.2(i)) with o finite, such that G C Sy, and
given the weight function W (z2) of (2.10), then the pair (G, W) has the approximation
property (1.3) if and only if

2.1 uw={0+a)w(x,- Q) —aw(,-, Q)

is a positive measure, where w (00, -, 2) and w(0, -, Q) are, respectively, the harmonic
measures with respect to the unbounded component Q2 of C\G, at z = oo and at z = 0.
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In some cases, when the geometric shape of G is given explicitly, we can determine
the explicit form of the measure of (2.11). This is especially easy to do for disks.

Corollary 2.3.  Given the disk D,(a) := {z € C: |z — a| < r}, where a € (0, +00)
and where [),(a) C 81 = C\(—0o0,0], i.e.,, r < a, and given the weight function of
(2.10), then the pair (D,(a), W) has the approximation property (1.3) if and only if

a, ae€[—1,0],
2.12) r < rma(@, @) = a

20 + 1}
Furthermore, if (2.12) is satisfied, then the associated measure (D, (a), z*) (see The-
orem 1.1) is given by

o € (—oo, —1) U (0, 00).

2,2 d
(2.13) duD, @),z = (1 +a -} 2
|z]2 2y

where ds is the arclength measure on the circle |z —al =r.

2.2. Jacobi and Jacobi-Type Weights

We continue along the same line by considering weighted approximation with Jacobi
weights, i.e., we set
2.14) W@ :=1-21+2)", z € Sy = C\{(—o0, —1TU[l, 00)},
where «, B8 € R are any numbers, and where we choose the branch of weight function
in (2.14) such that W(0) = 1. ,

An analogue of Theorem 2.2 in this case is the following result:

Theorem 2.4. Given an open set G as in (1 .2(1)) with o finite, such that G C Sy, and
given the weight function W (2) of (2.14), then the pair (G, W) has the approximation

property (1.3) if and only if
(2.15) uw=>0+a+ pw(xo,: Q) —aw(l, Q) - pu(-1,-, Q)

is a positive measure, where S is the unbounded component of C\G.

We next state a corollary of Theorem 2.4, which deals with the explicit formula for
the radius of a largest disk D, (a), centered at a € (—1, 1), for which (D, (a), W) has
the approximation property.

Corollary 2.5. Given the disk D,(a) := {z € C:lz—al<rl,witha € (—1,1) and
with D;(a) C S», and given the Jacobi weight function W (z) of (2.14), then the pair
(D, (a), W) has the approximation property (1.3) if and only if
@16) 1+a+poolz@r 0¥’ -, z—al

. o -« — on lz—al=r.

lz =112 lz+ 112~

In particular, if « > 0 and B > 0, then the approximation property (1.3) holds if and
only if
(2.17) r < rmaxfa, o, B)

Vie—B+a(l+a+p)P+(1-a?) (1+2a+2p)—la—p+a(l+a+p)|
1420428 '
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Furthermore, if (2.16) is valid, then
(2.18) du(D,(a), (1 —2)“(1 + 2)F)
(1 —a)?—r? (i+a)2—r2) ds

={l+a+B—«a - -
( * P |z — 1]2 “z A+ 1)? 2nr
where ds is the arclength measure on tz — a| = r.

Both weight functions, introduced in (2.10) and (2.14), are special cases of the fol-
lowing Jacobi-type weight function

14
(2.19) W) = H(z — 1),

where {o:l}p , are real numbers and where {r; 1, < Cis afixed set of distinct points.
For a given open set G (as in (1.2(i)) with o finite) such that 1; ¢ G, i =1, ey Dy
we assume that there exist p cuts, connecting each t; with co. Then, we can deﬁne a
single-valued branch of W (z) in the p-slit complex plane which contains G in its interior.
(It is not possible to specify in advance those cuts, as they necessarily depend on each
preassigned open set G.)

Theorem 2.6. The pair (G, W), defined in the previous section, has the approximation
property (1.3) if and only if

14 14
(2.20) W= (1 +Za,~) (00, -, Q) vzaia)(zi,,m
i=1 i=1

is a positive measure, where S is the unbounded component of C\G.
Furthermore, if G = D,(a) .= {z € C: |z —a] < r} where a € C, then the pair
(D, (a), W) has the appmximarion property (1.3) if and only if
2

P '——alz-—if‘
(2.21) T+ o — Zoe, TP >0, Iz —al=r.
i=1

2.3. Exponential Weights

Let
(2.22) W) =e ", m € N.

The special case m = 1 of the weight function (2.22) was considered in [8]. To avoid
technical complications, we shall study only the weighted approximation, with respect
to the weight function W(z) = ¢ in disks centered at the origin. Our next result
generalizes Theorems 3.8 and 4.3 of [8].

Theorem 2.7. Given D, (0) := {z € C: |z] < r} and given the weight function W(z)
of (2.22), then the pair (D,(0), W) has the approximation property (1.3) if and only if

(2.23) F < P (M) 1= 2m) ", m € N.
Moreover, if (2.23) holds, then

de
(2.24) du(D,(0), e ) = (1 —2mr™ cos m@)—z——,
3

where df is the angular measure on |z| = r and where 7 = re'®.
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3. The Weighted Energy Problem

We establish an important connection between the weighted approximation of analytic
functions in the complex plane and the weighted potential theory developed during the
last two decades (see the excellent and thorough exposition in {9]). In particular, we show
that, under certain conditions, the measure p(G, W) of Theorem 1.1 is related to the
solution of a minimal weighted energy problem, which enables us to use the powerful
~ tools of [9] and to provide a basis for a complete analysis of the problem of weighted
polynomial approximation.

Let G be an arbitrary bounded open set in the complex plane and let W(z)# 0 be a
weight function which is analytic in G and continuous on G. From W, we define the
function

(3.1 w(z) = W), zeG,

so that w is continuous on G and is admissible in the sense of [9, Sect. 1.1]. Following
9], we set

3.2) 0(z) .= —log |W(2)l, z€G,
so that
(3.3) wizy=e29, zed.

With M(G) denoting the class of all positive Borel measures p on C such that
u(C) = 1 and suppu C G, consider the following weighted energy problem (see [9,
Sect. L.1]):

For the weighted energy integral

1 _
34 Ly (p) = // log e w@w®) du(z) dp(1), w e M(G),

find

(3.5) Ve = inf L.,
He MG)
and identify the extremal measure u,, € M(G) for which the infimum in (3.5) is attained.
The following is a special case of Theorems 1.1.3 and IV.1.10(a) of [9].

Theorem 3.1.  For the function w(z) defined by (3.1):

(a) V,, of (3.5) is finite;

(b) there exists a unique Ly, € M(G) such that 1,(p) = Vo, and supp p C 0G;

¢y U (2)+ Q(z) = Fy, for quasievery z € G, where Fyy =V, —f Q) diy(1);
and

(d)y U™ (2) + Q@) < Fy, 7 € Supp fhy-

By saying in (c) that a property holds quasi everywhere (q.e.), we mean that it holds
everywhere, with the possible exception of a set of zero logarithmic capacity (see [9,
Sect. 1.1]).

The next theorem is also a special case of the results in [9], Whl(,h is stated in a form
convenient for use in our proofs in the next section.
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Theorem 3.2. LetG = Uﬁ‘_’__l G be the finite union of disjoint Jordan domains {Gg},ﬁ(’:l
and let W (2) be analytic in G and continuous in G with W(z) # 0 foranyz € G.Suppose
that the measure u(G, W) € M(G) of Theorem 1.1 exists, i.e.,

(3.6) UMEW () —log |W(2)| = F(G, W), zeG,

where supp (G, W) C 3G and where F(G, W) is a constant. Then, u(G, W) is the
solution of the weighted energy problem (3.5) for the function of (3.1), i.e.,

3.7 M = u(G, W)
and
(3.8) F, = F(G,W).

Proof. Using the continuity of potential in the fine topology (see Section L5 of [9])
and the continuity of log |W(z)| on G, we obtain by Corollary 1.5.6 of [9] that (3.6) also
holds forany z € 9G,, £ = 1,2, ..., £g. Thus,

(3.9) UMW () —log|W(z)| = F(G, W), z€G.

Integrating (3.9) over G with respect to the measure (G, W), it follows immediately
that u(G, W) has finite logarithmic energy (see [9, Section I.1]). Then, we obtain the
desired results of (3.7) and (3.8) by using (3.2), (3.9), and Theorem 1.3.3 of [9]. ]

4. Proofs

Proof of Theorem 1.1. Assuming that the measure u (G, W), satisfying the conditions
of Theorem 1.1, exists, we first prove that the pair (G, W) has the approximation property
(1.3). To show this, recall that G = UZ:I G is a bounded open set where {G,}{_, are
disjoint simply connected domains, and consider the Jordan domains G, ,, C Gy, m €
N, which exhaust the domain G, for each £ with | < £ < o. A convenient way to define
the sequence{Gy ,, },_, is to set

’ 1
4.1 Gep = {zeC:[w(z)] < 1——}, m e N,
2m
where ¢y G, — D = {w ¢ C: |w| < 1} is a canonical conformal map of domain G,
onto the open unit disk D, where 1 < £ < . Thus, each G, is bounded by the analytic
Jordan curve

o= {z eCilp(@) =1~ i—}
2m
‘which is a level curve of ¢,. Let f(z) be an arbitrary function which is analytic in G,
and let £ C G be an arbitrary compact set. Because E is compact, it is clear that E is
contained in the finite union of Gy ,,, £ = 1,2, ..., £y, for some £, € N, provided that
m is large enough. Set H,, := Uﬁ”:, Gimand Ty, = ﬁ":l Iy Then, I',, = 9 H,, for
all m € N, and also £ C H,, for all sufficiently large m € N.
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Introducing the domain €2, = (_J\f—lm, m € N, we observe, for the balayage 1, of
w(G, W), out of Q,, t0 32,, = dH,,,, that foreachm € N, the following statements are
true (see Theorem 11.4.4 of [9]):

“.2) U (z) = UMY @) +cp, 2 € Hp,
and »
(4.3) Utn(z) < UMM (@) 4w, z€C,

where 1, (C) = 1, supp i, C dH,, and ¢, > 0. (We remark that equality in (4.2) holds
on 352, since each point of 32, is regular (see [12, Theorem 1.11]).) As (1.5) holds by
hypothesis for any z € G and as H,, C G, then (4.2) and (1.5) give

“4.4) Ut (z) — log|W(2)| = F(G, W) + ¢, z € Hy,
ie.,

(4.5) w(Hy, W) = tip,

and

(4.6) . F(Hu, W)= F(G, W) +cy =t Fy.,

for any m € N.
Fixing a sufficiently large m € N so that E C H,,, consider the function

4.7 v(z) == UM (z) — URC W), zeC,
which is subharmonic in €2,, with v(co) = 0, and satisfies, by (4.3), the inequality
(4.8) v(2) < Cm, zeC.

Observe that if we have equality in (4.8) for some zo € £2,, then, by the maximum
principle for subharmonic functions and (4.2), this gives

v(z) = Cm > 07 Z E Qm’
which is in contradiction with the fact that v(oc) = 0. Thus, it follows from (4.7) that
Utn(z) < UMM @) +cn, 7€ Q.

Adding —log| W (z)] to both sides of the above inequality and, using (1.5) and (4.6), we
obtain that

49) U (z) — log |W(2)| < F, z2€ GNYy.

To construct a sequence of weighted polynomials which is uniformly convergent to
f(2) on E, we interpolate the analytic function W™"(z) f(z) by the polynomial P, (z)
(of degree < n) at the (n + 1)th weighted Fekete points {z,ﬁ"H)}Zii C I, 1 € N,
corresponding to the function w(z) of (3.1) on H,,. (For details on weighted Fekete
points, see Section IIL1 of [9].) Introducing the Fekete polynomials, associated with
w(z), by

n+l

(4.10) w1 @ =] [ =z,
k=1
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and setting L, := Uﬁ":, L¢ m, where each Ly ,, C G\Gopm. £ =1,2,..., £, is arecti-
fiable Jordan curve containing G, ,, in its interior, we obtain by the Hermite interpolation
formula (see [13, p. 50])

Wy41(2) W) f() dt
2ni Jp, =D (@)

@1 W@ L@ — Pa(z) =

Multiplying (4.11) by W"(z) gives

W (2)wn11(2) f()dt
27{i L, (t - Z)W"(l)a),,+](f)’

Using Theorem III.1.8 of [9], (4.4)-(4.6), and Theorem 3.2, we have that

z€E.

(4.12)  f-W"@P,(2) =

(4.13) Clim Jw, ()Y = exp{=U""(2))

holds locally uniformly in C\I',,. Consequently, we obtain by (4.4)-(4.6) that
(4.14) lim w1 Q)W) = e,
n—>0oQ

uni’formly on E. Also, by (4.9) and the compactness of L,,,

(4.15) min lim [wup QW ()" > e,

z€L, n—oo

since U""(z) — log |W ()| is harmonic in G N €2,,. Thus from (4.12), on using (4.14)
and (4.15), it follows that

. 1/n . W w, |l L
lim sup Hf - w'p, HE < limsup — - £ 7
n-—>00 =00 21212 |W (Z)C!),,,+1(Z)!
Hence, the sequence {W"(2) P, (2)},2, converges to f(z), uniformly on E, which com-
pletes the first part of the proof of Theorem [.1.

Now, suppose that a pair (G, W), satisfying the condition of (1.2), has the approx-
imation property (1.3). To show that the measure u(G, W), satisfying the conditions
of Theorem 1.1, exists, we consider a sequence of polynomials {P,(z)},, such that
W"(2) P,(z) converges to f(z) = 1, locally uniformly in G. We may assume, with-
" out loss of generality, that deg P, = n. Otherwise, one may define a new sequence of
polynomials

P.(2) := Py(2) +a,2",  meN,

in such a way that W” (2) P, (2) also converges to f(z) = 1, locally uniformly in G with
a, # 0 forany n € N, by choosing a, > 0 to be sufficiently small.
Let a, # 0 be the leading coefficient of P,(z) and let

i
(4.16) v=— Y8,
" p@=0

be the normalized zero counting measure for P,(z), where 8., is a unit point mass at z;.
We count all zeros of P,(z) in (4.16), according to their multiplicities, so that

4.17) v (C) =1, neN,
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i.e., these measures are unit positive Borel measures. Hence, as W (z) P, (z) — 1 locally
uniformly in G,

4.18)
1 1
;log [an] — U™ (2) +log |W ()| = ;long”(z)Pn(z)[ -0 as n — 00,

locally uniformly in G. o B
If 9, is the\_balayage of v, out of the open set C\G to G (note that the part of v,
supported on G is kept fixed), then

(4.19) U™ (z) = U"(2) + bu, 1 eG,

where b, > 0, supp U, C G, and 9, (C) = v,(C) = 1 (see Theorem 11.4.7 of [9]).
By Helley’s theorem (Theorem 0.1.2 of [9]), we have that the sequence {D,}o°, con-
tains a weak* convergent subsequence, so that

(4.20) Dy, = 1 as j —> 00,

where 1 is a positive Borel measure. One can immediately see, by the locally uniform
convergence, in G, of W" P, to unity, that

4.2 u(C) =1 and suppu C 3G.
Furthermore, by (4.20),

(4.22) lim U™ (2) = U"(2), 2€G.

Jj—>0o0

It follows from (4.18) and (4.19) that
. 1
(4.23) U (z) —log |W(2)| + b, — —logla,| — 0 as n — 00,
n

forany z € G. Consequenﬂy, b,, — (1/n;)loglay,| converges to a finite limit by (4.22).
On defining

1
F := lim <‘— log lan,| — b,,l.),

j—>oo nj
we obtain by (4.22) and (4.23) that
Ut (z) —log|W(2)| = F, z€G.

Finally, from the above equation and (4.21), we see that (1.5) of Theorem 1.1 is satisfied
with

(G, W) = p;
and with
F(G,W)=F.
This completes the proof. =
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Proof of Remark 1.3. To prove the second statement in Remark 1.3, suppose then
that W(zp) = 0 with zy € G, where W(z) # 0 in G, and suppose, given an analytic
function f(z) in G, that polynomials { P, (2)},2, can be found such that {W" (z) P, (2)}72,
converges to f(z), locally uniformly in G. As W (z)# 0, we can choose R > 0 such that
Dr(z0) = {z € C : |z — 20| < R} satisfies Dg(z9) C G and that

(4.24) M = mi] RlW(z)] > 0.

lz—zpl=

Then, by the locally uniform convergence of {W"(z) P,(2)}5, to f(2),

I flappen +1
Mn

for all n € N sufficiently large. Since W (zy) = 0, we can find an r € (0, R) such that

(4.26) mi=Wlp ., <M.

Using (4.25) and (4.26), we obtain

k)

4.25) || Py |IDR(;()) =[Py ”(‘iDR(zn) < WnPn“HDR(zn) fw=" “f)[)k(zo) =

mA\”" .
IW"Pallp, oy < NWIG o I Pall ) < (—A_/I—> (I fllapezn+1) = 0 as n — oo.

Butbecause of the locally uniform approximation of f(z) by {W"(z) P,(2)};2,, it follows
that f(z) = 0 for any z € D,(z9) which implies, by the uniqueness theorem, that
f(2)=0inG,. , B

Proof of Theorem 2.1. First, we recall, by the results of Section IV.2 of [5] (see also
Theorem I1.4.7 of [9]), that the following are valid:

4.27 U () =U"(2) +/gsz(f, co) dv (1), z€ G,
and
(4.28) U‘A’z(z) =U"(z) + / galt, 00)dvy (1), z€@,

where go(t, 00) is the Green function for  with pé]e at co. Using (2.3), (4.27), (4.28),
and Frostman’s theorem [12, p. 60], it follows, for the measure yu defined in (2.4) and
for z € G, that
(4.29) U*(z) —log|W(2)|

= +a+ U™ D) —al(2) — BU () — log |W (2)]

= —a/gg(t,oo)dvl(t)-ﬁ/ggz(t,oo)dvz(f),

cap G

=(1+a+ p)log
where cap G denotes the logarithmic capacity of G (see [12, p. 55]).
Observe that for u defined by (2.4), we have
(4.30) suppu C 0G and w(C) = 1.

Thus, if 1 is a positive measure, then Theorem 1.1 implies, by (4.29) and (4.30), that the
pair (G, W) with W(z) defined by (2.3) has the approximation property, with

(4.31) m(G, W) = pu
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and

(4.32) F(G,W) = (1+a+ B)log =
cap G

~otfggz(t,oo)dv1(t)—ﬂ/gg(t,oo)dvz(t)‘

Suppose now that the pair (G, W) with W(z) defined by (2.3) has the approximation
property (1.3). Then by Theorem 1.1, there exists a positive Borel measure u(G, W)
with '

(4.33) supp u{G, W) C 4G and u(G, W)(C) =1,
such that
(4.34) UMGW () —log |W(z)| = F(G, W), z€0G.

It follows from (4.29) and (4.34) that
(4.35) UMGWi(z) = U (2) +c, z€G,

where ¢ is a constant. Since potentials are continuous in the fine topology (see Section 1.5
of [9]) and since the boundary of each G¢, £ = 1, ..., o, in the fine topology is the same
as the Euclidean boundary (see Corollary 1.5.6 of [9]), then (4.35) also holds for any
z € 8G. Thus,

436) w(e) = UMM () Ut @) =c, z€G.

Observe that u(z) is harmonic in §2 (including z = 00) with u(00) = 0,andthatu(z) =c
on 2 C 3G. Therefore,

(4.37) u(z) =0, 7€ QUG,

by the minimum-maximum principle for harmonic functions and the continuity of u(z)
in the fine topology. Applying a similar argument to the bounded components of C\G,
we obtain from (4.37) that ' ‘

(4.38) u(z) =0, zeC.

Assume thate > 0 and B < 0 (the other cases are treated similarly). Then we have from
(4.38) that

(4.39) U;L(G,W)~ﬁm(oo“.9)+aﬁ. () = U(l+a)w(oo.-.$2)u-ﬂﬁg ), zeC,

where we deal with the potentials of the positive measures on both sides of (4.39). 1t
follows from Theorem I1.2.1 of [9] that

@40) (G, W) — Pw(oo, - Q) + ady = (I +)w(00, Q) — Bin.
Thus,

4.41) p= (1 +a+ Bw(oo, -, Q) —abd — B, = uw(G, W)

is a positive measure. =



488 I. E. Pritsker and R. S. Varga
Proof of Theorem 2.2. It is clear that for W(z) = z* we have

I
(4.42) log |W(2)| = —alog Ei —aU%(z), z € C\{0},

z
where dy is the unit point mass at z = 0 and « is any real number. Since the balayage 8o
of 8y out of Q2 to G is given by (see [5, p. 222])
(4.43) b0 = w(0, -, Q),
then Theorem 2.2 is an immediate consequence of Theorem 2.1 with 8 = 0. ]
Proof of Corollary 2.3. First, we explicitly find the measure u of (2.11) for Q =

C\B, (a). Introducing the conformal mapping of  onto the exterior of the unit disk
D={weC:lw >1}

2 _ _ _
(4.44) W= =T OCT) g
r(z — zo)

where @ (zg) = oo for zg € 2, we obtain that
4.45) w(z0, B, 2) = m(®(BNIX))
for any Borel set B C C, where
dm =d6/(2n) on {weC:|w =1}
(see [7, p. 371). It follows from (4.45) that

do(z0, -, Q) (. |lzo —al> = r*

4.46 ——— =— 9@ =5, LT ar=r
( ‘ ) p (2) P |®'(2)] e — 2 lz—al=r
where ds is the arclength on |z — a| = r. As is well known,

dw(co, -, Q 1
4.47) —(——~—-~—) () = —, lz—al=r,

- ds 2mr
which gives, for u of (2.11), that

di 1 a? —r?

4.48 — (@) ==l -0 —— ), —al=r.
(4.48) ds @ 2mr ( ta-a z]? ) emal=r

Since w is a positive measure if and only if the density function on the right of (4.48) is
positive for all z such that |z — a| = r, then the validity of the approximation property
is equivalent to

a? — 2

(4.49) l+o—«a >0 if o>0,
(a—r)?

or to
a? — r?

(450) 1+C¥”(¥m20 if a<O.

Solving the above inequalities for » under the condition r < a, we arrive at (2.12) and
(2.13). ]
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Proof of Theorem 2.4. Following the proof of Theorem 2.2, we write for W(z) of

(2.14): .
1
4.51 log|W(z)| = —alo — Blo
(4.51) g W@l Chm—T B ChPY
= —aU%@) — BU'(z),  zeC\[-1,1},
where 8; and §_, are the unit point masses at z = 1 and z = —1, respectively. For their
balayages to G, we have [5, p. 222]:
(4.52) §i=w(l,.Q) and b =ow(-1,,9Q).
Thus, Theorem 2.4 follows from Theorem 2.1. |

Proof of Corollary 2.5. Using the same notations as in the proof of Corollary 2.3, we
obtain for y, given by (2.15), that, from (4.46) and (4.47), ‘

(1 —a)Y?—r? (1+a)2—r2)
|z — 1}2 lz + 112 '

where |z — al = r and ds is the arclength on |z — a| = r. Thus, the possibility of

weighted approximation is equivalent, by Theorem 2.4, to the positivity of the density

function in (4.53). It can be verified by elementary methods that, for &« > 0 and 8 > 0,
the latter is equivalent to

du 1
(4.53) K(Z) =5 (I +a+pf—o

d d
(4.54) W a=—r>0 ad L@+nzo0
ds ds

holding simultaneously. Substituting z = a — r and z = a + r into (4.53) and solving
(4.54) for r gives the desired results of (2.17). |

Proof of Theorem 2.6. For the Jacobi-type weight function of (2.19), we have
P P
4.55) log|W(@)| =) ailoglz—1l=—y aU%@. zeC\L},
i=1 i=1 :

By the properties of balayage of a unit mass (see [5, p. 222]) from Q to G, we have

(4.56) 8 =w(t, -, Q), i=1,...,p.

On defining

4.57) vy = (Z a,xS,,) /(Z a,)
;=0 @i >0

and

458 v = (Z 1ai|6,,) / (Z |a,~|),
a; <0 a; <0

we observe that v, and v, are the unit positive measures with compact support in €2, such
that

(4.59) log |W(2)| = —(@U"(2) + BU™(2)),  ze€ C\[t},,
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where @ := ), o and f := ), , @. Using (4.56), it follows from (4.57) and
(4.58) (see Section 11.4 of [9]) that

(4.60) by = (Z ot -, sz)) /Z o

;20 a; >0
and
(4.61) %=<Zﬁmmwum)/znm
a; <0 ' ;<0

Applying Theorem 2.1, we obtain that the approximation property holds for the pair
(G, W) if and only if

P p
M= (1+a+18)w(oov y Q)_’aﬁl—ﬁf)z = <1 + Z (X,‘) (U(OO, s Q)—Z aiw(ti? K Q)
i=1 i=1

is a positive measure. , o
Furthermore, calculating the density function of i for Q@ = C\ D, (a) by (4.46), (4.47),
and (2.20), we get

du 1 “ 2 Iti —al —r?
4.62) —()=-—1|1 i — i — |, —~al=r,
462) —=(2) m(+2a Z“lrw lz—al=r
which implies the desired result of (2.21). |

Proof of Theorem 2.7. We essentially follow the proof of Theorem 4.3 of [8] (corre-
sponding to m = 1), generalizing it to the case of arbitrary m = 1,2, .... We know by
Theorem 1.1 that the approximation property for D, (0), with respect to the exponential
weight W(z) of (2.22), holds if and only if there exists a positive unit Borel measure
Wy = (D, (0), e=%"), with supp i, C 3D, (0), such that

(4.63) U* (2) + Re{™} = F}, z € D.(0),
where F, := F(D,(0), e%") is a constant. For z = 0, (4.63) gives, from (1.4), that

1 1
(4.64) F,=U"(0) = /log m du,(t) = log —.
r
By the continuity of potentials in the fine topology and the fact that the boundary of
D, (0) in the fine topology coincides with usual boundary 3 D,(0), we conclude that
(4.63) holds for any z € 3D, (0). Thus, (4.63) is equivalent to

(4.65) U" (z) + Re{z™} = log %, [z <r.

Consider the function U (z) + log(|z]/r), which is harmonic in 2 = C‘\D, (0), and
whose boundary values satisfy

|z|

‘ 1
(4.66) U (z) + log —= log - Re{z™}, |z] = r,
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by (4.65) and Theorem 11.3.5 of [9]. Solving the associated Dirichlet problem in (4.66)
for 2, we find that

L ]Zl 1 2m 1
UM (z) + log ~— =log— —r"" Rey— ¢, Izl >,
r r a
or
i 1 2m ]
4.67) Ur(z) =log— —r™Re{ —1t, |zl >r
|Z| "
On the other hand, we have from (4.65) that
1
(4.68) Ut (z) = log P Ref{z™}, lz| <r.

We can now find p, explicitly (see Theorem IL.1.5 of [9]) from

ey = L (20 g BU"
AP =00 Uony an_

(9)) rdo,

where d# is the angular measure on |z| = r, and where n. and n_ are, respectively, the
inner and the outer normals to the circle |z] = r. A direct calculation using (4.67) and
(4.68) gives that

1 , 1 . '
du,(H) _ (mrm~1 Re ezmﬁ + (__ +mrm~] Re e—zm(?)) I‘d@,
2 r
and, after simplifying, the above becomes
' 1
(4.69) du,(0) = 5—(1 —2mr™ cosmb) do.
7

Clearly, j1,(0) is a unit measure on |z| = r satisfying (4.65) for any r > 0. However,
w,(6) is a positive measure if and only if (2.23) holds for r. ]

5. Further Remarks and Open Problems

Theorem 1.1 gives a rather complete answer to the question on weighted approximation
by W"(z)P,(z) in open sets of the complex plane. It is then very natural to consider
the uniform approximation by such weighted polynomials on compact sets, aiming at
an analogue (generalization) of Mergelyan’s theorem (see [13, p. 367]). Let £ C C
be a compact set with connected complement C\E. We denote the set of all functions,
analytic interior to E and continuous on E,by A(E). Let W € A(E), with W(z) # 0
forany z € E.

Problem. Give a necessary and sufficient condition for the pair (E, W) td have the
following approximation property:
For any f € A(E) there exists polynomials { P, (2)};2, with deg P, < n, such that

(5.1) lim || f — WPl = 0.
=00
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Obviously, the classical uniform approximation by polynomials (Mergelyan’s theo-
rem) corresponds to W(z) = 1, z € E. We observe that (1.5) of Theorem 1.1, holding
with G = Int £, is a necessary condition for (5.1). Let us also remark that this problem
is open even in the case when E is a subset of the real line, such as an interval (see [9]
and [11] for background and general results, and Kuijlaars [4] for the recent progress in
this area).

An even more general approach is to consider the approximation problem in (5.1) with
polynomials replaced by rational functions. Certain results, concerning such weighted
rational approximation have been obtained by Borwein and Chen [1] in the complex
plane, and by Borwein, Rakhmanov, and Saff [2] on tk ~ real line, for particular weights.
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