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ON GERSGORIN-TYPE PROBLEMS AND OVALS OF CASSINI *

RICHARD S. VARGA T AND ALAN KRAUTSTENGL ¥

Abstract. Recently, two Ger§gorin-type matrix questions were raised. These are answered here, using ovals of
Cassini.
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1. Introduction. Given a matrix A = [a; ;] € €™*", its usual GerSgorin disks are given
by

(L.1) zeC: |Z —_ am‘| < E |ai,j1 = T‘i(A) =: Fi(A) (1 <i<n),
=1
JFi

and, if 0(A) denotes the spectrum of A, i.e.,

o(A) :={X eC: Xisaneigenvalueof A},

the famous GerSgorin circle theorem [3] (or Horn and Johnson [4, p. 344] and [7, p. 16]) is
that

(12) o(A) C O Ti(A) =: T(A).

i=1

At this moment, only the n diagonal entries {a; ;}?_, and the n row sums {r;(A)}>; of
y g Ji=1 i=1

(1.1) determine the n Ger§gorin disks {I';(A)}?~; and the inclusion set I'(A), of (1.2), in the
complex plane. Then, with the notation

N:={1,2,---,n},

these 2n pieces of information are used to define the following set of matrices:

(1.3) Q:={B= b,, E(D"x“:biiza”andriB =T¢A fOl‘all’iEN .
:J 3 )

It is evident that o(B), for each B € Q, must also satisfy the inclusion of (1.2), and, with the
notation

(1.4) a(Q):= | o(B),

BeQ
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16 On a Ger3gorin Problem and Ovals of Cassini
we have
(1.5) a(2) CT(A).

As we shall see, the inclusion in (1.5) is not always one of equality.
Recently, the following questions were asked of one of us:
Question 1. Can a precise description of () be given?
Question 2. When is it the case that o(§2) is a single closed disk (with a
nonempty interior) in the complex plane?
The point of this note is to answer the above questions.

We remark that the set o(Q) of (1.4) is, for n > 2, in general larger than the minimal
Gersgorin set (cf. [8]) for any matrix A, simply because the minimal GerSgorin set uses
more specific information about the matrix A = [a; ;] € €"*" in determining its minimal
Gersgorin set. Specifically, the associated set of matrices, for the minimal GerSgorin set of a
given matrix A = [a; ;] €C" ", is

(1.6) QMG’ = {B = [biyj] E(ann : bi,i = Q44 and |b¢,j| = Iai,jl for all i,j S N} y

i.e., in addition to knowing the n diagonal entries {a;}—,, one is also given the moduli of
all n(n — 1) nondiagonal entries {|a; ;|}7,_,, for a total of n? pieces of information. Though

i
it is not essential for this paper, we remark ihat it is evident from (1.3) and (1.6) that

1.7 Qme C Q, sothat o(Qug) C o(Q) forany A eC™ ™, n > 2,

where it can be shown that the equalities of containment in (1.7) cannot in general hold for
all A € ©™*™, n > 2, but in the case n = 2, there holds

(1.8) Que = Q, sothat o(Qumg) = o(2) forany A e ¢?*?,

2. On Question 1. We need some additional notations and results. Given the 2 x 2
matrix

@1 B = bi1 bie €22,
ba1 b2

its associated oval of Cassini is defined as

(2.2) KB):={z€C:|(z—b1,1)(z —ba2)| <|b12-b21l}-

Then, for a matrix A = [a, ;] € C"*"™, n > 2, we denote its ovals of Cassini by

(2.3) Kij(A):={z€C:|(z—aii)(z —a;;)| <ri(A)-7;(A)}, foralli #jin N.

There are (3) = "("T"l) ovals of Cassini K; j(A) associated with the matrix A, and from a
well-known result of A. Brauer [1] (see also [4, p. 380]), we have that if
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2.4) K(4) = | ] Ki;(4),
L;J;z,l
then
(2.5) o(A) C K(A).

But, as the ovals of Cassini in (2.3) use only the information given by {a; ;}-; and {r;(A)};-,,
it is also true from (1.3) that

(2.6) o(Q) € K(A).

We remark from (2.3) that each oval of Cassini K; j(A), ¢ # 7, is a bounded and closed
(hence, compact) set in the complex plane T, as is their finite union K (A) in (2.4). Next, if T’
is a set inC, then T denote its closure and 7" := €\ T denotes its complement. The boundary
of T is defined, as usual, by 8T := T T".

Our first result, which sharpens the inclusion in (2.6), shows exactly how ¢() fills out
K(A).

THEOREM 2.1. Given any A = [a; ;] € C"*", n > 2, then

2n () = 0K (A) = 0K; 2(A), whenn =2,
and
(2.8) o(Q) = K(A), whenn > 3.

Proof. For n = 2, each matrix B in € is, from (1.3), necessarily of the form
@9y  B=| o AT s arbit 1 numb
‘ — | ra(A)eie a2 ’ 1,2 arditrary real numbers.

If X is any eigenvalue of B, then det (B — AI) = 0, so that from (2.9),
(a11 — MN)(age — A) = ri(A) - ro(A)e!W1H¥2),

Hence,

(2.10) lai; — Al - laz2 — Al = r1(4) - r2(A).

As (2.10) corresponds to the case of equality in (2.3), we see that A € 0K 2(A). Since this
is true for any eigenvalue A of any B in  and since, from (2.4), K7 2(A) = K(A) in this
case n = 2, then 0(Q2) C 9K 2(A) = OK(A). Conversely, it is easily seen that each point
of 0K 2(A) is, for suitable choices of real ¢ and 3, an eigenvalue of some B in (2.9), so
that o(2) = 0K, 2(A) = 0K (A), the desired result of (2.7).
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To establish (2.8), first assume that n > 4, and consider a matrix B = [b; ;] in C"*",
which has the partitioned form

Bi1 | Bia
2.11 = : 2|
(2.11) B [ 0 | Bas
where
2.12 By o= | @1 s ith0 < s <r(A), 0<t<ry(A
(2.12) LU i gy, | with 0 < s < 71(A4), 0 <t <ra(A),

with 1/ and 1) arbitrary real numbers, and with b; ; = a; ; forall 1 < j < n. Now, for any
choices of s and t with s € [0,71(A)] and ¢ € [0,72(A)], the entries of the block B o can be
chosen so that the row sums, r1(B) and ro(B), in the first two rows of B, equal those of A.
Similarly, because n > 4, the row sums of the matrix Bz 2 of (2.11) can be chosen to be the
same as those in the remaining row sums of A. Thus, by our construction, the matrix B of
(2.11) is an element of ). (We remark that this construction fails to work in the case n = 3,
unless r3(A) = 0). But from the partitioned form in (2.11), it is evident that

(2.13) o(B) = o(B1,1) | Jo(Ba.2)-

However, from the parameters s, t, 11,9 in By, in (2.12), it can be seen from (2.3), that,
for each z € K 2(A), there are choices for these parameters such that z is an eigenvalue
of By 1. In other words, the eigenvalues of By 1, on varying s and ¢t with 0 < s < ri(A)
and 0 < t < ro(A), fill out K; 2(A4), where we note that the remaining eigenvalues of B
(namely, those of Bs o) must still lie, from (2.6), in K(A). As this applies to all ovals of
Cassini K; ;(A), for i # j, upon suitable permutations of the rows and columns of B of
(2.11), then o(2) = K (A), foralln > 4.
For the remaining case n = 3 of (2.8), any matrix B in § can be expressed as

a1,1 set¥ (r1(A) — s)et¥
(2.14) B = | te'¥s a2 (ra(A) — t)ei¥s
uets  (r3(A) — u)eve as,3
where
(2.15) 0<s<ri(A4), 0<t<ry(A4), and0 < u < r3(A), and

{4:}5_, are arbitrary real numbers.

Now, choose any complex number z in the oval of Cassini K1,2(4), i.e., (cf. (2.3)), let 2
satisfy

(2.16) ‘Z—al,ﬂ -Iz—ag’zi _<_T‘1(A) -TQ(A).

The above inequality implies that either |z — a1,1] < 71(A) or |z — az 2| < 72(A) is valid.
Assuming, without loss of generality, that |z - a1,1| < r1(A), choose the parameters s and
¥y suchthat |z —ay1| =sand z — a1, = se*¥1, and similarly, choose the parameters ¢t and
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w3 such that |z — ag 5| =t and z — az 5 = te®™2, where, from (2.16), s - t < r1(A) - ro(A).
Then with the vector x = [1,1,0]7 in IR3, it can be verified that Bx = 1), where

m=ay +se¥ =z,
2.17) No = te'¥s +ag o = 2,

N3 = ue'¥s 4 (r3(A) — u)e¥s.
Then, on setting u := r3(A)/2 and 95 = s + 7, we have 73 = 0. Thus, Bx = zx,
and z is an eigenvalue of B. Hence, each z in K 2(A) is an eigenvalue of some B in Q.
Consequently, as this construction for n = 3 can be applied to any point of any oval of
Cassini K; ;(A) with ¢ # j, then 0(Q) = K(A), which completes the proof of (2.8). 0

We remark that there is a way to enlarge the set {2, in the spirit of what has been done in

the treatment of minimal GerSgorin sets (cf. [8]), which gives a unified inclusion result for

any n > 2, which does not distinguish between the cases n = 2 and n > 3, as in Theorem
2.1. To this end, set

(2.18) Q = {B = [bi,j] ceqgrxr bi,i = Q44 and 0 < T‘z(B) < Ti(A) forall: € N} s

so that 2 C €), and this of course implies

(2.19) o() C o(Q).

But from the definitions in (2.3), we also have

(2.20) o(Q) C K(A).

THEOREM 2.2. Given any A = |a; ;] € C""" withn > 2, then
(2.21) () = K(A).

Proof. From Theorem 2.1 and the inclusions of (2.19) and (2.20), it is only necessary to
establish (2.21) in the case n = 2, i.e., for n = 2, it suffices to show that o(Q) = K(A) =
K 2(A). The proof of this is similar to the proof in the first part of Theorem 2.1. For n = 2,
each matrix B in  is, from (2.18), of the form
(222) B= { a1 sei } with 0 < s < r1(A), 0 <t < ro(A), and

) tet¥z  ag, 11,9 arbitrary real numbers.

If )\ is any eigenvalue of B, then det (B — AI) = 0 implies that
(@11 — N)(ag — ) = ste'V1t¥2),
so that
|(a1,1 — A)(ag,2 — A)| = st, for all real 91, 1.

But as s and ¢ run, respectively, through the intervals [0, 71 (A)] and [0, 72(A)], and as 1; and
g run through all real numbers, it is evident that the eigenvalues of the matrices B in {2 fill

out (cf. (2.3)) the set K3 2(A4) = K(A), i.e., inthis case n = 2, 0(Q2) = K1 2(A) = K(A).
0
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3. On Question 2. The answer to Question 2 is straight-forward, based on the results of
Section 2 and the following observations. Given a matrix A = [a; ;] € €"*", n > 2, then,
with the definitions of T';(A) of (1.1) and K ;(A) of (2.3), it is easy to verify that

K;;j(4) CTi(A)UT;(A)foralli,j € N withi # j,
(3.1 with equality holding only if r;(A4) = r;(A) =0,
orifa;; = a;jand r;(A) = r;(A) > 0.

The set inclusions in (3.1) imply, with the definitions of I'(A4) of (1.2) and K (A) of (2.4), that
one always has

(3.2) K(A) CT(A).

So, to answer Question 2, it can be seen from Theorems 2.1 and 2.2 that, if A = [a; ;] €
C**", n > 2, then
a) forn =2, o(£2) is never a single closed disk with a nonempty interior.
b) forn = 2, U(Q) is a single closed disk with a nonempty interior only if
a1 = a2 and T](A) . Tz(A) > 0.
¢) forn> 2, 0(Q) = o(Q) is a simple closed disk with nonempty interior only
if there are s,t in N with s # t such that as s = a; and rs(A) - 7:(A) > 0,
and all remaining ovals of Cassini K; ;(A) lie in K ;(A).

4. Final Remarks. It was a surprise for us to see that the determination of o(£2), in
Theorem 2.1, was completely in terms of ovals of Cassini, a topic rarely seen in the current
research literature in linear algebra. In fact, on consulting many (16) books on linear algebra,
we could find only three books where ovals of Cassini are even mentioned: in an exercise
in Varga ([7, p. 22]), in a lengthier discussion in Horn and Johnson [4, pp. 380-381], and
in Marcus and Minc [5, p. 149]. But, in none of these books was it stated that the ovals of
Cassini are in general at least as good (cf. (3.2)) as the GerSgorin disks, in estimating the
spectrum o (A) of a given matrix inC"™*". This appears in Brauer’s paper [1] of 1947 (which
curiously does not mention Ger3gorin’s earlier paper [3] of 1931.) What apparently was of
more interest in the literature is the fact that Brauer’s use of rwo rows at a time, to determine
an inclusion set for the eigenvalues of a given matrix, cannot in general be extended in the
same manner to k rows at a time, for £ > 3, and explicit counterexamples to this are given
in [4, p. 382] and [5, p. 149]. However, a “correct” generalization of Brauer’s results, using
graph theory, is nicely given in Brualdi [2].
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