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Summary. We study here in detail the location of the real and complex
zeros of the partial sums of cos(z) and sin(z), which extends results of
Szegod (1924) and Kappert (1996).
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1 Introduction

For any even positive integer n (written n. € 2N), let

n/2

(1.1) cosp(z) == Y _(=1Vz%/(2j)! (n € 2N)
j=0

denote the n-th partial sum of the function cos(z), and similarly, for any odd
positive integer m (written m € 2N — 1), let

-1
2

(12)  sing(2) == ) (=1)72%T1/(25+1)! (me2N-1)
=0

3

denote the m-th partial sum of the function sin(z). The zeros of the nor-
malized partial sums cos,(nz) and sin,, (mz) were first studied in 1924 by
Szego [11]. To describe his results, let

(13) AL :={z€C:|—ize!™| =1, |2| <1, andIm z > 0},
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so that A7 is a piecewise analytic Jordan arc in the upper half-plane of the

closed unit disk. (For those familiar with the work of Szego [11], it was
T

shown there that if s,,(z) := Z 2% /k! is the n-th partial sum of 2, then
k=0

all the zeros of the normalized partial sum s,,(nz) tend, as n — oo, to the

Jordan curve '

(1.4) Dy :={z€C: |ze1"2| =land|z| <1},

which is commonly called the Szegd curve. Then, AL, of (1.3) is just the

restriction to the upper half-plane of the rotation, by 7/2, of the Szegd
curve.) Then set

(1.5) A=Al U{zeC:2€ AL}

We remark that A, the union of AT and its reflection in the real axis, is
then a piecewise-analytic Jordan curve in the closed unit disk, where =+ and
+1/e are boundary points of A If

{zn; }}1':1 and {wyy, ; };l"':1 denote, respectively, the zeros of cos, (nz)
and sin,,(mz),
(1.6)

then Szego showed that the set of accumulation points, of either

U {Z'rz,.i}:;li_—l or U {"Um,j};n:h

ne2N me2N—1

is precisely the following set of points in the closed unit disk:

(1.7) Ao U {—1,1} .

e e
To illustrate this, Fig. 1.1 shows all the zeros (as dots) of {coszj(ij)}?gl
and also the curve A,. One can see that the nonreal zeros of cosy(nz)
are approaching A, and that the real interval [— —i—, +1] is becoming dense
with zeros of cos,(nz). (The plot of all zeros of {sing;+1((25 + 1)z) ?20
is nearly identical with Fig. 1.1, and is given in Fig. 1.2.)

The rate, at which the nonreal zeros of either cosy,(nz) or sing,(mz)
approach the Jordan curve A, was first studied by Kappert [7], using the
techniques of Carpenter, Varga and Waldvogel [3], and his results were later
shown in Varga and Carpenter [14] to be best possible. To describe these
results more precisely, for any € > 0, let the open rectangle R, be defined
by
(18) R.:={z€eC:—-1<Rez<land —e<Imz < e},
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Fig. 1.1. The zeros of cos, (nz) for n = 2,4,6...,100

and, for any complex number « and for any 6 > 0, let
- (1.9 As(e) :=={z€C:|z—q < 4}
denote the open disk about « with radius 9. If, as usual,
dist[z;T] :=inf{|z —y|l:y €T} (z€C;T CC),
and if, for a finite set S in C,
dist[S;T] := max {dist[z;T] : 2 € S},

then, with the definitions of the zeros of (1.6), it was shown in Kappert [7] (in
aslightly different form), for any fixed positive € and 6 with O < e+6 < 1/8,
that for n € 2N, ‘

n

(1.10) dist[{z;2-\(A5(i) U B5(~1) U Re); Aoc] = O (10%‘"> |

as n — oo, i.e., for n € 2N, the maximum distance from A, of a zero
zn,;j of cosy(nz), not in As(i) U As(—7) U R, is O(logn/n), as n — oo.
Moreover, the statement of (1.10) also holds for the partial sums sin,,(mz),
with m € (2N — 1) replacing n and {wp, ;}7L, replacing {z;}7_; in
(1.10). It was later shown in [14] that the result of (1.10) is best possible,
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Fig. 1.2. The zeros of sin, (nz) forn = 1,3,5,...,101

in the sense that there exists a positive constant o = 0.25249, such that for
any fixed positive € and 6 with 0 < e +4 < 1/8,

(1.1 1)7‘11'1%5{10g ndlst [{z7l’j};?':1\(ﬂ(5(l) U Aé‘('—l) U Re); Aoo]} >,
n&2N

with (1.11) also holding with m &€ 2N — 1 replacing n and {wm,;}7%,
replacing {2, ;}7_;.

What remains unanswered from (1.10) and (1.11) is the behavior of the
zeros of cos,, (nz), foreach n € 2N, or of sin,, (mz), foreachm € 2N —1,
which are near or on the real line. Figure 1.1 strongly suggests that there are
no zeros of cos, (nz), except for real zeros, in the set consisting of A, and
its interior, for any n € 2N, with a similar relation holding for the zeros of
sin,, (mz) for any m € 2N — 1. That this is true is a main result, Theorem
4.3, of this paper, which will be established in Sect. 4.

It is well-known that if GG is a bounded region in C which contains, say,
(v (real) zeros of cos(z), then, from Hurwitz’s Theorem (see Titchmarsh
[13, p. 119]) and the fact that the sequence of polynomials {cos,(z)}nean
converges uniformly to cos(z) in any compact subset of C, it follows that
there is a positive even integer ng such that, for all n € 2N with n >
no, cosy(2) possesses exactly /. real zeros in G, and these zeros tend to the
zeros of cos(z), as n — oo. These p zeros of cosy,(z), having this property,
are called Hurwitz zeros, while the remaining zeros of cos,(z) are called
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spurious zeros, with similar definitions applying to {sin,, (z)}meon_1 and
sin(z). In Sect. 4, we study the number of Hurwitz zeros of cos, (nz), n €
2N, and of sin,, (mz), m € 2N — 1, which has for us interesting number-
theoretic connections. '

Continuing the discussion of the real (Hurwitz or spurious) zeros of
cosy(nz) or sin,, (mz), it is known from Szego [11] that if 2,, ; now denotes
the largest real (Hurwitz or spurious) zero of cos,(nz) for each n € 2N,
then

1
(1.12) lim (zn’l — —) = (),
e

n—oc
ne2N

with the same result holding for the largest real zero w,, ; of sin,,(mz), for
m € 2N — 1. In Theorem 5.2, we obtain a more precise rate of convergence
of these zeros to 1/e, as n € 2N or m € 2N — 1 tends to infinity.

2 Preliminary results

With the definition of the set A}, in (1.3), consider the piecewise analytic
Jordan curve S, in the upper half-plane of the closed unit disk, defined by

1 1
2.1 ' STi=ALu|-=+-
2.1) oo U [ 6>+J ,
and set
(2.2) KT := St Uint(ST).
Similarly, let
(2.3) K :={zeC:ze K},

so that K~ is the reflection of K T in the real axis, and set
(2.4) K=KTUK~.

The sets K and K~ are shown in Fig. 2.1. We remark that it can be
shown (see Saff and Varga [10]) that the set K+ of (2.2) can be equivalently
expressed as

(25) K" ={zeC:|—iz"* <1, <landImz>0}.

We now assume that n is an even positive integer (written n € 2N),
and, analogous to the partial sums of cos(nz) in (1.1), we consider the n-th
partial sum of cosh(n), called cosh, (n), which is similarly defined as

(2.6) coshp(n) = Z - (n € 2N),
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~—084(0)

Fig. 2.1. The sets K and K~

where
o 2k n -n
n e’ + e
2.7) cosh(n) = Z 201 = 5
k=0
On setting
-oshy, (n
(2.8) Q=1 () oy,
cosh(n)

we first establish

Lemma 2.1 Forany n € 2N, Q,, of (2.8) satisfies

1 1
(29) 0< Qn < 57 and lim Q'I’L == ‘2‘

nN-—>00

Proof. Starting with Szegd’s notation, calling s,,(z) the n-th partial sum of
e®, 1.e.,
n

(2.10) sp(2) = Z Ik (zeCineN),
k=0

it is known from Szeg6 [11] (and is easily verified by differentiation) that
1 z

2.11 TFonlz)=1-—

("e%d¢ (2 € C;neEN),
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Next, it is known that the number 7,,, from Stirling’s formula, is given by
the following asymptotic series (see Henrici [6, p. 377]):

n! 1 1
= — ] - A
Tn nte—"M, /27Tn * 127l + 288712
(2.12)
_ 139 + (n — o0)
_ ¥ .
51840n3
Also, since .
Tn—H/Tn = - (71 € N>’

1\ "tz
(1+3)

it follows (see Plya and Szego [8, 1.168, p. 30]) that {7, }°° , is a strictly
decreasing sequence of positive numbers which tends to unity, i.e.,

(2.13) 1.08444 =71 > 19 > 13 > - -~ and lim 7, = 1.

n—oo

Then on replacing z by nz in (2.11) and on using the definition of 7, in
(2.12), it follows that

(2.14) e sp(nz) = - \\//_7;_7; /OZ(Cel—C)"dC (z € C;n €N).

Next, we see from (2.6) and (2.10) that
| coshp(n) = [sp(n) + sp(—n)]/2 (n € 2N),

and as cosh(n) = (e" 4+ e7")/2, the quantity (), can be equivalently ex-
pressed from (2.8) as

2.15) 0, = {1 - e‘"sn(n)] N {e_" — sn(—n)} .

1 + e—2n eh 4 e~ n

Now, the special case of z = 1 in (2.14) gives

1C
Tn@?/ ') dc,

and an application of Laplace’s method (see Erdélyi [5, p. 9]), to the integral
in (2.16), directly gives, with (2.12), the following asymptotic result of

1__\/:2__+O __.1~
2 3Jm-n n3/2

(Curiously, the above equation can be derived from a statement (no proof)
in 1913 of Ramanujan [9]. Proofs for his statement were later obtained

(2.16) 1—e"sp(n) =

1 —e "sp(n) = ) , asn — oo.
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independently in 1928 by Szeg6 [12] and Watson [15].) The above equation
indicates that, for all n sufficiently large, the terms of the sequence {1 —
e "sp(n) o, are positive and strictly increasing to —%—, as n — 00, and, in

fact, these consequences hold for all n € N:

. 1 1
2.17) 0<1l—e"sp(n)< 3 and lim (1 —e "s,(n)) = 5

n— 00

Thus, the first bracketed term of Q,, in (2.15) satisfies (for all n € N) |

1—esp(n) 1 _ 1 —e "sp(n) 1
2.1 — = —.
(2.18) 0 < Troon <3 and nlglgo e 5

We also have, from the definition of cosh,,(n) in (2.6), that
0 < coshp(n)/cosh(n) <1, (n € 2N),

which implies from (2.8) that

(2.19) 0<@n (ne€2N).
To treat the second bracketed term for (), in (2.15), we note that
| = (=)t
(2.20) e —sp(—n)= > o (n € 2N),
k=n+1

where the above sum is an alternating series with strictly decreasing (in
absolute value) terms. But as n € 2N, the first term in the sum in (2.20) is
negative, so that e™” — s, (—n) < 0. Hence, the second bracketed term for
Q) 1n (2.15) is negative, and, with (2.19) and (2.20), this gives
1 —esp(n) 1
0<@Qn< ppe—T <3 (n € 2N),

the desired first result of (2.9) of Lemma 2.1. Again, as e™"™ — s,(—n) is an
alternating series with strictly decreasing terms, then taking its first term in
(2.20) gives, with (2.12),

n" L/ (n + 1)1
en +e_7l

e " — sp(—n)
et +e™

nn+1 n

(n+ )nle™(1+e72")  (n+ )mv/2mn(l +e=27)
Hence with (2.13), the above display gives that
—-n __ .
(2.21) lim (e Sn n)) = 0.

n—00 e e N

Thus, on applying (2.21) and the last part of (2.18) to the sum for @Q),, in
(2.15), we obtain the final result of (2.9) of Lemma 2.1. 0O
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Though not needed above, we remark that the folldwing more precise
form of (2.21), which can be derived from results of Copson [4] and Buck-
holtz [1], is

e — sp(—n)
en + e—n

1 11 o2 .
= - — — — ¢, asn— oo.
V2mn |2 6n n?
Continuing, fix any n € 2N and consider the meromorphic function

_cos(nz) — cosy(nz)

(222) Rn(z) ‘=

cos(nz)

which has simple poles in the zeros of cos(nz), i.e., in the points

1
(2.23) Iy = {(] - ——) Ly j is an integer } .
- 2)n

For any z with I'm z > 0 and with z ¢ J,,, a short calculation using (1.1)
gives ‘
e ’.
27" Y n?F[—ize! TER (—iz) P (2k)!

k=241
R,(z)= 2

('1 + eQinz) » ’

and, on taking absolute values in the above sum and using the definition of
K+ in (2.5), we have

o0

27" > n®/(2k)!

k=241
|Rn(2)] < |1+ e2inz|

(z € KT\ Jp),

which we can also write, using the definitions of (2.6) and (2.8), as

2e™"[cosh(n) — coshy,(n)]  2e7".cosh(n) - Qn
!1 + e‘Zz'nzl - [1 + e2z‘nz‘

| Bn(2)] <

As (), < % for all n € 2N from (2.9) of Lemma 2.1, the above display
reduces to ’
e " cosh(n) 1+4e2n

2 - . ot
IRn(é)l < '1 n eQinzl = 2’1 n eQinz| (/« €K \Jn).

But on writing 2 = x + iy where y > 0, the above inequality can also be
expressed as

ey (1 + 6_2”)

(2.24) |Rn(2)] < 4] cos(nz)|

(z € KT\ Jy).
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We are interested in those points of K ™ where the upper bound in (2.24) |

is at most unity. To this end, let @7 be the subset in the upper half-plane,
without restriction to K™, for which the upper bound in (2.24) exceeds unity,
1e.,

ny(1 —2n
2250+ =Lz atigeCwimy>o:. o0t g1

4| cos(nz)]
It is evident from (2.25) that any sufficiently small neighborhood, of a real
point in J,,, is in ©;7, so that @; is a nonempty open subset of the upper

half-plane. In particular, for any integer j, consider the j-th element of J,,,
1.e., from (2.23),

| 1
(2.26) T = (} — 5) E, so that cos(na;) =0,
| n
and consider any
(2.27) z=x;+x+iywithy > 0.

(This sets the stage for finding that portion of @, called O ., which is

n,j°
centered about x;.) With (2.27), a short calculation shows that

1
| cos(nz)|> = 3 {cosh(2ny) — cos(2nx)},

so that the final inequality in (2.25) is equivalent to

1 1 on o | o 1
(2.28) 5~ g(l + e—‘z”)z} e* —2—6_2”9 < cos(2nz),

1e.,

1 1 5 ‘
Of ={z=ux;+a+iywithy>0: [—2— - §(1 + 72?2 | g2

1
(2.29) +-2-e—2"y < cos(2nx) }.
With 2ny =: v, the left side of the inequality in (2.28) serves to define the
function

1 1 A 1
(2.30) gn(v) := [5 - §(1 + e_zn)Q} e’ + —2-6"”, (v>0;n € 2N).

This function has a unique minimum, on the interval [0, +00), at the point

1 4 o log(g)
O 1= 5 log {4 — +e—2")2} , With Oy, | o0 = 2(3) = (.14384,
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as n — oo, with g, strictly decreasing on {0, 7,,], and strictly increasing to
+00 on Uy, +00). The minimum of g, (v) on [0, +00) is given by

N

1
gn(Un) = ) [4 - (1 + e_gn)Q] < 1.

But as gy, is strictly increasing to 4+oc on [Ty, +00), there is a unique 0, > Uy,
for which g, (0,) = 1, where

Up | Voo = log2 = 0.69314, asn — o0, (n € 2N).

We remark that the factor (1 +e72")2 in (2.30) is a nuisance factor, and can
effectively be replaced by unity, since 0, and 7, agree to five significant
decimal digits for all n > 6, the same being true for ©,, and . (The choice
of 6 in n > 6 comes from the fact (see [7]) that (osn(nz) has some nonreal
zeros if and only if n > 6.)

Because we are interested in the boundary points of @ ., denoted by

n, ] ’
oot j» we consider the case when the final inequality in (2.29) is replaced
by equality, i.e., with v := 2nz and v := 2ny,

(2.31) gn(v) = cos(u).

Now, (2.31), with n = oo, produces the boundary of a generic upper half-
oval in Im z > 0, where z = wu + iv, which is shown as the shaded
portion in Fig. 2.2. We note from Fig. 2.2 that this upper half-oval is slightly
pinched inward near the real axis; this is a consequence of g, being strictly
decreasing on the interval [0, 70 ). It is also evident from (2.31) that this
generic upper half-oval is symmetric in u, and that its maximum half-width
in u is 7/6, and its maximum half-width in v is log 2.

From the above definitions, the nonreal boundary of the upper half-oval
O,1 ; is then given by

(2.32) 8@ =1z = z; + = + iy with y > 0: 9, (2ny) = cos(2nz)} ,

and the above construction shows (see (2.25)) that
(2.33) or= U e
j an integer

i.e., ©F is an infinite set of identical equally-spaced half-ovals in Irn z > 0,
where the upper half-oval © . n.; 1s centered about the real point ; of (2.26).
Because of the normalizations in (2.31) to the variables © = 2nx and v =
2ny, it follows that the maximum half-width in z of Q;f i is essentially
7/(12n), and its maximum half-width in y is essentially log 2/(2n) (where
“essentially” means up to the nuisance factor (1 + e~2")2). Note that since
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Fig. 2.2. Generic upper-half and lower-half ovals

the distance between the centers of adjacent half-ovals is 7/n from (2.23), ‘

and since the maximum half-width of these ovals is essentially 7 /(12n),
these ovals are necessarily non-intersecting.
Next, it follows from the definition of ©; in (2.25) and the inequality in
(2.24) that
IR.(2)] <1 (2€ KT\O;),
i.e., from (2.22),
cosp(nz)

(2.34) 1 <1 (ze KN\O;).

cos(nz)
This immediately tells us that KT\©;F contains no zeros of cos,(nz), for

any n € 2N. But a similar argument, applied now to I'm z < 0, gives that

cosp(nz)

(2.35) 1

1 K \e~
cos(nz) < (z € \On), |

where K~ and @, are defined to be the reflections, in the real axis, of K+
and ©;". On combining the results of (2.34) and (2.35) and on defining

(2.36) Onj =06, ,U06,
so that
(2.37) On=|J 6n (me2N),

7 an integer
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we have (n2)

‘ cosp(nz .
2.38 i <1 c K\6,,).
( ) l cos(nz) (z \On)

We remark that ©,, is now an infinite set of open identical equally-spaced
non-intersecting (full) ovals ©,, ;, where ©,, ; is centered about the real point
x; 0f (2.26). As an immediate consequence of (2.38), we have the result of

Lemma 2.2 With the definitions of K and ©,, in (2.4) and (2.37), cos,,(nz)
has no zeros in K\O,, for any n € 2N,

To extend the result of Lemma 2.2, it is evident from (2.25) that cos(nz)
cannot vanish on the boundary of any @, ;. Suppose, for some integers n
and 7, that ©, ; C K, so that 900,, ; C K. From (2.38), we then obtain

(2.39) lcos(nz) — cosp(nz)| < [cos(nz)| (2 € 0O, ;).

Now, an application of Rouché’s Theorem gives us that cos, (nz) has as
many zeros in ©,, ; as does cos(nz). But as cos(nz) has exactly one simple
real zero in O, ; (in the point x; = (j —1/2) %), then cos, (nz) also has one
simple zero in @y, ;. As cosy, (nz) is a real polynomial, this zero of cos,, (nz)
is also necessarily real. This gives us the result of

Lemma 2.3 For any n € 2N and for any integer j such that ©,; C K,
then @y, ; contains exactly one simple (veal) zero of cos(nz) and exactly one
simple (real) zero of cos,(nz) .

For any n € 2N, assume that K N ©@,, consists only of ovals which are
fully contained in K, as is the case in Fig. 2.3 for n = 14. Then the results
of Lemmas 2.2 and 2.3 give that cos, (nz) has no nonreal zeros in K, and
that cos, (nz) and cos(nz) have the same number of simple real zeros in K.
What is not covered is the case when some oval ©,, ; is not fully contained
in K. This will be explored more carefully in Sect. 4.

It 1s interesting to examine Fig. 2.3 again. First, we claim that the four

2
real zeros of cos14(14z) in K and the four real zeros {( j—1/ 2)%}
j=—1

of cos(14z), (which are the centers of the ovals {©4 ; }§:~1), coincide to
plotting accuracy! As we shall see, these four real zeros of cos14(14z2) in K
will be designated as Hurwitz zeros. Note also that cos;4(14z) has two real
zeros outside of K which can be seen, from their spacings, to be much less
accurate approximations to the next two real zeros of cos(14z), which lie
outside of K. These two real zeros, along with all its nonreal zeros, will be
similarly designated as spurious zeros of cosy4(14z).

With the preceding notations and results for cos, (nz) of this section, it
1s easy to obtain the corresponding results for the normalized partial sums
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-1 ! L
-1 -0.5 0 05 1

Fig. 2.3. Zeros of cos14(14z) and the ovals of ©14 inside K

sin,, (mz) of (1.2), where m € 2N — 1. In this case, we now analogously -

define

m2—1 m2j+1
(2.40) sinhy, (m) = 2 2710 (m € 2N - 1),
where

o0 2j+1 m __ ,—m

: m e™ —e

(2.41) sinh(m) = ; DS
Then, if

sinh,, (m)
(2.42) Qm:=1———— (me2N-1),

sinh(m)

the proof of Lemma 2.2 can be easily modified to give the result of
Lemma 2.4 Forany m € 2N — 1, Q, of (2.42) satisfies

1 1
(2.43) 0<Qm< =,and lim @, = =.
2 M—00 2

Continuing, fix m € 2N—1, and consider now the meromorphic function

sin(mz) — sing(mz)

(2.44) Rm(z> =

sin(mz) ’
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which has simple poles in the zeros of sin(mz), i.e., in the points
(2.45) I 1= {ﬂr— :jisan integer} .
‘ m "

It can then be verified, in analogy with (2.24), that

ey (1 _ e—?m)

4| sin(mz)|

(2.46) |R(2)] < (z € K\ J).

The corresponding ovals in this case, called @, ;, can be verified to be ovals

centered about the points z; := il of J,,, which are now defined, in the
‘ m
upper half-plane by
+ s 1 1 —2m\ 2 2my
@m,j:: z=xj+2+iy withy > 0: —2——-8«(1—6 ) e
(2.47)
1
+§ezmy < Sin(2m:z:)} ,

where again, with reflections in the real axis, one obtains the full oval @, ;.
With .
(2.48) On= |J Om; (meaN-1),

j an integer

we again have an infinite set of open identical equally-spaced non-
intersecting ovals, where now each ©,, ; is centered about x; of J,,,. More-
over, we note that the definition of @;J in (2.47) essentially differs from
that of @) ; in (2.29) only by a new “nuisance factor,” i.e., (1 — e™?™)2 in
(2.47) rather than (1 + e~2")? in (2.29). The analogs of Lemmas 2.2 and
2.3 then directly follow.

Lemma 2.5 With the definitions of K and ©,;,, sin,,(mz) has no zeros in
K\O,,, for any m € 2N — 1.

Lemma 2.6 Foranym € 2N—1and for any integer j such that ©Op, ; C K,
then ©,, ; contains exactly one simple (real) zero of sin(mz) and one simple
(real) zero of sinm(mz).

3 Some elementary number-theoretic connections

To begin, the simple (real) zeros of cos(nz) are given by the set .J,, of (2.23),
and if k,, denotes the exact number of zeros of cos(nz) in the interval [0 1]

‘e
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foreachn € 2N, then, with |« | denoting the integer part of any real number
¥, 1t 1s easily verified that

3.1) ko = P— + EJ .

er 2

As cos(nz) is an even function of z, the total number of real zeros of cos(nz)
in the interval [—1, +1] is thus 2k,, and these zeros are given by {z; =

y kn
G =1/2)5 5% ki1
We can of course associate an oval @,, ; (defined in Sect. 2) with each

of the zeros {z; }?;_kn‘ﬂ, and we now ask if these ovals, {@n,j}’?;_knﬂ,
are all fully contained in /. Geometrically, this turns out to be equivalent

to asking if ©,, ;.. is fully contained in K.
Note that the boundary of K bows outward appreciably at the points
z = i—é—‘, as can be seen in Fig. 2.1, while the right real boundary of &, ; is

more nearly vertical, as can be seen in Fig. 2.2. From this, it can be rigorously
established that the oval ©,, ;, is fully contained in K if and only if

(3.2) the largest real point of 060),, ;. is at most —,
e

where 00, ;. denotes the boundary of @, ;.. To make this more tractable,
the real points of 00, ; satisfy, from (2.25),

1 —2n
(3.3) -i"—g—— = | cos(na)].

Writing x := (j—l/Q)%—{—%,then | cos(nz)| =

sin(&, )|, and on defining

1 ‘—Qn
(3.4) &F = sin™! <—+E————> >0 (ne€2N),

(2j—1)w

the real points of 90, ; are then ~=

becomes equivalently

(3.5) (AI - 1) N

+ % Hence, the condition of (3.2)

2 T em

On the other hand, from the definition of k,, in (3.1), we can write

no1
(3.6) B L k4t where O < £, < 1,
er 2

so thatt,, is the fractional part of -+ % The condition of (3.2) then reduces

to
+

(3.7) M<ty (n€2N).
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The condition of (3.7) is thus a necessary and sufficient condition that all
2k, ovals {O), ; };“Ti;_ k, 41 are fully contained in K. It can also be seen from

(3.4) that the numbers {&;} },con are positive numbers which are strictly
decreasing with n, where, to five decimal digits,

J{_
(3.8) %—;— = 0.08043 (forall n € 2N with n > 6).

On checking with several number theorists, it appears not to be known
if 1/em is irrational. If it were irrational, then the fractional parts {¢, } neon
of (3.6) would be uniformly distributed in [0, 1].

As a consequence of Lemma 2.3 and the above considerations, we have

Lemma 3.1 Foranyn € 2N, determine k,, and t,, from (3.1) and (3.6), and
&Y from (3.4). If (3.7) is valid, then there are exactly 2ky, ovals ©y, j which
are fully contained in K. Thus, the number of (simple) real zeros of cos(nz)
and the number of (simple) real zeros of cosp(nz) in the interval [—-61;, —}—%]
are both exactly 2k,,. '

Given any n € 2N, it is very easy to determine, from (3.4) and (3.6),
if the associated constants & and t,, satisfy the inequality of (3.7). For the
first 50 even positive integers, n = 2,4, ---, 100, this inequality fails only
for the four numbers n = 22, 30, 56, and 90. For example, 390 = 0.01299,
while £ ;0 /7 = 0.08043. However, on determining (with high precision) the
zeros of cos,(nz) for these four cases, it turns out, in each of these four
cases, that cos(nz) and cosy, (nz) have the same number of real zeros (i.e.,
2ky) in the interval [— 1, +1]. In other words, the conditions of Lemma 3.1
are sufficient, but not necessary, for cos(nz) and cosy, (nz) to have the same
number of zeros, namely, 2k, in the interval [*;13-, +—é] This leads us to
consider in Sect. 4, for those cases where t,, does not satisty (3.7), other
sufficient conditions which guarantee that cos(nz) and cos,(nz) have the
same number, namely 2k, , of simple real zeros in a slightly larger interval
(=pn, +pn), where py, is defined in (4.3).

To obtain analogous results for the normalized partial sums sin,, (mz) of
(1.2), where m € 2N — 1, we recall that the simple (real) zeros of sin(mz)
are given by the set .J,,, of (2.45), and if k,, now denotes the exact number
of zeros of sin(mz) in the interval (0, 1/e] for each m € 2N — 1, we then
have that

(3.9) ko = [gJ

As sin(mz) is an odd function with a simple zero at z = 0, the total number
of real zeros of sin(mz) in [—1/e, +1/e] is exactly 2k, + 1, and these zeros

are given by {z; ;= 1ZY*Em  Then, with the definition of the ovals O, ;
g YLy mJj=—km »J
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of (2.47), we similarly have that the oval ©,, x,. is fully contained in K if
and only 1f

. . 1
(3.10) the largest real point of 00, 1, is at most —
€

On calling -@;;IL” + % the largest real point of @, i, , We see from (2.4§)

that
sin (m [——— + §m}) l = siné;,
m m

1 — /—Qm
(3.11) &= sin~! (—;—> >0 (me2N-1),

1 — e—-2m
4
so that (see (3.4))

4

where again (see (3.8)) we have that

§+

(3.12) ™ = 0.08043 (for all m € 2N — 1 with m > 5).
7[—‘

If t,, is the fractional part of ;?7’;, then with (3.9), we have
(3.13) gl — ko + tmywhere 0 <ty < 1 (m € 2N = 1),
i

and it can be verified that the oval O, i, is fully contained in K if and only
if

&m
(3.14) "7;' S tnl (me 2N’— 1).

which of course is basically the same as (3.7). This establishes

Lemma 3.2 For any m € 2N — 1, determine ky, and ty, from (3.9) and
(3.13), and & from (3.11). If (3.14) is valid, then there are exactly 2k, + 1
ovals O, j which are fully contained in K. Thus, the number of (simple)
real zeros of sin(mz) and the number of (simple) real zeros of sing, (mz) in
the interval [—1, +1] are both exactly 2km + 1.

As in the case of n € 2N, it similarly turns out that for the first 50 odd
positive integers m = 1,3,---,99, the inequality of (3.14) fails only for
the four numbers m = 9,43,69, and 77. (We note that these four cases,
out of fifty, give a ratio 545 = (.08000, which approximates the numbers in
(3.8) and (3.12). This would be expected if 1 /em were irrational!) But on
determining (with high precision) the zeros of sin,, (mz) in these four cases,
it again turns out in each of these four cases, that sin(mz) and smm(mz)
have the same number of real zeros (i.e., 2k;, + 1) in the interval [~~ += ]
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4 Extensions of the results of Sect. 3

As mentioned in Sect. 3, there are cases (n = 22, 30, 56, and 90 for n € 2N
with n < 100, and m = 9,43, 69, and 77 for m € 2N — 1 with m < 99)
for which (3.7) and (3.14) are not valid, i.e., there are cases where the ovals
On.k, and O, ., from Sect. 2, are not fully contained in the set K of
(2.4). Thus, not all the hypotheses of Lemmas 3.1 and 3.2 are valid in these
cases. The point of this section is to show, by a modified argument, that, when
(3.7) is not valid, the conclusions of Lemma 3.1 are valid for a slightly larger
interval (—pp, +pn), (Where p, will be defined in (4.3)), for all n € 2N,
with a similar extension holding for Lemma 3.2.

Consider any n € 2N for which (3.7) is not valid, i.e. (see (3.7) and
(3.8)),

4.1) 0< t < = 5" = 0.08043,

so that the oval ©,, j,, is not fully contamed in K. The center point of @, .,
is given by zy, := (ky, — 1/2)7/n, where from (3.6), we have that
1 =t,

(4.2) T, = — — —2.
€ n

Next, since the half-width in z of ©,, ;. is essentially 7/(12n) and its half-
width in y is essermally log 2/2n, it can be shown that the disk, centered at
X, , and having radius log 2/(2n), essentially contains @, , , i.e.,

Onk, C{z€C:|z—m,| <log2/(2n)},

up to nuisance factors (1+e~2"). (The associated dotted circle for the above
disk is shown also in Fig. 2.2.) Thus from (4.2),

log2 1 t log2 1 1 log 2
PT - L A L L B L L
2n e n 2n e n 2

But as t,, > 0 from (4.1) and as (elog 2)/2 = 0.94208, it follows that

log2 1 1 log 2 1 1
43) ap, + 22 <« 14— |82 L2 — b
2n e n 2 e n

From the definition of p, in (4.3), we see that {p,, }neon is a sequence of
positive numbers, less than unity, which strictly decrease to 1/e, i.e.,

(4.4) 0.55182 = py > pg > -+, with lim poy, = 1/e.
2n—00

Moreover, using the upper bound of (4.1) for ¢,,, then with (4.2) and (4.3),
we obtain

111 0.62056
4.5) o — Tk = — {—th} <« =2

(& mn n
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As the spacing between successive zeros of cos(nz) is 7/n, the final in-
equality in (4.5) guarantees that the zero, 2, , is necessarily the largest zero
of cos(nz) inthe disk {z € C : |z| < p,,}, so that cos(nz) has exactly 2k,
zeros in the interval (—p,,, +pp, ). This will be used below.

Continuing, from the definition of R,,(z) in (2.22) we have

z) = S — (n2) cos(nz 2
(4.6)  Ry(z) = ]§_< D gy | /eostna)] - (= ¢ ),

so that for any 2z with |z| < p,, and z &€ J,,,

L (npp)¥
|1, (2)]< Z (non) 7 / |cos(nz)

. (29)!
j="32
( 3
. (7Ir/)'r1)71+2 < 1+ n2p72L + ndpg + >
~ (n+2)!|cos(nz)| (n+3)(n+4) 6
[+
Jj=3 /
(”PN)THPZ D) 4
1 © Ce
(n + 2)! cos(nz)] Ut pntont o)
( npPn ) n+2

~ (n+2)[cos(nz)|(1 = p2)°

where, from (4.4), the positive numbers pf‘l, for n € 2N, are all less then
unity. Then, with Stirling’s formula (2.12) (where 7, > 1 for all n from
(2.13)), a short calculation shows that

Tn
. inlZ T~ z| < pn, % nJs
(4 7) IR ( )I < ‘COS(’I‘LZ)‘ (I I Pn ¢ J )
where I
(4.8) T (W’n) (n € QN),

V2mn(e? — e?p2)

(so that no nuisance factors now arise here). But,ase¢p,, = 1+ 7]—1 from (4.3),
then for all n € 2N,

(14 £)n+2 e 1
4.9) v = — T = ; 1+0{ - ;
Vorn{e? — (1+ 12} Vomn(e2 — 1) n
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as n — oo. It can be verified (see again [8, I. 168, p. 30]) that {%}nezN is
a sequence of positive numbers which strictly decrease to zero, i.e.,
(4.10) . 0.27789 = vy2 > 74 > v6- -+, with lim ~y, = 0.
2n—o00
As in Sect. 2, we can now find analogous new ovals {6n ]} it k1o

‘where QW is centered about x; of (2.26), which are defined, for =k, +1 <
J < ky, in the upper half-plane by

4.11) Qn =<qz=xj+z+iywithy >0: J—>1
J | cos(nz)]

and by a reflection of é;f ; in the real axis. It can also be verified, as in Sect.

2, that the half-widths in 2 of the ovals {6, ;} f;_ K, +1 ar€ now given by
(4.12) €n/n, where &, := sin™! (yy,) > 0,

and the half-widths in y of {6, };?11__ 1, +1 are similarly given by

(4.13) CAn/n, where ¢, = sinh"l(’yn) > 0.

- (We remark that {én}negN is a sequence of positive numbers which strictly
decreases to zero.) These new ovals {O,, J} it _g,+1 are considerably

smaller, and more nearly circular, than the original ovals {©, J} k41
For example, 1f n = 22 the maximum half-width in = and y of the original
ovals {O2, ;172 = _o are, respectively,

0.011 485 466 and 0.015 753 345,
while those of the new ovals {©23 }22 _y are, respectively,

0.001 785 012 and 0.001 784 095.

We note that the right real boundary point of 8@7%;%, ie., zg, + fn /n,
satisfies (see (4.2) and (4.12))

1 7t sin~! | 1 sin~1(~,
Ikn-l—@:—--— LS (’7")<_+—(%_‘2’
n e n n e n

since t, > 0 from (3.6). We claim that the above upper bound for the right
real boundary point of 8@n k,, 1s always less than pn of (4.3), i.e.,

-
11
(4.14) a;k,l+5—” Losmm w0 L1 ainean,
c n € en
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since the final inequality above is equivalent to
) 1Yy . .
T < sin <—) = 0.35964 (n € 2N),
e

which follows from (4.10). Hence, all the real points of {O,, ; }fg_an lie
in (—pn, +pn), forall n € 2N.

Next, we have from (4.7) and the definition of (:)n,j in (4.11) that, for
-k, +1<5< En,

cosp (nz)

11- <1 (2€06,,),

cos(nz)

so that as cos(nz) # 0 on aéw-, we have
(4.15) |cos(nz) — cosp(nz)| < |cos(nz)| (z € OQAn,j) :
Applying Rouché’s Theorem again, as in the proof of Lemma 3.1, we obtain

Lemma 4.1 For any n € 2N for which the associated constant t,, of (3.6)
satisfies (4.1), each oval ()f{én,j}k;_ Koy 1 (see (4.11)) contains exactly one

simple (real) zero of cos(nz) and one simple (real) zero of cosy (nz). Thus,

the number of (simple) real zeros of cos(nz) and the number of (simple) real

zeros of cosp(nz) in the interval (—py, +pr) are exactly 2k,,.

In a completely similar fashion, using an obvious notation, we also obtain

Lemma 4.2 For any m € 2N — 1 for which the associated constant t,,
of (3.13) satisfies (4.1) (with m replacing n), each oval of {ém,j }_J;Z_krn
contains exactly one simple (real) zero of sin(mz) and one simple (real)
zero of siny,(mz). Thus, the number of (simple) real zeros of sin(mz) and
the number of (simple) real zeros of siny, (mz) in the interval (—pm, +pm)

is exactly 2k, + 1.

Since the assumptions of (3.7) and (4.1) cover all possibilities for ¢,, for
any n € 2N (with analogous results for any m € 2N — 1), then putting the
above results together with the results of Sect. 3, we have now established

Theorem 4.3 For any n € 2N, cos, (nz) has no nonreal zeros in the set K
of (2.4). Moreover, with the definition of k,, of (3.1), if t,, satisfies (3.7), then
cos(nz) has exactly 2k, real (and simple) zeros in the interval [—1 /e, +1/ €],
and cos,, (nz) also has exactly 2k, real and simple zeros in this interval. If,
on the other hand, t,, satisfies (4.1), then cos(nz) and cos,(nz) each have
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exactly 2k,, real and simple zeros in the interval (see (4.3)) (— pp, +pn ). Sim-
ilarly, for any m € 2N— 1, sin,,(mz) has no nonreal zeros in K. Moreover,
with the definition of ky, in (3.9), if ty, satisfies (3.14), then sin(mz) has
exactly 2k,, + 1 real (and simple) zeros in the interval [—1/e,+1/e], and
sing, (mz) also has exactly 2k,, + 1 real (and simple) zeros in this interval.
If. on the other hand, t,, does not satisfy (3.14), then sin(mz) and siny, (mz)
each has exactly 2k, + 1 zeros in the interval (see (4.3) with m replacing

n) (—'pma +pm)~

We remark that earlier Buckholtz [2] had shown, with a very short proof,
that no zero of any normalized partial sum s, (nz) of €* can lie on or within
the Szegd curve Do, of (1.4), where e has, of course, no zeros. The proof
of the analog of his result in Theorem 4.3, for the set K and for the zeros of
cosp(nz),anyn € 2N, orsing, (mz), any m € 2N—1, has been complicated
by the existence of real zeros of cos(nz) and sin(mz) which lie in K.

For our purposes, for any n € 2N, we define, as Hurwitz zeros of
cos,(nz), all those real zeros of cosp(nz) in the interval [—1/e,+1/e]
if t,, satisfies (3.7), and if ¢,, does not satisfy (3.7), all those real zeros of
cosp(nz) in the interval (see (4.3)) [—pn, +pn], with all remaining zeros
being defined as spurious zeros. (Analogous definitions hold for Hurwitz
and spurious zeros of sin,, (mz), for any m € 2N —1). Thus, spurious zeros
of cosp(nz) include all nonreal zeros and real zeros not in the associated
intervals mentioned above. Consider, for example, n = 14, for which £14
does satisfy (3.7). As we see in Fig. 2.3, there are two real zeros 214 1 of
cos14(142) which both lie outside the interval [—1/e, +1/¢], so that these
zeros are, by definition, spurious zeros of cosj4(14z). As another example,
consider n = 30, for which t3g does not satisfy (3.7). In this case, there are
two real zeros +230 1 of cos3o(30z) which do not lie in [—p30, +p30), i.€.,

|23071‘ = 0.42772 > P30 = 0.38014,

so that cos3p(30z) possesses two real spurious zeros.

The reason, for designating certain real zeros of cosy,(nz) as Hurwitz
zeros, can be explained as follows. Given any n € 2N, determine the asso-
ciated numbers k,, and t,, from (3.1) and (3.6), and fix the open rectangle
defined by

(4.16) The = {z:m—l—iy: lx| < g(l—I—e) and |y| <e},
where € is fixed with 0 < e < 1/2.If (3.7) is valid, we know from Lemma

3.1 that the real points of the (original) ovals {©),, ; };”.";_ 41 all lie in the
interval [—~1/e, +1/¢], and hence, there are exactly 2k, real (and distinct)
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zeros of cos(nz) and cos, (nz) in the interval, [-1/e, +1/¢]. In particular,
the right real boundary point of ©,, ;. , given by

1
<l€n - 5) s £+

(4.17) T “ZZ—
must satisfy

1

(k’n — —) s

2 K |

(4.18) B — + % < -

On passing to the next positive even integer, n + 2, in 2N, the right real
boundary point of the oval ©,,, x, then satisfies, from (4.17),

1 1 |
(.kn - "‘) ™ + (kn - “> T +
(4.19) 2) | b _ 2) 4 & o

n+ 2 n+2 n+ 2 n+2 " (n+2e’

where the first inequality above follows since the terms of {&; },con are
strictly decreasing, and the second inequality above follows from (4.18).
The final inequality in (4.19) gives that the real points of the oval ©,, 9 1,
liein (—1/e, +1/e), so that cos((n+2)z) and cosy4+2((n+2)z) continue to
have exactly 2k, real (and distinct) zeros in (—1/e, +1/e). The same then
is true for all larger integers in 2N. But, on considering the unnormalized
functions cos(z) and cosy(z), we first see, on multiplying by n in (4.18),
that cos(z) and cos,, (z) each have exactly 2k, zeros in the rectangle T, .
of (4.16), and, moreover, on multiplying by (n + 2) in (4.19), we similarly
deduce that cos(z) and cos,1+2(z) each have exactly 2k, zeros in T}, , as is
thus the case for all s € 2N with s > n. (That these 2k, zeros of coss(z)
actually zend to zeros of cos(z) in T}, , as s — o0, can be achieved by the
results of (4.7)-(4.8), with an appropriate sequence of p,,’s which tends to
zero.) Thus, when t,, satisfies (3.7), this justifies our definition of Hurwitz
zeros here!

Again, fixing any n € 2N, the case when ¢,, does not satisfy (3.7) is
similar. In this case, we have from (4.14) that

kn— 371 € n+1
LLJM+@<W: :
n mn en

(4.20)

so that, from Theorem 4.3, cos(nz) and cos,(nz) each have exactly 2k,
real and simple zeros in (—pp, +pp). On passing to the next positive even
integer, n + 2, in 2N, it follows from (4.20) that

(k'n - %)W én+2 < (kn - %)W én < n+1 1

421 <=,
“.21) n+ 2 n+ 2 n+ 2 +n+2 e(n+2) e
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where the first inequality of(4.21) again follows since the terms of {fn }neon
are strictly decreasing, and the second inequality follows from (4.20). The
final inequality in (4.21), on multiplication by (n + 2), then gives us that
cos(z) and cosg(z), forall sin 2N with s > n+2, each have exactly 2k,, zeros
inl;, . of (4.16), again justifying our definition of Hurwitz zeros here. As can
be imagined, analogous results hold for sin(z) and sin,,(z), m € 2N — 1.

S Improvement of Szego’s result of (1.12)

Our next goal is to improve Szegd’s result of (1.12). To begin, it follows
from [3, egs. (2.9) and (2.13)] that (2.14) can be expressed also as

R A —)

uniformly on any compact subset of A_l(())\{l}, as n — oo. Then for
n € 2N, the identities

2cos(nz) = e + e7"% and
(5.2)
2cosp(nz) = sp(inz) + sp(—inz),

for all z € C, when coupled with (5.1) where z is replaced by +iz, give, for
z = x real, the result of

cosy (n) = cos(nz)
G 1) (e (22 J{1- =)o (L))
Tn\/% (1+CE'2 (71—}—1)(1‘{—.’172)2 n2 ’

which holds uniformly on the real interval [—1, +1],asn — oo. (We remark
that (5.3) is a more precise form of Szeg0 [12, eq. (15)].) On setting

v () e o ()
hn(z) == 11— O| — ,
| (@) TV 21 \1 + 22 (n+ 1)(1 4 x2)? O\
(5.4)
then (5.3) can be expressed as

(5.5) cosp(ne) = cos(nx) — (—1)%‘21%(@

for =1 <z < 1and n € 2N. We note, from the Maclaurin expansions of
cosp(nx) and cos(nz), that hy, () can also be expressed as
(nz)"*2  (nz)"**  (na)"to

hn i — —_— e s _1 < . < 1; , 6 2N ?
<:L) (’n, + 2)! (’n + 4)' + (TI, + 6)' ( ~ X ~ n )
(5.6) ’
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which similarly appears, for z = =z, in the numerator of (4.6). The above
series is an alternating series with strictly decreasing (in absolute value)
terms for x € (0, 1]. As the same is true for the series obtained by term-by-
term differentiation of h,(x), with respect to z, this gives, from (5.4) and
(5.6), in a straight-forward way, the result of

Lemma 5.1 For each n € 2N, hn(z) of (5.4) is an even function which
is a strictly increasing positive function on (0, 1], with h,(0) = 0 and
hp(1) > 1. Moreover, since h,(1/e) < 1 from (5.4), there is a unique wy,
with 1/e < w, < 1, such that

(5.7) ho(wn) =1 (n € 2N).

The reason for introducing the function h, () of (5.4) is this. From (5.5),
the positive real zeros of cos, (nx) are exactly those abscissas x in (0, 1]

where the curves, cos(nx) and (—1)%2 hyn(x), cross. For n = 20 (so that
(—1)11;2 = —1 in this case), we show in Fig. 5.1 the curves cos(20x) and

—haoo(x), for z € [0,1/2], with small solid disks indicating the crossings of
these curves. We see in Fig. 5.1 that there are two such crossings in [0, 1/¢]
which are close to zeros of cos(20z), and that there are two further crossings
in[1/e, 1/2], giving (from evenness considerations) a total of eight real zeros
of cosg(20x). In general, it is clear from (5.5) that we can write

(5.8) (_1)71.52 hn, (%) = cos(u) — cosp(u) (u € [-n,+n)).

Thus, from power series expansions, the smallest positive zero of cos,, (u)
converges geometrically to the smallest positive zero, 7/2, of cos(u), as
n — oo. In fact, we observe, from the positivity of h,(x), that the smallest
positive zero of cos, () is to the

2
left (right) of /2 if 2=

iseven (odd) (n € 2N),

with similar statements holding for successively larger positive zeros of
cos(u), for u € [0,n/e). In addition, the rate of geometric convergence, of
real zeros of cos,, (u) to real zeros of cos(u), decreases with each subsequent
larger positive zeros of cos(u). (We remark that these deductions cannot be
deduced from the equal-sized ovals ©,, ; of Sect. 2.) We also remark that this
geometric convergence of real zeros of cos, (nz) to real zeros of cos(nz) in
K is why, in Fig. 2.3, these zeros coincided to plotting accuracy!

The situation concerning sin,, (mz) and sin(mz), m € 2N—1, is nearly
the same. In this case, the analog of (5.2) is now

/ITYLZ _ 6*1771,27 and

2isin(mz) =
(5.9)

2ising,(mz) = spimz) — sp(—imz),
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Fig. 5.1. The curves of cos, (20z) and —hao(x)

for all z € C, and on using (5.9) with ‘(5.1), where z is replaced by +iz, we
similarly obtain, for x real,

(5.10) sing, (ma) = sin(mz) — (——1)ﬂ§:'1'hm(x),

where h,,(x) is given in both (5.4) and (5.6), but with n replaced by m €
2N — 1. Again, the zeros of sin,, (mz) are the abscissas, in [-1, +1], where
the curves, sin(maz) and (—1) "3 B (z), cross. Noting that h,,, () is an odd
function, the number of real zeros of sin,, (mx), in [—1, +1], is necessarily
odd. Also, we see that Lemma 5.1 is also valid for all m € 2N — 1, in that

for any m € 2N — 1, there is a unique wy,, with 1 /e < wy, < 1 such that
(5.1D) hop(wm) =1 (me2N—-1).

Similarly from (5.10), we can write

m—41

(5.12) (=1) 2 hy (%) = sin(u) — sinp(u)  (u € [—m, +m]),

so from power series expansions again, the smallest positive zero of sin,, (u)
converges geometrically to the smallest positive zero, 7, of sin(u), as m —
00, where the convergence for this zero is from the

m-+1
2

left (right) if is even (odd),
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with similar statements holding for successively larger positive zeros of
sin(u), foru € [0, m/e], where the rate of geometric convergence decreases
with each subsequent larger zero. :

We next estimate w,, of (5.7), forn € 2N, as n — 0. Using the repre-
sentation of (5.4), it can be verified, again in a straight-forward way, that

5.13)  wy = é <1+ logn | ¢ ( Og”)> L asn — oo.

on n?

Recalling the fact that h,(z) is strictly increasing on (0,1] and that
|cos(nx)| < 1, it follows, as hy(wy,) := 1, that there are no crossings

n+2
of the curves cos(nz) and (—1)"2 hy,(z) for any x > w,, where w,, > 1.
Thus, if z, 1 is the largest real (Hurwitz or spurious) zero of cos,, (nz), then

(5.14) zna < wn.

H

1.1 1s contained in both Oy, k,

If 2,1 is a Hurwitz zero (written zg 1), then 2
and [0, py], so that, from (4.12) and (4.3);

With (4.2) and the fact that 0 < ¢, < 1 from (3.6), the above inequalities
become

Lol b L1
e n n ’ e en
which implies from (4.12) that
, g 1 1
(5.15) dist znl;g =0|—],asn — oo.
’ n

Onthe other hand, if z,, 1 is a spurious zero (written 25,1)» then, by definition,

. ‘
- < z;?l < wy, ift, satisfies (3.7), or
6 b
pn < 25,1 < wp, ift, does not satisfy (3.7).

Then, from (4.3) and (5.13), it follows, in either case, that

o1 logn log
(5.16) dist [251;—} < ogn_{_O(ogn)’ asn — o0o.
e

2en n?

Combining (5.13) and (5.14) (with a similar calculation holding for
sin,, (mz)), we have the result of
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Theorem 5.2 Let z,, 1 denote the largest real zero of cosy, (nz), where n €
2N. Then,

< — | 1
(5.17) [im ( " dist [zn,l;l/e]> < — =0.18394.
nose \logn 2e

Similarly, if w1 denotes the largest real zero of sing,(mz), where m €
2N — 1, then

(5.18)  Tm < T dist [wm1: 1/e]> <L = pag301.
Jmoee \ logm 2e

The results of (5.17) and (5.18) of Theorem 5.2 are of course similar
to the result of (1.10), which is known to be best possible. It is likely that
(5.17) and (5.18) give the correct dependence onn € 2N and m € 2N — 1,
but an open question is if equality holds in either (5.17) or (5.18).

6 An open problem

The precise behavior of the zeros of cosp(nz), n € 2N, or of
sing,(mz), m € 2N — 1 near the points +4 of K has not been treated
here or in the literature, and this is also an intriguing open problem. We plan
to investigate this in the future.
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