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GERSHGORIN THEOREM, Gerschgorin theorem,
Gersgorin theorem - Given a complex (n x n)-matrix,
A = [a;;), with n > 2, then finding the eigenvalues of
A is equivalent to finding the n zeros of its associated
characteristic polynomial

Dn(2) := det{z] — 4}, .

where I is the identity (n x n)-matrix (cf. also Matrix;
Eigen value). But for n large, finding these zeros can be
a daunting problem. Is there an ‘easy’ procedure which
estimates these eigenvalues, without having to explicitly
form the characteristic polynomial p,, (z) above and then
to find its zeros? This was first considered in 1931 by the
Russian mathematician S. Gershgorin, who established
the following result [2]. If As(a) == {z € C: |z —q| <
6} denotes the closed complex disc having centre o and
radius J, then Gershgorin showed that for each eigen-
valie A of the given complex (n x n)-matrix 4 = [a; ;]
there is a positive integer 4, with 1 < { < n, such that
A € G;(A), where

Gi(4) = A, (ai.i) (1)
with

n
) 7‘1'(‘4) = Z Ia,',j] .
j=1
J#i

(Gr.(4) is called the ith Gershgorin disc for A.) As this
is true for each eigenvalue X of A, it is evident that if
o(A) denotes the set of all eigenvalues of 4, then

n
o) cJGi4). @)
i=1
Indeed, let A be any eigenvalue of A = [a;;], so that
there is a complex vector x = [z;...2,)7, with x # O,
such that Ax = Ax. As x # O, then max; <j<n |Z;] > 0,
and there is an 4, with 1 < i < n, such that |z;| =
maxi<;<n |z7]. Taking the ith component of Ax = \x
gives 3°7_; @i,jT; = Az, or equivalently

- 0;) Ty = E 4 jT;.
J;éz

On taking absolute values in the above expressmn and
using the triangle inequality, this gives

A= ai] -] < Z laijl - lzj| < ri(4) - |z, (3)
j=1
J#i
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the last inequality following from the definition of r;(4)
in (1) and the fact that |z;| < |z;] for all 1 < j < n. Di-
viding through by |z;| > 0 in (3) gives that A € G;(4).

In the same paper, Gershgorin also established the
following interesting result: If the n discs Gi(A) of (2)
consist of two non-empty disjoint sets S and 7', where
S consists of the union of, say, k discs and T consists
of the union of the remaining n — k discs, then S con-
tains exactly & eigenvalues (counting multiplicities) of
A, while T contains exactly n — k eigenvalues of T'. (The
proof of this depends on the fact that the zeros of the
characteristic polynomial p,(z) vary continuously with
the entries a; ; of A.)

One of the most beautiful results in this area, hav-
ing to do with the sharpness of the inclusion of (2), is
a result of O. Taussky [4], which depends on the follow-
ing use of directed graphs (cf. also Graph, oriented).
Given a complex (n x n)-matrix A = [a;;], with n > 2,
let {F;}7; be n distinct points, called vertices, in the
plane. Then, for each a;; # 0, let P, F; denote an arc
from vertex ¢ to vertex j. The collection of all these
arcs defines the directed graph of A. Then the matrix
A = {a; 7], with n > 2, is said to be srreducible if, given
any distinct vertices ¢ and 7, there is a sequence of abut-
ting arcs from ¢ to j, i.e.,
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where £ = 3.

Taussky’s theorem is this. Let A = [a; ;] be any irre-
ducible complex'(n x n)-matrix, with n > 2. If ) is an
eigenvalue of A which lies on the boundary of the union
of the Gershgorin discs of (2), then X lies on the bound-
ary of each Gershgorin circle, i.e., from (1) it follows
that

IA—a;i| =ri(4) foreachl <i<n.

. Next, there is related work of A. Brauer [1] on es-
timating the eigenvalues of a complex (n x n)-matrix
(n > 2), which uses Cassini ovals instead of discs. For
any integersiand j (1 <4,j < n) with i # j, the (4, 7)th
Cassini oval is defined by (cf. also Cassini oval)

Ki;(A) = 4
— @i |2 = aj5] S ri(4) - Ti(A)} -
Then Brauer’s theorem is that, for any eigenvalue A of

A, there exist i and j, with ¢ # j, such that A € K; ;(4),
and this now gives the associated eigenvalue inclusion

={z€C: |z

- n
o) ¢ |J Kig(4). ®)
i,j==1
. 1
Note that there are now n{n—1)/2 such Cassini ovals in
(5), as opposed to the n Gershgorin discs in (2). But it is
equally important to note that the eigenvalue inclusions

134

i



that every d 4+ 1 sets of A are met by an oriented hyper-
plane consistently with the (d—1)-ordering induced on
the corresponding points of S.

For this to hold, moreover, it is sufficient to find an
acyclic rank-d oriented matroid structure on A whose
(d+1)-tuples satisfy the consistency condition of the the-
orem. (For the notion of oriented matroid, which can be
thought of as a ‘locally realizable’ generalization of the
order type of a set of points, see also [2].)

This theorem was subsequently generalized in several
directions, the most comprehensive statement (which
subsumes intermediate results of M. Katchalski and of
Pollack and R. Wenger) being:

Anderson-Wenger theorem. ([1]) Let A be a finite col-
lection of connected sets in R%. A has a hyperplane
transversal if and only if for some k, 0 < k < d, there
exists a rank-(k + 1) acyclic oriented matroid structure
on A such that every k + 2 members of .4 are met by an
oriented k-flat comsistently with that oriented matroid
structure.

Other directions. An effort to understand
intermediate-dimensional transversals leads to consider-

- ing the set of all k-transversals to a collection of convex

sets. While there are as yet (2000) very few non-trivial
results about transversals of dimensions between' 1 and
d — 1, there is a good deal known about the structure
of these complete sets of transversals to collections of
convex sets. It turns out that these subsets of the ‘affine
Grassmannian’ themselves behave very much like con-
vex point sets. Although they need not be connected,
they nevertheless share many properties with convex
sets, such as being defined by a convex hull operator
satisfying the anti-exchange property that commutes
with non-singular affine transformations, and satisfy-
ing the Krein-Mil'man theorem [7] (cf. also Locally
convex space).

Other streams in geometric transversal theory in-
clude:

¢ Gallai-type theorems, in which a Helly-type hy-
pothesis leads to the conclusion that several transversals
cover the entire collection (see [5], [18]);

e the more general theorems of (p, q) type, in which
a hypothesis of the form ‘for every choice of p sets from
the collection, some ¢ have a common transversal’ leads
to a Gallai-type conclusion (see [5], [18]);

e generalizations from transversal flats to transver-
sal curves and surfaces (see [8]);

e ongoing work of L. Montejano on a topological
generalization of Hadwiger’s transversal theorem and on
the related notion of a ‘separoid’;

e the problem of bounding the number of geometric
permutations of a collection of n convex bodies in R,

GEOMETRIC TRANSVERSAL THEORY

and its generalization (via order types) to k-transversals
(see [19]);

e algorithmic geometric transversal theory, a branch
of computational geometry (see [19]).

Surveys include [4], [5], [8], [13], [18], [19], where many
other references can be found.
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’ ;bf (2) and (5) use the exact same data from the matrix

7

/

‘A = [aig], ie., {aii}f, and {ri(A)},

. So, which of
the eigenvalue inclusions of (2) and (5) is smaller and
hence better? It turns out that

UmecUGA» (6)

i,j=1

i#]
for any complex (n x n)-matrix A, so that the Cassini
ovals are always at least as good as the Gershgorin discs.
(The result (6) was known to Brauer, but was somehow
neglected in the literature.) ‘

Finally, as both eigenvalue inclusions (2) and (5) de-
pend only on the row sums r;(4), it is evident that these
inclusions apply not to just the single matrix A, but to
a whole class of {n x m)-matrices, namely,

QA) =
= {B =

Thus,

o(B) C | Kis(4) € |JGi(4)
i,5=1 i=1
15 ]

for each B in Q(iA)‘ Then, if c(Q{A)) denotes the set of
all eigenvalues of all B in Q(4), it follows that

o(Q(4)) UKmmcUGm> (7)
J=1
zjaéy
How sharp is the first inclusion of (7)? It was shown in
1999 by R.S. Varga and A. Krautstengl (7] that

boundary of K12(4) n=2;

o(U(4)) = U:‘)J;J K;;(A) n >3 (®)
i

Thus, for n > 3, it can be said that the Cassini ovals
give ‘perfect’ results.

Gershgorin’s discs and Brauer’s Cassini ovals are
mentioned in [5], [3]. A more detailed treatment of these
topics can be found in [6].
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GLEASON-KAHANE-ZELAZKO THEOREM -
Let F' be a non-zero linear and multiplicative func-
tional on a complex Banach algebra .4 with a unit
e, and let A~! denote the set of all invertible elements
of A. Then F(e) = 1, arld for any a € A™! one has
F(a) # 0. AM. Gleason [1] and, independently, J.P.
Kahane and W. Zelazko [5], [6] proved that the prop-
erty characterizes multiplicative functionals: If F' is a
linear functional on a complex unital Banach algebra A
such that F(e) = 1 and F(a) # Ofora € A~!, then Fis
multiplicative. Equivalently: a linear functional F on
a commutative complex unital Banach algebra A is mul-
tiplicative if and only if F(a) € o(a) for all a € A, where
o(a) stands for the spectrum of a (cf. also Spectrum of
an element). As there is a one-to-one correspondence
between linear multiplicative functionals and maximal
ideals, the theorem can also be phrased in the following
way: A codimension-one subspace M of a commutative
complex unital Banach algebra A is an ideal if and only
if each element of M is contained in a non-trivial ideal.
The theorem is not valid for real Banach algebras.

The Gleason-Kahane—Zelazko theorem has been ex-
tended into several directions:

1) If ¢ is non-constant entire function and F'is a
linear functional on a complex unital Banach algebra A,
such that F'(e) = 1 and F(a) # 0 for a € p(A), then F'
is multiplicative [3].

2) Let M be a finite-codimensional subspace of the al-
gebra C(X) of all continuous complex-valued functions
on a compact space X . If each element of M is equal
to zero at some point of X, then the functions from M
have a common zero in X [2]. It is not known if the anal-
ogous result is valid for all commutative unital Banach
algebras.

3) The assumption of linearity of the functional F'
has been weakened, and the result has been extended to
mappings between Banach and topological algebras.

See [4] for more information about the history, related
problems, and further references.
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GMANOVA, generalized multivariate analysis of
variance — See ANOVA.
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