o mputational Methods and Function Theory
'_ Gglugle 6 (2008), No. 2, 447-458 MFL«}

Angular Distribution of Zeros of the Partial Sums of e”
ia the Solution of Inverse Logarithmic Potential Problem
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Abstract. We continue the work of Szegd [18] on describing the angular

distribution of the zeros of the normalized partial sum s.(nz) of e*, where

ga{z) 1= Yoy o 25/kl We imbed this problem in some inverse problem of

potential theory and prove a so-called Erdds-Turdn-type theorem, which is of
interest in itself.
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1. Introduction

Let
k3 Z'k
sn{2) :=ZE’ neN:={12..},
ksl

denote the partial sums of the exponential function e*. This paper is devoted to
the investigation of the angular distribution of the zeros of s,(z), or, what is the
same, of zeros Zy 1= |y {26} of the normalized partial sums s,(n2).

In 1924, Szegd [18] showed that the set of accumulation points of U%,Z, coin-
cides with what is now called the Szegd curve

S:={zeC: |2/ = 1and {2z} <1},

where C is the complex plane. What is remarkable is that ¢{z) = ze' ™ maps the
interior of § conformally and univalently onto the unit disk D = {w: |wi < 1}.

Subsequently, Buckholtz [7] established the results that all z,, lie outside the
curve &, and that

. 2e
(1'1) dISt{zk,RJ S) S E:
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where dist(A4, B) denotes the distance between sets A and B in the complex
plane C, i.e.

dist(A, B) := inf |z—¢].

22ALER
For refinements of Buckholtz’s result, see [8].
Szegd [18] also showed that the asymptotic angular distribution of the zeros of
su{nz} is governed by the mapping w = ¢{2), in the following sense: let 6; and 4,
be any real numbers with 0 < #; < 6, < 27, and let 25 == {e™), § = 1,2, where
¥ = ¢ is the inverse mapping, so that z; and 2y are points of . Let W be
the sector defined by
Woe=W(0,6,)={zeC: argz; <argz < arg 2p}.
Then,
WnZz, Gy —

(1.2) g FV O Z0) _ 62=00

L0 i) 21‘]’
where #(W N Z,) denotes the number of zeros of s.{nz) in W.

A restatement of this result, in terms of the weak”-convergence of measures, was
done in [16, Theorem 2.1].

A sharper form of (1.2) was also proved by Szegé in [18], namely that

(1.3) #HW N Z,) _Bambr < gi, 88 1 — 00,
7 2 7

where Cy = Cy(61,0;) > 0 is a constant which depends on f; and 8y, for
0 <8y <@ <2x. The main purpose of this paper is to obtain a related re-
sult, in Theorem 2 below, which states that for any choice of #; and #y with
0 < & — 0y < 27 and for any positive integer n,

!#(ann) B8] _G
Tt

.._nqﬂ

(14) 2

where Cp and o are absolute positive constants.

Note that the condition in {1.3), that 0 < 8; < @, < 2, is more restrictive than
the condition for (1.4), that 0 < 6, — 8; < 27, as (1.3) cannot directly cover
sectors including the positive real axis. In addition, (1.4) holds for all positive
integers 7, while (1.3} holds for n — co. These are important differences since it
is known {7] that the convergence rate of the zeros of 3.(nz} to the point z = 1
of §'is O(1/4/n}, as n — oo, while the convergence of the zeros of &n(nz} to any
fixed arc of S, not containing z = 1, is O({logn}/n) as n — oo (cf. [8]).

At this moment, the new theoretical resuls of (1.4) gives no indication as to the
actual value of « or the constant . It is our hope that further investigations,
including numerical calculations, will shed some light on this open problem.
Some related results can also be found in [21].
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We obtain our result by a generalization of this question to some inverse problem
of potential theory and proving an Erdds-Turdn-type theorem, which is interest-
ing by itseif. For corresponding resuits and references concerning Erdés-Turdn-
type theorems, see [2, 3, 4, 5, 6, 9, 10, 11, 14, 19],

For more details concerning potential theoretic notions, such as Borel measure,
logarithmic potential, harmonic measure, ete, see {17, 20].

2. Main definitions and results

First, we formulate the inverse logarithmic potential problem which arises natu-
rally from the investigation of the normalized partial sums s, (nz).

Let L C C be a quasiconformal curve (since § has a corner at point z == 1,
quasiconformal curves can be regarded as its natural generalization}, We recall
that, according to Ahlfors’ criterion (see [13, Ch. I1.8]}, a (closed) Jordan curve L
is quasiconformal if and only if for any pair of distinct points z; and 2z € L. the
inequality
min{diam(L"), diam{L")} < clzg — |
holds with some constant ¢ = ¢{L} > 1, where L' and L” are the two arcs which
are defined from L\ {zi, 2o} and
diam(A) ;= sup |z — (|
2leA
is the diameter of A C T, '

Using Ahlfors’ criterion, one can easily verify that convex curves, smooth and
even piecewise smooth curves without cusps (including ) are quasiconformal.
At the same time, well-known examples {see {13, Ch. I1.8]} show how complicated
the behavior of a quasiconformal curve can be.

The curve L divides T = €U {oc}, the extended complex plane, into two
Jordan domains, the unbounded domain @ = ext{L), and the bounded domain
= inb{L).

Let 0 = ¢% — ¢~ be a signed measure, where o™ are arbitrary positive unit Borel
measures with a compact support in €. Thus, o(C) = 0. It is usual to estimate
the deviation of o from the "0-measure” in terms of bounds for the logarithmic
potential

U7 (2) = flog A0, 2
on subsets of C.

In particular, results of Erdds and Turdn [9, 10, 11}, devoted to the study of
the distribution of zeros of polynomials, can be interpreted in this way: a corre-
sponding bibliography can be found in [2, 3, 4, 5, 6, 14, 19].

We denote by ® the Riemann function that conformally and univalently maps (2
onto the exterior A := C\T of the closed unit disk IJ, and which is normalized by
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the conditions ®{cc) = oo, ®'{o0} > 0. Let 2 € G be a fixed point. Analogously,
we denote by ¢ the conformal mapping of G onto I, with the normalization
d{z0) = 0, ¢'(z5) > 0. Set W := @ and 9 1= ¢}, The functions &, ¥, ¢ and ¥
can be naturally extended to homeomorphisms between the appropriate closed
domains and we keep the previous notation for these extensions. Further, set

b= {90 =r}, 0<r<l,
and
N(A,8) = {(: dist{¢, A) < 8}, AcC >0
Qur basic result will be formulated in terms of
be(h) == St‘lp (U°{(2) — U {2}), 0<h <1,
LR~k

and
b (h) = min(b,(h}, b_o(R)}, Q< h <.

Theorem 1. Let L be a quasiconformal curve, and iet zg € G := int(L) be fired.
Let o = ot — ¢~ be a signed measure, where o and o7 are positive unit Borel
measures such that supp{o™) = L, supp(c™) € QN N(L,6) for some 0 < 4§ <1,
where G = ext{L). Moreover, let ¢ > O and 8 > 0 be constants such that for all
subares J C L,
o™ {J) < e{diam(J))7,

and let ¢ > 0 be a sufficiently small fized number. Then, there cwist positive
constants v,k and i, depending only on L and 8, as well as a positive constent
¢y depending upon L, ¢, B, zp, £, such that for anym € N,0 < h < 3 and a subarc
J ¢ L, the ineguality

@21 o) - o (VL) < o (
holds.

bh) | gme
h(1 - 3h)m ShEmY

The proof of this theorem is given in Section 5.

As an immediate application we have the following assertion for the anguiar
distribution of Z,,, the zeros of g,(nz).

We associate with Z, its normalized counting measure, i.e.

" :mngsz,

228,
where 4, is the unit point mass at z and where all zeros are counted according
to their multiplicities.
Let w(:) = w(0,-, G}, where G = int(S) is the interior of the Szegd curve S,
denote the harmoric measure at the point z = { with respect to G. That is, for
any Borel set B C C,

w{B) = m(p(B NS5},
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where m(-) is the normealized arc length measure on T = {w . jw] = 1}, the unit
circle.

For any subarc J C ., we introduce a sector
W{J) = {z &€ C: there exists { € J with arg{ = arg z}.
Theorem 2. For any n € N and any subarc J C S5,
c
(WD) =) < =,

with some absolute positive consiants ¢y and o (i.e. ¢y and a are independent
of n and J).
The proof of this theorem is given in Section 3.

In what follows we denote by a, 3,4, &, it, ¢, €1, . .. positive constants (different
pach time, in general) that either are absolute or depend on parameters not
essential for the arguments.

3. Proof of Theorem 2

Let n be sufficiently large. We set in Theorem 1, L = 5,2y = 0,07 = w, 07 = v,
i.e. the point § takes over the role of z; in the application of Theorem 1. From
the boundary behavior of the conformal mapping ¢ (cf. [15, Ch. 3]}, we obtain,
for any subarc J C 5, that

w({J) < cdiam(J).

Next we put & = (3¢)/v/n, so that by the result of Buckholtz [7] {(cf. (1.1))
supp v, C (ext{S) N N(S,8}}.

Let z € ¢ = int(S). We consider the logarithmic potentials of the measures w
and vy,

U“{z) = —/logizwﬂdw[(;) =1—Rez=1+logle ™
(see {16, Thm. 4.1]), and

1 T
Urmi{z)=— { L - {|d = —log -t
{2) f DgEz C1 Vn(g) P Og |S¢;('ﬁ-2)|,
where 7, := n"/n! is the highest coefficient of s,{nz), as well as their difference
Uo(z) = U (z) = U¥(z2) — U {(z) = 1~ % log 4 + %Eog le™ g, (nz}.
According to [18],

N
m@ﬁwmxazww

& " s,(nz) = 1 —
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where

7!
Ty 5=

- nre—"/2rn

and Stirling’s asymptotic formula gives

lim 7, = 1.
Tl 0

Therefore,
U (2) = U7(0) = ~ log 1 — vn(2)i.
We note one general distortion property of +, which follows easily from the Koebe
one-quarter-theorem. Namely, for w € I, we have
dist{¢p{w), )

1

Y(w) <4

1— jw!
{sese, for example, [1, p. 58)).
Further, we set k= 1/\/n. For 2z € {);, and w = ¢(2), we have

3 w
/ B(C)™ e / () dr
0 )
Thus, by our choice of parameters, we obtain
bolh) < e V™,

Finally, setting m = |\/a], the integer part of v/n, and applying Theorem 1 for
sufficiently small €, we have, for any subarc J C S, that

Cg
b (N{S,8)) - w(J}] < e

-1/
< 4@] ™ dr < g7,
0

from which the statement of Theorem 2 directly follows.

4. Some auxiliary facts

Let L be a quasiconformal curve, with G := int(L), Q := ext(L). It is known
(see [13, Ch. IL8]) that the conformal mappings @, ¢, ¥ and 1 can be extended
to quasiconformal mappings of the whole plane onto itself, with oo as a fixed
point. Since such homeomorphisms are Holder continuous on compact sets in T
{see, for example, [1, p. 97]), we have

1 -

(41} c—|.‘e.“2 - 2.‘111‘]'3 < i@(zg) - @(El‘ﬂ < {.‘1|Zg - Z;fa, z1, 29 € {1 QN(L,I)
I

and

1 —_
(4.2) E;Ff—’z ~ % < o(z) - ¢(z)] < ca|2g = 2,17, Zhz e G
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Further, let £(z) be analytic in 2 (including co) and continuous on Q. Moreover,
we asswme that f is Holder-continuous, i.e. there is a positive constant v such
that .

]f(zﬁj - f{zl}l < [32 - 21|7, 2,70 € L1
Replacing in the Belyi Theorem (see {1, p. 119]) 2 by 1/(z — z), we obtain the
following assertion: for any n € N, n > 1 there exists a rational function R, of
the form

G
=y ;e C
{43} Rﬂfz] Jgﬂ (szOjJ, & €L,
guch that
[f(2) — Ra(2)] < efdist(z,li_1/m))", z€e L,

where ¢ depends only on L and ~.
Therefore, by (4.2) and the maximum modulus principle, we obtain

(4.4) [£(2) — Bo(2)] < en ™7, z el

Finally, we cite for convenience an obvious analogue of the Bernstein-Walsh
lemma for rational functions (cf. [17, p. 153]). Namely, for any R,(2) of the
form {4.3) and any z € G,

(4.5) IRn(7)] < ()" Sup | R (2},

5. Proof of Theorem 1

We use in our construction below some ideas from [10, 2].

Without loss of generality, we can assume that diam(J') < 1, where J' = ®{J).
Let ¢ := &%, where 0 < £ < & is an arbitrary sufficiently small fixed constant. We
assume that § <1, so t < 1. Writing

J={6:0,<0<8), 6 <O <O+

we consider the continuous function h{e®) on the unit circle T which is 1 if
0, < 0 < 8y, 0if O+t < € < 2146, —0; —/t and linear otherwise. We denote
by the same symbol h the harmonic extension of h onto A, ie. the solution of
the Dirichlet problem with corresponding data on the unit circle T. Let H(w),
w € A, denote the completion of A(w), i.e. H(w) is an analytic function satisfying
Im H{oo) = 0 and

Re H(w) = h(w), we& A,

Since for any 0 <1y < 1 < 1y + 7,

R(e™) - Ale™)] < %(m —m),
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by Privalov’s Theorem (see [12, p. 400]) for any w,, ws € A we have
H (ws) ~ H{w)! < ¢ %hﬂz w4

Furthermore, H is bounded on A.
Next, we introduce the functions
flz) = [z, J,8) = MD(2)), 2€Q,
F(z) = F(z,J,8) == H(®()), z€70,
and arecs
Jl = {Z: \Ii(ew) : 91 - ‘\/'E “_: QS 91},
Jy = {2 = ‘I‘(em) P \/f},
J;_l, = L\{JUJ:L UJQJ

Since @ and ¥ are Holder-continuous (cf. (4.1) and (4.2)), the function f has the
following properties:

0<fls)<1, zel,
1— flz) <ef*,  2e N(J, 6N,
f(z) €ed* ze N(J, 6N

Our next aim is to approximate function F(z} by rational functions of the
form (4.3).

Note that F" is Holder-continuous on (1, that is, for 2,2, € L,

Flz3) - Flz1)| < :"-%I*i*(@) — () < —%m gyl

By {4.4) for any m € N, there exist a rational function R,,(z}, of the form (4.3),
and a constant 3 > 0 such that

{F(2) — B(2)] £

C3 —

i’ z €,

Hence, the rational function

Qnl3)i= s+ Rnf2) (1 - ;‘jj bﬁ) ,

and its real part g(2) = Re Qp,(2) satisfy the following conditions:

(5.1) 0<gn(z) <1, zel,
(5.2 Qm{z)i < ey, z€L
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For rm(z) 1= Re Rp(2) and z € N(J §3n g,

1= gu{z) =1— v"ﬁ m2) fmﬁ T'm(2)

{5.3) <1 f(z)+ fiz) = rm(2) + Wrm(z)

1
= % (Jﬂf‘l + 55!2mﬁ) :
Analogously, for z € N{J3,8) N1,
o 1
(5.4) Im{z} < 03 (5 st 5s/2mr3) ‘

Applying the Green formula to the function ¢, (2} and the unbounded domain
ext{ly—zn), for 0 < h < 1/2, we obtain, for z € ext(l;_ss), that

o = anoo) g [ (B2 roglc - o - ani6) g i 1) 1,

2w

where /8, is the operator of differentiation with respect to the outward normal
to the eurve Iy_q at the point £,

Integrating with respect to do and applying Fubini’s Theorem, we have

00O 00
09 famir—— [ (0% w0500 ) el

Our next aim is to derive an upper bound for the expression on the right-hand
side of (5.5).

By {5.2) and the analogue of the Bernstein-Walsh lemma for rational functions
{ef. (4.5)), we have, for z € G\ {20}, that

(5-6} &fi‘mtz}l < %Qm )i = lﬁﬁ( )[

which, in particular, imples, for z € {1, Qm(7) = Qu((r)) and w = ¢(z),
that

| grad gn(2)] = 10 (2)] = @ (W 2(2)]

lr—wi=h |T - wP
, . e
<1965 1 0n(el 2 i

Without loss of generality, we agsume that
b= b {h} = b,(h).

The reasoning given beiow shows that the other case, i.e. when b3(h) = b.,(h},
can be handled in the same way.
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A routine argument, involving the last estimate and the mean valoe property of
harmonic functions, shows that

1 ilmﬂhU © ong l
_ o o aqm( ) __b...........
<[ v-viosu co))l ) ) < i

Fuarther, by (5.6),

ﬁ qm{c:}é%v*’(o ]

< g [ IOl

bioan
e
= IR o 00
in]m=1—

where U7 (w) = U7 (1h(w)).

Next we use Schwarz's formula, Fubini's Theorem and the mean value property
of harmonic functions to obtain

f | grad % (1)) |do|
w212,

:fw; - Lerad(b = U7 () + 07(0))! de]

f f b~ U t}+2U( }1dt||dw|
jwj=t—2h J =1 6 — w]

! f (b— T (8) + E°(0)) _dw|
[t]s1~h =125 [t — W2
Clgb

T

T ]

<

Hence,

Gub

T

it
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“Next, we note that by (4.1), (5.1), {5.3), (5.4) and the last inequality,
o*(J) — o7 (N{J,8))

:fqmd0++f{1—qm)da+—f qmdcr‘“—f (1-gqu)do™

7 J N8 N{JS}

> ] g (dot —do™) — f do* — f G AT — f (1~ g do™
C Jilds J3 N{J6}

,v . b #e 1 -

2 =1 (h{l a0 T e;mmﬁ) =-b
The same inequality holds for L\ J instead of J, i.e.

| o*(L\J) =0~ (N(L\ 4,)) 2 =B,

ce o (T} — o (N(J,8)) + o (LN J) — o (N{L\ J. &) <0,
we have

o™ (J) =0T (N(J.8)) £ =(e7 (LN J) =" (N{L\ 1, 8))) £ B,
which completes the proof of Theorem 2.
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