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1. Introduction. It has been known for some time that the stress dis-
tribution in a plane bounded region with an irregularly shaped boundary
may be accurately approximated by finite difference methods. Indeed,
some twenty years ago, Southwell and his co-workers [1, 2] utilized finite
difference approximations, and applied Southwell’s “velaxation’” method,
a noncyclic or free-steering' iterative procedure, to the approximate solu-
tion of interesting engineering problems. Though this “relaxation” method
has been known to work well when human insight guides the course of
calculations on a desk calculator, such noncyclic iterative techniques be-
come extremely laborious on desk calculators when results of high precision
are required. More damaging is the fact that such noncyclic iterative
techniques can rarely be adapted efficiently to high-speed digital computers.

On the other hand, newer cyclic' iterative techniques, such as variants
of the successive overrelaxation (SOR) and alternating direction implicit
(ADI) methods, are readily adapted to high-speed digital computers, and
recently have been applied to the numerical solution of biharmonic stress
problems. Motivated by work of Heller [4], Varga [5] and Parter [6, 7]
have applied the 2-line variant of the SOR method to the numerical solu-
tion of the biharmonic equation with clamped boundary conditions for a
rectangle with uniform mesh spacings. Similarly, Conte and Dames [8, 9]
have applied the Douglas-Rachford variant of the ADI method to the
same problem with simply supported boundary conditions. Unfortunately,
as shown by Birkhoff and Varga [10], the results of Conte and Dames
are theoretically restricted to rectangular domains. Stiefel and his co-
workers [11] have recently investigated the practical application of par-
ticular variants of the SOR method, as well as “direct”’ methods such
as the Gaussian climination and conjugate gradient methods to more
typical biharmonic problems. They conclude that overrelaxation can be
promising, if relaxation factors can be appropriately chosen.

The main purpose of this paper is to present a general method for the
efficient numerical solution of plane elasticity problems which ecannot
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be solved practically by either classical analytical or relaxation methods.
Using nonuniform meshes, difference equations are derived which ap-
proximate the differential equation and boundary conditions suitably for
general irregularly-shaped simply- connected” regions. It is shown that the
matrix of coefficients is real, symmetric, and positive definite, so that a
newer 2-line variant of the SOR method, using the cyclic Chebyshev semi-
iterative technique of Golub and Varga [13], can be rigorously applied to
the solution of these difference equations. Finally, numerical results are
presented for an example which demonstrate the applicability and efficiency
of the method.

2. The boundary value problem. Considering a simply connected plane
region R with boundary T, assume a body force potential function V(z, y)
and a temperature distribution T'(x, y) are given on R, the union of R
and I'. When the stresses in the plane are expressed in terms of the Airy
stress function ¢(z, y) and V(=z, y) by

3¢

oz

3¢

6 ¢
(1) e TV a= dzdy’

+V, Toy = —

the equilibrium equatlons of plane elasticity are identically satisfied, and
the compatibility of strains requires that

(2) V4¢(x7 y) = —BVQV(Q?, y) - 'YVzT(xa Z/) = Q(x, y)r (x) y) € R’
where
A Y &
V - a_xi + W ’
3 ' o'
4 2e2
= VV = — 2
v ax4+ 0z dy? T ayt’
B=1—y, v = akf for plane stress, or

= (1 —2»)/(1 — ), v = aF/(1 — v) for plane strain,
o is the coefficient of thermal expansion,
v 1s Poisson’s ratio,
E is Young’s modulus of elasticity.

The boundary conditions for ¢(z, y) are assumed to take one of the
following forms on each portion of I':

a¢(z, )

(3a) 3z, y) _ S

= g2(x: y)) (21), y) € I‘}
or

gl(x, y)7

2 A treatment for multiply-connected regions is described in [12].
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@) ey =ay, 2BV g6y, Gy e
(4) %%y) =0, G%V%(r, y) =0, (z,y) €T,

where the functions g;(z, ) are given and n refers to the outward pointing
normal.

The boundary conditions (3a, b) are those which arise when forces are
specified on T. To see this, let s and n be boundary coordinates tangent
and normal to T, and let 6 be the angle between the z and 7 coordinates.
It X(z, y) and Y (z, y) are components of the boundary force in the di-
rections of z and y, equilibrium of forces on T' requires that

_9 () _ vy _ 9 (%) _ vy _
(5) 5§<55>——Y V sin 6, as<6y> X — V cos 6.

Integrating these equations along T', we obtain the boundary condition of
(3a):

9% _ »—f (Y—Vsin@)ds'—}-(gg) =g,
0

dx 0
(6) 0 , ”
’
~a—y~f0 (X — Vcosb) ds +<@>0-g2,
where (3¢/dz)o, and (d¢/dy), are constants of integration arising from
the fact that only second derivatives of ¢ are specified on I'. Since R is
simply connected, these constants have no effect on the stress solution (1)
and may thus be chosen arbitrarily. Finally, the equations of (6) can be
combined and integrated to obtain the boundary conditions (3b) which
specify d¢/on and ¢ on T

The boundary conditions of (4) are obtained for a line of physical sym-
metry if the constants of integration are chosen in such a manner that ¢ is
also symmetric about the same line.

The determination of the stresses o, , o,, and 7., in R due to a given
temperature distribution, body force potential, and boundary forces has
been reduced to the determination of a function ¢(z, y) which satisfies
(2) in R, and appropriate boundary conditions of the form (3) and (4) on
I'. Because of this, we note that the results to follow apply equally well to
the bending of a clamped plate. The Airy stress function is analogous to
the deflection of a plate loaded transversely with edge deflection and slope
specified.

3. The derivation of difference equations. In order to derive linéar
difference equations which approximate the differential equation of (2) and
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{a)

(b) (c)
Fia. 1.

the various boundary conditions of (3) and (4), the boundary I' of the
region R is first approximated by a polygonal boundary I'x . Then, a rec-
tangular mesh of horizontal and vertical mesh lines, in general not uni-
formly spaced, is imposed on R in such a manner that the intersections of
the mesh lines coincide with the intersections of the boundary segments of
I'x . The intersections of the mesh lines are called mesh points and give rise
to a finite point set S. Associated with each mesh point is a mesh region,
defined so that the boundaries of each mesh region fall halfway between
the mesh lines. The transition from the original boundary I to the polygonal
boundary T, and then to the set S of mesh points (denoted by small
circles) is illustrated in Figs. 1(a) and 1(b). Representative mesh regions
(denoted by shaded areas) are illustrated in Fig. 1(c).

The derivation of difference equations which approximate the differential
equation of (2) can be carried out in a number of ways, the most familiar
being based on Taylor’s series expansions. Less familiar, perhaps, is a
derivation based on an integration technique which is very convenient for
approximating differential equations for irregularly shaped regions using
a nonuniform mesh. It might be mentioned that this integration technique®

3 For related treatments of this integration technique for deriving difference equa-
tions, see also [15] and [16].
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[14, Ch. 6] has been successfully employed for a number of years in computer
programs for the design of nuclear reactors, and is closely related [14, Ch. 6]
to the derivation of difference approximations using the variational formu-
lation of (2) and (3). Equation (2) is integrated over each mesh region 7, ,
giving

(7) / Ve de dy = —ff (BVV + AV'T) da dy,

which is equivalent to (2) if such integrations are taken over every possible
subregion in R. Using Green’s theorem, the area integrals can be replaced
by line integrals

(8) 5£ 2 (') de = 35 (ﬁ 0T> dt

taken about the boundary v, of each subregion ;. ,
Ultimately, we seek approximations to the Airy stress function ¢(z, y)
only at the mesh points 7 of the finite set S, 1 < ¢ < n. Denoting the ap-
proximations to ¢ at these points by ¢, , some of the values ¢; at boundary’
points may be known directly from the boundary conditions of (3b). At
interior points, or boundary points where ¢ is unknown such as in (4), the
values of ¢; are related by a set of n linear difference equations deduced
from (8) by approximating the portions of the line integrals as follows.
With reference to Fig. 2, the line integral from a to ¢ is approximated by

9 s (9
fa(%wdh(&;w)b l

and the normal derivative at b is approximated via central differences by

9 _» N 3’1 — 8o
<%V"’>f o

In this way, the difference approximation for (8) at a typical point 0 of
Fig. 2 becomes

(9) Z(a@—aqso oo 3BV~ Vo) (T — T
h

i =1 07
where

8¢, is a difference approximation of V¢ at 7,

hoi is the mesh length between points 0 and <,

to: is the length of the side of the mesh region between points 0 and ¢,
ie, in g, 2, £y = f4 .
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L

Fia. 2.

It remains now to specify the differences 8°¢; . At any point 0, we have

e LT vy ardy = L § 9
(10) on= 1 [[ Foaay =1

where A4, is the area of the mesh region ro. Again referring to Fig. 2 we
define

2 15
(11) 5¢0—-A0;(¢£—¢0)h—w,
in analogy with (9), as the difference approximation to (V’¢)o .

It is obvious that these simple approximations based on mesh lengths
and areas can be readily calculated in a program for a digital computer.
It is less obvious that for the case of uniform mesh spacings, the simple
approximations of (11), when coupled with (9), reduce to the well known
[17, p. 267] 13 point biharmonic star

1
2 -8 2
1 -8 20 -8 1.
2 -8 2
1

This is the unique point approximation with the least number of couplings,
namely 13, which, from Taylor’s series considerations, approximates the
biharmonic equations to h° accuracy on a square mesh.

The derivation of difference equations at boundary points proceeds in a
manner similar to that just described for interior points. For example, when
the point 0 is on a line of symmetry, as indicated in Fig. 3, the line integrals
in (8) are taken around the half mesh region associated with the point0. Since

(8/0n)¥’¢ = 0 on the line of symmetry from (4), f(a/an)v“’qsdt = 0 on
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2

LINE OF SYMMETRY
e
o}

| |

4

Fia. 3.

the side of the mesh region coinciding with the line of symmetry. Numbering
the mesh points as in Fig. 3, the difference approximation for (8) becomes
4 ‘. 4 ‘.
(12) 2, (8¢: — 8'0) 1= = =2 [B(Vi = Vo) + 2(T5 = To)] 7=,
1=2 07 =2 (i
where it is understood that £, and o, refer to sides of the half mesh region,
1.e., fio = fu = hog/2. Similar modifications in (11), i.e., integrations are
again carried out over partial mesh regions, give rise to linear approxi-
mations to 8°¢; at a point on a line of symmetry.

This method applies equally well at points on T' at which the boundary
conditions of (3b) are specified. An illustrative example is given in Ap-
pendix 1. We might remark that, in the proposed method of derivation,
boundary conditions are always treated in conjunction with the differential
equation, and no exterior (‘‘imaginary’’) points are necessary.

4. Iterative solution of the difference equations. With (9) and (11)
for each interior mesh point, and similar expressions for boundary points,
a set of » linear equations in the unknowns ¢, is obtained. Numbering the
unknowns ¢; in some systematic way, the resulting system of linear equa-
tions can be written in the form

(13) A$ = p,

where 4 is an n X n real coefficient matrix, ¢ is a column vector with
components ¢, , and p is & known column vector which represents the effects
of the boundary forces X and Y, the body force potential function V, and
the temperature 7' at each mesh point 7. The coefficient matrix A can be
assumed in cases of practical interest to be of large order, i.e., n may be
several thousand, but each ¢ is coupled to at most twelve adjacent ¢,’s.
In other words, most of the entries of 4 are zero, and 4 is said to be sparse.

In order to rigorously apply the cyclic Chebyshev semi-iterative method
[13] to the solution of the matrix problem of (13), it must be shown that
the coefficient matrix A is symmetric and positive definite. It is almost
obvious from the derivation of the difference equations that A4 is sym-
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metric; this is basically a consequence of the fact that, at each interior
point O (Iig. 2), each line integral (8) occurs again, with a different
orientation, in the derivation of difference equations at the adjacent points
1, 2, 3, and 4. It is less obvious that the matrix A is positive definite, but
this is intuitively plausible since the method of deriving difference equations
based on integration is analogous to the derivation of difference equations
from a variational formulation. The details showing that A is positive
definite are given in Appendix 2.

With the coefficient matrix A of (13) real, symmetric, and positive
definite, we now number the unknowns ¢ of the set S consecutively by
double horizontal rows, counting from left to right and alternating between
rows. This is illustrated in Fig. 4 for our basic mesh problem of Fig. 1.
Since the points in any pair of rows are coupled only to points in adjacent
pairs of rows, the matrix A can be partitioned in the form

Arr Aip
AlT,z Azo Aag 0
Azs Ass Asa

(14) A

1

0

A
T
A, Ay

L.

where { is the number of double rows of mesh points, 4;,; is an n; X n,
symmetric and positive definite matrix, and n; is the number of mesh
points in the jth block of two mesh lines. Specifically, for the problem in
Fig. 4, t is three and A, is a 4 X 4 matrix, 4;2is a 6 X 6 matrix, and
Aszisa 4 X 4 matrix.

Partitioning the vectors ¢ and p in a manner compatible with (14), the
difference equations (13) can be written in the form

(15a) 1P+ Ay A+ Ay a®in = Py, J=12 -
or equivalently
(15b) A;@; = Py — A @0 — Ajin®i, J=12 -1

where Agy and A, 41 are null matrices and @; and P, are column vectors
with n; components. The nature of the derivation of difference equations,
i.e., each point is coupled to at most twelve of its neighbors, is such that
each point is coupled to at most nine neighbors in the same pair of hori-
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Fia. 4.

zontal mesh lines, and the particular ordering of mesh points is such that
each of the diagonal submatrices A;; is a nine-diagonal matrix, i.e., if
A;; = (a), then af¥) = 0 for |k — £| > 4. Moreover, as the A;; are
principal submatrices of the positive definite symmetric matrix 4, they are
also symmetric, positive definite and nonsingular. Hence, matrix equations
of the form

(16) Aj®; = g;

where g; is given, can be solved directly by means of Gaussian elimination
with little accumulation of rounding errors [18].

The fact that matrix equations such as (16) can be solved efficiently
serves to define the cyclic Chebyshev semi-iterative method applied to
(15a). The two line mesh blocks are numbered consecutively from 1 to ¢,
and (15b) is used for all odd j, followed by all even j. The iterative pro-
cedure is

* (2m+1) T (2m) (2m)
Asgjvipin o1 = Pojpr — Azjoin ®a — Asipigire @352,

(2m+1) (2m—1) * (2m+1) (2m—1)
(17) @31 = ®ait1 )+ wamal®oin ) — ®ih1 ),
. t— 1
and
* (2m+2) T (2m+1) (2m+1
Asjoj @37 = Py — Adj1,0; ®3;707 — Asjojr Parir ),
(2m+2 2 * (2m+2 2
@, ) = ‘I’ij) + womid ®a; ) — ‘I’ij)],
(18)
<;i<|! >
1=5= 5| m = 0.

Here, [m] denotes the greatest integer less than or equal to m. The numbers
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wj are computed recursively from

2 1 C o
@=/»' NI e Y
where p is an estimate of the spectral radius of an associated iteration
matrix (0 £ p < 1). An initial guess is required for the subvectors @57
from which (bé]lll, ®;7, etc. are calculated. From the results of [13], the
iterative procedure of (17) and (18) will converge for any set of initial
subvectors @;% and any p with 0 < p < 1.

The iterations are terminated when

(19) w =1, wp =

(20) max{R,""", R} < s,
where
ROY = 2@ — @i, mz 1,
(21)
R0(2m) — Z H(p(%n) (2mv2)H m g 1,
and it is understood that || v || = 2 iw|v:|. The quantity 6 is aninput

parameter which measures the difference between successive vector iterates.
Of course, smaller values of § give rise to increasingly accurate approxi-
mations of the solution of (13).

The convergence rate of the process described in (17) and (18) is highly
dependent upon the choice of p, especially when the coefficient matrix 4 is
almost singular. In general, it is difficult to obtain a good estimate of the
spectral radius without actually solving a related eigenvalue problem. But
for the case of a rectangular region with uniform mesh spacing, a good
working estimate of p is given in [19]. If @ and b are lengths of the sides and

h the mesh spacing,
(22) o = 1
1+ (Wh/2)°

where
= (w/a)'5.144(1 + a'/b*) + 3.115 a*/b’).

The effect of estimates of p and the accuracy 6 on the rate of convergence
of the iterative procedure are discussed in some detail in [20].

B. A numerical example. In order to demonstrate the usefulness of this
method for determining the stresses in irregularly shaped plane regions, it
has been applied to the tension member with semi-circular notches shown
in Fig. 6. This problem has been treated by Southwell using the relaxation
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technique [2, p. 284], and an estimate of the stress at the notch can be
obtained using series methods (see, e.g., [21]). For this problem; T = V =
0 on R.

By symmetry, only a quarter of the plate need be considered. A relatively
coarse nonuniform mesh spacing was used so the difference equations could
be solved exactly as well as iteratively. However, finer mesh spacings were
used near the root of the notch where the maximum stress occurs. The
mesh layout, shown in Fig. 5, contains only 66 interior mesh points. An
iterative solution using the method described here was obtained with the
aid of an experimental program written for the Phileco 2000 computer. The
iterative solution required 239 iterations, taking 25.6 seconds on the Philco
2000. An exact solution of the difference equations was also obtained using
the Gaussian elimination method. Comparison with the iterative solution
showed agreement to four significant figures.

With a solution for ¢, the stress o, can be calculated at an interior point
(Fig. 2) using the difference approximation

82¢ 1 o
(Tz*-é?-r;ﬂ”;z’“((ﬁi oo }—LE'
Values of ¢, at each mesh point are shown in Fig. 5. They compare well
with those obtained by Southwell using a uniform mesh length of a/4 with
a total of 116 interior mesh points. A comparison of Southwell’s rasults
with those presented here is shown in Fig. 6 for the stress distribution across
the neck of the plate. The maximum stress at the notch in an infinitely long
strip, according to [21], is 3.08. For the finite length strip shown in Fig. 6,
the maximum stress should be somewhat larger, so the value of 3.15 ob-
tained here appears to be quite satisfactory. It seems remarkable to us

1.00 .90 53 .20 06 0
1.00 92 71 .52 36 16| \ .30
y
100 .97 93 .32 92 90| |86 tig
100 1.00 103 109 jus (23] lige  |153 203
100 (X 106 4 121 131 [135 160 230, 294135
100 1.03 L2 122 [130142] [146 167 212 249)2.56
100 1.04 AT 1.29 138 148 1152 168 196 21512.18
100 107 1.24 138 [145153] 1155  lisa 173__prsjieo
.00 1.09 1.29 142 1481531 154 157 i59 1601160 v

Fi1e. 5. o Distribution for the plate shown in Fig. 6.
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w
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| |

1.0a 0.5¢ o]
POSITION, y (x=0)
Fia. 6.

that such a close approximation can be obtained for the stress on a curved
boundary with so few mesh points.

Appendix 1. Derivation of difference equations for boundary mesh
regions. To illustrate the derivation of difference equations at a point on
' where boundary conditions (3b) are specified, consider the mesh region
of Fig. 7, which is outlined by Oabc0. An approximation for ¢ at point 0 is
obtained by integration of (6). Thus, to complete the derivation of differ-
ence equations at point 0, we seek an approximation 3" to (V°g), such as
is given in (11). Using (10) for the mesh region of Fig. 7, the problem is
further reduced to approximating line integrals involving d¢/dn.

The integral of d¢/dn along the sides ¢0 and Oa is approximated by
(8¢/dn)0_hoe and (36/0n )0y hoa Where (d¢/dn)o and (d¢/dn)oy are ap-
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S

r-_c

g—’(%’-i—")o-
0 e

Fi1ac. 7.

proximate values of the normal derivative on the segments 02 and 07,
respectively, to be determined shortly. With these approximations, the
difference equation for §°¢ at the boundary point 0 becomes

s 1 Lo hoz ¢ hor (99
(23) 0o = A, |:1=Z” (¢ — ¢0) D} (E)n) + 5 9 <6n>0+:],

where

h02 hOS + h03 h37 .

Ao =3 8

The functions ¢ and ¢, can be determined directly from the boundary
conditions, so the orly unknown in this expression is ¢; .

It remains only to derive approximations for (d¢/dn)._ , (d¢/on) . , and
boundary values of ¢; from the boundary conditions (6). The boundary of
the plane region is composed of straight line segments which are sufficiently
short that it can be assumed X, Y, and V of (5) are constant over the
length of each segment. Numbering the boundary points in order n + 1,
n+ 2, -+, k, -+, min the direction of s, the line integrations in (6) can
be carried out segment by segment going fromn + 1 ton + 2, n + 2 to
n + 3, and so forth to obtain approximations for ¢, d¢/dz, and d¢/dy at
each point in terms of their values at the preceding point. Integrating from
the (k — 1)th to the kth point, shown in Fig. 8,

(3_?
0x /k
(3)
Y /k
¢ = (Xi—16 08 Op—rp + Vi1 sin Ops s — Vi-1x)

1¢] a .
+ l:(gZ)k_l cos Or—1,1 + <6—i>k_1 sin ok—l,k] e + du1,

I

— (Y16 — Vo1 sin O p) iz i + < ¢> ,
0r Jk—1

(Xk—l,k - Vk»l,k COS 0k_1,k)hk_1,k - (-g-?> s

Y/ k-1

(24)

Ric1
2
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X s
‘ }k—l
| REREN
PP
hGam
S | Xk-1.k
! T—E g
|
' k-1, k
A (38),
_____ ] (5%)\.
(52)
S <a¢) on /k+
k+1 dy/k
Fig. 8.

where the subscripts & — 1, k refer to the value of the function on the
segment between points k¥ — 1 and k. The normal derivatives on the
segments & — 1, k and k, & + 1 at the point & can similarly be found from

99) (% )
<6n>k_ = <8x>k cos O,k + <6y>k sin 01,
on = ox 0 o ic .
<3n>k+ <6x>k €08 O k41 + <8y>k sin O g

Since the integration constants ¢.i1, (3¢/9%)s41, and (9¢/dy) 1 may be
chosen arbitrarily, ¢, (d¢/9n)i—, and (d¢/dn)x can be determined re-
cursively by (24) and (25).

(25)

Appendix 2. The positive definite nature of the matrix A. As stated
in §4, the real square matrix 4 of (13) is symmetric and positive definite,
the symmetry of 4 being an immediate consequence of the derivation of
difference equations based on integration. To show that A4 is positive defi-
nite, consider the vector 1 with components ; which are related (Fig. 2)

by
(26) —3 W — ) 2 =0

=1 hOi

in the region R, where 1 is assumed to be known on the boundary T',. The
resulting set of difference equations is of the form

(27) By =q
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where B is real and symmetric, and q is known from the boundary con-
ditions. By derivation, the matrix B is irreducible,” its off-diagonal entries
are nonpositive, and the sum of its entries in any row is nonnegative,
being strictly positive for at least one row. It follows [14, p. 23] that B is
positive definite, and det B s 0.

If, for the same region R, (9) is applied at interior mesh points, the
resulting difference equations can be written in the form

(28) — B’ + Hp = f
where B is given in (27), 8¢ is a column vector with components
8¢, (1 = 1,2, ---, n) and H is an n X n real symmetric matrix which

appears because boundary values of 6°¢, , rather than known, are expressed
in terms of the unknown ¢,’s. Difference approximations for §°¢; obtained
from (11) are of the form

(29) ¥ = —D'Bo+ g

where g is a known vector, and D is a diagonal matrix whose diagonal
entries are positive, and equal to the areas of the various mesh regions.
Substitution of (29) into (28) gives a set of difference equations of the
form (13) with

(30) A = BD7'B + H.

Since B is symmetric and nonsingular and D™ is symmetric and positive
. 1 R .
definite, BD™"B is symmetric and

(31) $"(BD'B)$ = (By)"D(Bp) > 0

for all ¢ # 0, i.e., BD™'B is positive definite.
The matrix H is of the form

(32) H= ). H

where H} is a matrix which contains all the contributions from the approxi-
mation of §°¢ at a boundary mesh point k. Therefore, each H, is of the
form

(33) He =9
k

where A is the area of the mesh region for the mesh point & and p is a row
vector with at most three nonzero components. If k is a point on a straight

* For a definition of irreducibility, see [14, p. 18]. Geometrically, the matrix B has
the property of being irreducible basically since the region R is a connected region.
For graph theoretic interpretations of this, see {14, p. 20].
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boundary, g has only one nonzero component. The nonzero components of
o are positive, being just the ratios of the length of the side of the mesh
region to the mesh length between the boundary point and each adjacent
interior point. From the form of (33), it is obvious that Hj is symmetriec
and nonnegative definite, i.e.,

¢'Ho 2 0
for any vector ¢. Thus, it follows from (31) that
(34) ¢"4¢ = ¢"(BD'B+ H)p = ¢"BD'Bo + ¢'Hp > 0
for all  # 0, i.e., A is positive definite.
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