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SUMMARY

We introduce several localization techniques for the generalized eigenvalues of a matrix pair, obtained
via the famous Ger§gorin theorem and its generalizations. Specifically, we address the techniques of
computing and graphing of the obtained localization sets of a matrix pair. The work that follows invoives
much about nonnegative matrices, strictly diagonally dominant (SDD) matrices, H- and M-matrices. We
show the utility of our results theoretically, as well as with numerical examples and graphs. Copyright
2009 John Wiley & Sons, Ltd.
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I. INTRODUCTION

We start by introducing the basic concepts of this paper. Given matrices A, Be C*", with n321,
the family of matrices A—zB, parameterized by the complex number z, is called a matrix pencil.
Then, whenever we refer to a matrix pencil A—z8 or to a matrix pair (A, B), we are speaking
about the same object.

A matrix pair (A, B} is called regular if det(A —zB) is not identically zero, an%otherwise,}'t is
called singular. If the matrix pair (A, B) is regular, then

det(A~zB)=: p{z) (1)

where p(z) is a polynomial in z, which is of degree at most n. If 1 C is such that p(L)=0,
E.E:.)dﬂt(A —AB)=0, then A is called a generalized eigenvalue of the matrix pair (A, B), and there
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884 V. KOSTIC, L. 1. CVETKOVIC AND R. 5. VARGA

exists a nonzero vector ve C" such that Av=/ABv, where v is called a generalized eigenvector of
the matrix pair {A, B). The collection of all eigenvalues of a matrix pair (A, B) (also called the
spectrum of the matrix pencil) is denoted by

oA, B) =z Cidet{ A—zB)=0} (2)

Clearly, if B=1,cC"", then the spectrum of the matrix pair (A, B) reduces o the stan-
dard spectrum of A, ie. o(A,I,)=0c(A). Also, if B is nonsingular, it is easy to see that
O=det{A—zB)=det(B~'A —z1,), so that in this case, the spectrum of the matrix pair (A, B)
reduces to the spectrum of B~1 A,

It is also known that the degree of the polynomial p(z), in (1), is » if and only if B is nonsingular.
This implies that if B is singular, then p(z) is of degree r with r<n, so the number of the
generalized eigenvalues of the matrix pair {A, B) is r, and, by convention, the remaining n—r
eigenvalues are set equal to oo.

Here, our object is to estimate the spectra of regular matrix pencils, much as the union of the
GerSgorin disks of a given matrix A € U™" estimates the eigenvalues of A,

We begin with the well-known results of Lévy-Desplanques and GerSgorin (cf, {1], Theorems 1.1
and 1.3).

Theorem 1 (Lévy-Desplanques)
Let Ae=[g;;1e C™", with n222, be such that

laii=ri(AY foreachieN:={1,2,...,n] 3)
where r;{A} is defined to be the ith deleted absolute row sum of A, ie.,

ri(Ay:i= 3} layl (anyieN) (4)
JENL)

Then, A is a nonsingular matrix.

The matrices that fulfill condition (3) are known in the literature as strictly diagonally dominant
matrices (further denoted as SDD matrices),

Theorem 2 (Gersgorin)

Let A=[a;;]eC™", with n22, and let 4 be an eigenvalue of A. Then, there exists an index ie N -

such that |A—a;; | <ry(A). Thus, with 6(A) denating the spectrum of the matrix A, we have that

g(AYCT(A) = I (A) (5)
ie N
where
[i(A):={zeClz—au|<ri(A)} (any i€ N)» (6}

The set I'(A),from (5)_is called the Gersgorin set for the matrix A, while I';(A) of (6) is called
the ith GerSgorn disk for A.

What was emphasized in {1] was that the nonsingularity result of Theorem 1 is exactly equivalent
to the eigenvalue inclusion result of Theorem 2,
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GERSGORIN-TYPE LOCALIZATIONS OF GENERALIZED BIGENVALUES 885

To carry this a step further, it is also known from [1] that the next nonsingularity result of Olga
Taussky in Theorem 3 is equivalent to her result of Theorem 4.

Theorem 3 (Taussky [2])
Let A=la;;]€ C™" be an irreducibly diagonally dominant matrix, t.e. A is irreducible {cf. [1],
p.11) and

o
laiifzri(A) for each i € Ny
. , ™ e
with strict inequality holding for at least one i e N,
Then, A is nonsingular.
Theorem 4 (Taussky [3})
Let A=[a;;]eC™" be irreducible. ¥ leo(A) is such that Agintl;(A) for any ieN, ie.
[A—a;i{=r;(A) for each i € N, then
. . A
{A—ajil=r;(A) for each teNF (&) ’
A
ie. }aH the GerSgorin circles {z€C:|z—a;;|=ri(A)) pass through A. 7

As before, the equivalence of Theorems 3 and 4 can also be readily verified.
There is a relatively new third equivalence, due to Cverkovié {4}, which plays a vital role in
our study here of the generalized eigenvalue problem. We begin with the following definitions of fmﬁl E::a
M-matrices and H-matrices, due to Ostrowski in 1937, These are stated in [1,5], endix (J. [} p) &ﬁ“’t"“"*“
There are many equivalent definitions of an M -matrix, given in Berman and Plemmons [3], but
the following one is best suited for our needs here. Given a real 1 x # matrix A having the form
A=sl—B, where B, in R*", has all nonnegative entries, let p(B) :=max{|l]: L€ o(B)}, where
p(B} denotes the spectral radius of B, Then, the matrix A is called an M-matrix if p{B)<s, and
A s called a nonsingular M-matrix if p(B)<s.
Next, given a complex matrix A ={q; ;1€ T then the matrix {(A):={[m; e R called the
comparison matrix for A, is deﬁneckf’ for all 1<, j<ng by

laii], i=j &
nLjj= N ) . (9)
e TI R

With this definition of a comparison matrix, then A=[a;;}eC™" is called an H-matrix if its
comparison matrix (A) is an M-matrix, and similarly, A is called a nonsingular H-marrix, if (A)
is a nonsingular M-matrix.

In particular, we next utilize the following known connection (see {5], Theorem 2.3} between
aonsingular A -matrices and SDID matrices.

Theorem 5

A matrix A=[a;;]eC"" is a nonsingular H-matrix if and only if there exists a nonsingular
diagonal matrix X =diaglxy, x2,...,x,] such that AX is a SDD matrix,

o
N

Copyright 2009 John Wiley & Sons, Lid. Numer, Linear Algebra Appl. 2009, 16:383--898
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886 V. KOSTIC, L. J. CVETKOVIC AND R. §. VARGA

Now, let the vector x=[x;,x2,...,x,]T €& has all entries positive, and set X :=diaglx;,
X3,...,x;]. Then,
A =x7 Y laglx;  (any PeN) . (10)
JEN\IE]

denotes the ith weighted deleted absolute row sum of A, and we define the corresponding disks
and localization sets as

[T (A):={zeC:lz—ay|<r¥(A)} (any ieN) (D
and '
(A= J TT (A (12)
ieN

By intersecting over all positive vectors x € R”?, we obtain the localization set

T7(A) = 17 (), (13)
) x>0

called the minimal Gerigorin set. This was first introduced in [6], and it was extensively investigated

in [1,7]. Then, as in the pattern above, the nonsingularity result of Theorem 5 (more precisely,

its ‘if* part) turns out to be equivalent to the following eigenvalue inclusion result, which directly

follows from the definition of the minimal Ger$gorin set.

Theorem &
Let A=[a;1eC™", and let ™ (A) of (13) be the minimal Gerigorin set for A. If A€ o(A), then
AeTR(AY; thus, a(A) ST H(A).

This equivalence was pointed out in [4], and it gives us a starting point in obtaining localization
results for generalized eigenvalues. In particular, we remark that the points of the spectrum of a
given matrix A can be considered as complex points z for which the matrix pencil A—z/ loses
nonsingularity. Now, as we have seen from the above introduction, points of the Gersgorin set of a
matrix A can be characterized as the points where the matrix pencil A —z7 loses its SDD property.
This brings us to the construction of a generalized Ger$gorin set in Section 2. Construction of the
generalized minimal GerSgorin set is done similarly in Section 3. In each section, in addition, we
present useful properties, analyze computations, and give examples for the constructed tocalization
areas.

2. THE GENERALIZED GERSGORIN SET

In the following sections, if not stated otherwise, we suppose that A, B e C"", with n;22, and that
the matrix pair (A, B} is regular,

Definition 1
We define the set (A, B) as:

['(A, B):={z&C: A—zB is not an SDD matrix} (14)

and this set is called the (generalized) Gerigorin set of a matrix pair (4, B).

Copyright 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009, 16:333-898
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GERSGORIN-TYPE LOCALIZATIONS OF GENERALIZED EIGENVALUES 887

On replacing the phrase ‘not an SDD” in (14) with the term ‘singular’, the generalized Gerdgorin
set of a matrix pair (A, B) becomes the (generalized) spectrum of a matrix pair (A, B), given
in (2). From this observation, the proof of the next theorem is clear.

Theorem 7
Given mairices A, B e C™", with n22, the generalized spectrum of the matrix pair (4, B) belongs

to the GerSgorin set of the matrix pair (4, B}, i.e./the following inclusion holds:

a{A, B)CT{A, B). (15)
It is easy to see from (14) that T'(A, B) =J;en Ti(A, B), where

(A, BY:=1zeCilbyz—aul< 3. ibjz—aylt (allieN), (16)
JENA{i)

Moreover, if we df:notf‘éy by rf (4):=Y jes\t] laij|, that part of a row sum that corresponds to

the columns given by the set of indices SC N, and if we denote the particular sets of indices

Bi):={jeN:b;#0} and P):={jeN:b;=0j, for all i € N, then we can write

ao- a»- b1
TiA B)=1zeCiz—bai— & e=2Lhp@ ) (17
bii JEBOMI) i
whenever i € 8(1), and otherwise, we can write
P a..
I“f(A,B)=(zeﬁ:lanl-—rf(')(fl)é Y a=ibyite (18)
FeBn i

We remark that a set I';{A, B), as defined in (16), can be either the empty set or the entire

complex plane €, which can occur when f§,(4)=0, ie. swhen all entries of the ith row of the
matrix B are zero. Then, the ith generalized GerSgorin set has the following form:

Ti(A, B)=lzeC:lay1<r PP Ay =ri(A)). (19)
Thus,

Ay if laii|>ri(A),
I (A, BY= (20)
C, if laiii<ri(A).

Of course, when the second case of (20) occurs, the matrix B is singular, and p(z) =det{A—zB)
has degree less then n. As we are considering regular matrix pencils, the degree of the
polynomial p(z) has to be at least one; thus, at least one of the sets I';(A,B) has to be
nonempty, implying that the generalized GerSgorin set of a regular matrix pencil is always
nonempty.

On inspecting the form of the generalized Gerigorin ‘disks’ of (17) and (18), when this second
case of (20) occurs, we can establish the following properties.

Copyright 2009 John Wiley & Sons, Ltd, Numer. Linear Algebra Appl. 2009; 16:883-898
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888 V. KOSTIC, L. J. CYETKOVIC AND R. 5. VARGA

Theorem 8
Let A, BeC™", with n22. Then, the following statements hold:

1. Let i € N be such that for at least one jeN, b; ; #0. Then, the ith generalized Gerfgorin
set, I';{A, B), as defined in (17) and (18), is an unbounded set in the complex plane C if
and only if |b;;|<r;{B), where r; (B) is defined from (4),

2. The generalized Gersgorin set I'(A, B) is a compact set in C if and only if B is an SDD
matrix,

3. The ith generalized Gerdgorin set I';(A, B), given in (16), contains zero if and only if
fail<ri(A).

4. The generalized GerSgorin set I'(A, B) contains zero if and only if A is not an SDD matrix.

5. If there exists an i € N such that both b;; =0 and Eaigigrf(t)(A), then I'; (A, B}, and conse-
quently I'(A, B), is the entire complex plane.

Proof
First, it is evident that 2, and 4. follow directly from 1. and 3. respectively, Moreover, 3. is easy
to obtain, by patting z=0 in the inequalities of {16), and 3. follows directly from {I8). Then, it
remains to prove 1.

If ie N\A(D), then clearly |b;|=0<r(B) and (A, B) is unbounded from ¢16). Thus, let
i € f(i). First, let us suppose that T;(A, B) is unbounded. Then, there is a sequence {zglren of
complex numbers such that |z;[—o00, as k— o0, and z; € I'; (A, B). Then, for a sufficiently large
kelN, we have

2l (Ubis | — i (BY <P (4). 1)

Now, if |by;|=r; (B), then taking the limit as k — co in (21), we obtain a contradiction. Conversely,
let 1b;ii<iri(B), and let {z;]ren be a sequence of complex numbers such that |zgi—oc, when
k— oo. Then, it is easy to see that, for a sufficiently large ke N,

a: a;;
2= bl = 3 e b0,
i JEBUNLY} i

and thus, z; €I (A, B) from (18). ]
Example 1
Let

i 1 0 02 a5 01 01 041

O -1 04 O 0 -1 01 061 |

A= and B=
0 0 i I 0 0 i 0.1
02 0 0 i 01 0 O 0.5

By inspection, B is an SDD matrix and, acggrding to the item 2 of Theorem 8, the set I'(A, B) is
compact in the complex plane, This showl Figure 1, where the actual generalized eigenvalues are
marked with little circles.

Copyright 2009 John Wiley & Sons, Lid. Numer, Linear Algebra Appl. 2009; 16:883--898
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GERSGORIN-TYPE LOCALIZATIONS OF GENERALIZED EIGENVALUES 889

Figure 1. Generalized Gerigorin set of the matrix pair (A, B} of the Exampie 1 on the lefs, and the
corresponding generalized minimal Gerigorin set (Definition 2) on the right.

3. GENERALIZED MINIMAL GERSGORIN SET

We begin, as in the previous section, with

Definition 2
The set T (A, B), defined as

I”W(A, B}:={z€C:A—:B is not a nonsingular H-matrix} 4
is called the generalized minimal Ger§gorin set of the matrix pair (A, B).

This time we have weakened the singularity property of a matrix pencil, in the point z, to be
the property that A—zB is not a nonsingular H-matrix, in order to ‘enlarge’ spectrum up to the
generalized minimal GerSgorin set. Then, from (2) and Definition 2, we have

Theorem G

Given matrices A, B e C™", with 22, the generalized spectrum of the matrix pair (A, B) belongs
to the generalized minimal GerSgorin set of the matrix pair (A4, B), i.e, the following inclusion
holds:

a(A, BycT™A, B). (22)

3.1. Basic properties

From Theorem 5, it is evident that, for any nonsingular diagonal matrix X,

™A, B):= DX 'AX, X' BX)

x>0

and, as before, we can obtain the following analog of Theorem 8.

Copyright 2009 John Wiley & Sons, Lid, Numer. Linear Algebra Appl. 2009; 16:883-898
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890 V. KOSTIC, L. J. CVETKOVIC AND R. §. VARGA

Theorem 10
Let A, BeC™" with n22. Then, the following statements hold:

1. The generalized minimal Ger¥gorin set (A, B) is compact in € if and only if B is a
nonsingular H-matrix.

2. The generalized minimal GerSgorin set I'™(A, B) contains zero if and only if A is not a
nonsingular H-matrix.

3. If there exists i € N such that b;; =0, then ¢;; =0 if and only if I“‘m(A, By=C,

Let us now address the problem of computing and plotting the generalized minimal Gedgorin
set for a given matrix pair. First, we remark that, in the case of the original minimal Ger¥gorin set,
progress has recently been made in computing its tight approximation with an iterative approach
(see [7}). Here, we will develop an analogue of this, in the sense of our generalized minimal
GerSgorin set. Thus, we will need the necessary tools, derived from the Perron-Frobenius theory
of nonnegative matrices.

For a given matrix pencil A —zB e C"" and a given z € C, we define matrix the Q1= —{A —z B},
where the comparison matrix operator {-} is defined in (9). Defining 8(2) :=max{|a;; —zb;;|:i €N},
and putting P; := Q;+3(z}{, we obtain the nonnegative matrix P, which, by the Perron—Frobenius
theory of nonnegative matrices 5], possesses a real, nonnegative eigenvalue p(P;), called the
Perron root of P;.

Now, by setting v{(z) := p{P,) —(z),we have from Theorem C.2 in (1] that

v(z)=inf {max{(QzX)i/Xf}} ) (23)
x>0 | ieN
or equivalently,
v(@=inf Jmax | x7 Y bz —alx;— bz —ajil (24)
x>0 4§ ieN FeN\L)

Thus, the following characterization of the generalized minimal GerSgorin set holds.

Theorem 1]
Given any two matrices A, Be U™, with 122, then

zeT®(A, B) if and only if v(z)20 (25)

The proof of this theorem follows in the same way as in the proof of the Proposition 4.3 of [1],
which characterizes the minimal GerSgorin set of (13). In addition, following the argument of [7],
the real-valued complex function v is continuous, and the generalized minimal Ger§gorin set is a
closed set in the extended complex plain Co:=CU{oc), and we similarly obtain that

(1) v(z}=0 and

(i) there exists a sequence of complex

R . . 5
2€0I7(A, B) if and only if numbers {zJ.-}f,-""z1 such that lim z;=z (26)
joee
and v(z;)<0 for all j>1
Copyright 2009 John Wiley & Sons, Lid. Numer. Linear Algebra Appl. 2009; 16:853-898
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GERSGORIN-TYPE LOCALIZATIONS OF GENERALIZED EIGENVALUES 891

This brings us to notion of a star-shaped set, needed in the next result. A set S in C is said
to be a star-shaped with respect to a given point zq,_if for every z i.l:ll» S, the entire line segment
{azo+(1—2)z:0<a]) lies in §. W08 Do dibpadon  Ant- ToweR,

Theorem 12
For any two matrices A, BeC™", with n22, such that B is a nonsingular H-matrix, then

wapk /bri) 20 for each k€ N. Moreover, for each k € N and for each § with 0<0<2x, there exists

an 9, (6) 20 such that the entire complex interval [(ay /bkk)%—zew]fi (OH ) is contained in 4, B,

and, consequently, the set

2n . B (6)
U Fﬁ +re’3] @7
o= L bk 1520

is a subset of T'®

point akk/bkk .

(A, B}, which we call the star-shaped subset of I“m(A, B), with respect to the

Proof :
As B is a nonsingular H-matrix, then, for every ke N, by, #0, and, by putting z=ay /by in (24),
we obtain
apl areby;
v(ﬂ)ginf xk“l- —k-k——y——ak,- xj 20,
by x>0 jeNviky Pk L

Thus, ag /by lies in the set T (A, B). Now, for a fixed § in 0<0< 2, consider the ray [{ay; /bri) -+
1e'?], 120, Its starting point lies in I (A, B), which is, according to Theorem 10, a compact set
in C. Thus, there exists a point (au /b ) + 8, (0)e'®, which lies on the boundary of the ™ (4, B).
Taking the smallest g, (6) of such points fulfilis the conditions of the theorem. g

Now, for a fixed 8 with 0<0<27, it is interesting to note that if v(ag /bu) =0 and if 0, (=0,
then ag; /by actually lies on the boundary of I m{A, B). In addition, if 0;(#) =0 for each § with
0<0<2m, then agy /brk is a generalized eigenvalue of the pair (A, B). This brings us to

Theorem 13

Given two matrices A, B € C™", with n222, for which there exists a ke N such that by =0, then
for every sequence of complex numbers {2}72., such that |z — 00, as k — oo, there exists an 20
such that v(zz) ~> «, and, by our convention, we write v(0o0)={). Moreover, if A is a nonsingular
H-matrix, then, for each 6 with 0<O<2n, there exists a §,(8)>0 such that the whole complex

interval [g, (B}Cie-e—t]f_‘;o is contained in I““R{A, B}, and, consequently, the set
2 " " :
U [0 (0" +1172, (28)
f=:0

is a subset of I"m{A, B), which we will call a star-shaped subset of I” R (A, B) with respect to co.

Proof
The idea of this proof is the following. For any z#0 in ¢(A, B), then from (2) we have that
det(A—zB)=:0, from which it follows that det(B—(1/z)A)=0. This necessarily implies that

Copyright 2009 John Wikcy & Soss, Lid. Numer. Linear Algebra Appl. 2009, 16:883--898
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892 V. KOSTIC, L. J. CVETKOVIC AND R, . VARGA

1/zeo(B, A), which we can interpret as

I

B, A=
B A=
and similarly
1
R0 D) P —
™A, B)
Here, for an arbitrary set § of complex numbers (including infinity), i.e. §CCq., we define the
set 1/8 as
i I
—m=m{-ze§
S {z ‘ }
With this, for a ke N such that by, =0 and ag 70, we have that the star-shaped set of (27) for
the matrix pair (B, A), corresponding to the center by, /a, =0, transforms to the set (28), ]

3.2 Computing the generalized minimal Gerigorin set

Having the properties of the previous subsection, the problem of graphing the generatized minimal
GerSgorin set becomes the problem of graphing the subset of €, for which the fanction v(z) is
nonnegative. I order fo resolve this problem, we need to find a way to compute the value of the
function v(z), for different values of z. For the case when the concept of irreducibility (see [5]) is
involved, we have the following result.

Theorem 14
Given the matrices A, Be C"" with n22, let the matrix pencil A-—zB, at the point z&C, be
irreducible. Then, for each x>0 in R?, either

min{(Q,x);/x;} <v(z)<max{(Q,x}; /x;} (29)
ieN IEN
or
O, Xx=v{7}X. (30)

As (29) and (30} suggest, we can use the power method as a tool to compute the eigenvalue v(z)
in the following way. We start with the nonnegative matrix P, which we assume to be frreducible.
Then, either P, is primitive or it can be shifted to a primitive matrix P,+¢l, £>0, (see Section 2.2
of [8]). Thus, either way, we can apply power iterations to compute p{P;).

Starting with an x>0 in R”, the power iteration gives convergent upper and lower estimates
for p(P;), ie. if X := Pmx©@ for all m>1, then with x :m[xz(m},xé’"), o xNT e have that

5 D) Lt
ﬁzz?éi;{? { ;f"’) } Sp{P)< 1}3}3&{ ;i(m) } = (31)
for all m>1, and
im d=p(P)= lim 7, (32)
Copyright 2009 John Wiley & Sons, Lid. Numer. Linear Algebra Appl 2009; 16:883-898
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GERSGORIN-TYPE LOCALIZATIONS OF GENERALIZED EIGENVALUES 893
Thus,

A =32 KV K — 8(2)

It is important to say that, from (31), we do not need to find the value of v(z) with great accuracy,
and it is sufficient to iterate until either one of the next two conditions is fulfilled:

1. Aw>6(2), implying that v(z)>0 and, thus, z ¢ I“ER{A, B), or

2. m<8(2), implying that v(z)<0 and, thus, z€ Coo\ [®(A, B),

If neither one is fulfilled until we achieve a certain accuracy &>0, i.e. Ay, — J_,_?l <&, we conclude
that z fies in the e-neighborhood of a boundary point of (A, B,
So, the simplest way to plot ar approximation of the generalized minimal GerSgorin set T (A, B)

is to introduce the coarse grid, say n, xny, of the [~L, LPc C, for sufficiently large L>0. For
this grid, we will have nyn, complex nodes and, we determine, for each node, which category

each node belongs. Each of them will be either ‘colored’ to be in the I'® (4, B), if either > 6(2)
{case 1) is the case or A, — f“ﬂ <&, where ¢ represents the coarseness of the grid. If Ay <d(z)
(case 2) oceurs, the point is left ‘uncolored’, as it is in the exterior of the [ m(A, B).

Example 2
Let
I I ¢ 0 I 61 0
6 -1 1 0O 01 1 0
M[ = b Nl =
g 0 i 1 9 01 1 0.1
07 0 0 —i 0 0 01 1
(I 1 0 03 I 1 00
6 -1 05 0 0 1 10
My = . Moo=
0 i 1 0O 1 1
I 0 —i 05 0 0 1
(G.S 0 0 03 11 0 1
0 05 61 ¢ 0 -1 1 0
My = and Ni=
6 0 07 01 0 0 | 1

2 0 0 07

o]

0 -

In Figure 2, a few examples of generalized minimal Gerigorin sets are plotted, using this simple
approach. From the top left corner to the right bottom corner, the inclusion regions ™ (M, N,

I“m(Mz, N3), " (M3, N3) and T% (N3, M) are colored, and the actual generalized eigenvalues
are marked by liitle circles.

Copyright 2009 John Wiley & Sons, Lid. Numer. Linear Algebra Appl. 2009, 16:833-898
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Figure 2. Examples of the generalized minimal Geriigorin sets of 4x4 matrices,

Another way to plot the generalized minimal GerSgorin set is to compute its approximation.
A way to do it is a modification of the approach presented in [7]. Here, this approach could be
useful when H-matrices are involved, as the result of Theorem 12 gives the main motivation.

Namely, we are interested in determining the star-shaped subsets of the generalized minimal
GerSgorin set. Thus, assuming that B is a nonsingular H-matrix and that A —zB is an irreducible
matrix for each z&C, we start by fixing an index k€N, and the corresponding center ay [brk
of the star-shaped subset of (27). For each 6¢[0,2x], since v(au /B )=>0, we can, with a few
trial steps, find A, A>0, such that v({(a/bri) +A)<0. Then, we can apply the bisection search
to the interval [aye /bik, (@er/bii) + Al to determine §, (). As a result, we have approximated the
boundary point {ag/bri) + 8y (Be'? of the generalized minimal Gerigorin set.

Now, moving the angles {0, 2n], we obtain the approximation of the set of (27).

How this is used in graphing the generatized minimal Ger¥gorin set for the matrix pair of
Example 1, can be seen in Figure 3, where the center a;, /by =2 is marked with a small square, the
actual generalized eigenvalues are again marked by little circles, and each of the obtained Approx-
imations of the boundary points is marked with a dot. In this example, it was sufficient to consider
only one star-shaped subset of T (A, B), but this is not always the case, as Figure 2 implies,

Copyright 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 16:883-898
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Figure 3. Approximation of the generalized minimal GerSgorin set of Example 1.

3.3. The Generalized minimal GerSgorin set is, in a sense, minimal

As the generalized minimal Gesgorin set is obtained as a intersection of all ‘weighted’ generalized
- GerSgorin sets, it is, in a sense, the minimal area that contains the generalized spectrum. On the
other hand, we see from (17) and (I8) that the generalized GerSgorin set is defined uniquely from
the following data: |g; it 1bijl and a;;/b;j, when b; i #0, where i, j € N. Thus, for every matrix
pair that leaves this data set unchanged, its generalized spectrum will be included in the same
generalized GerSgorin set, and consequently in the generalized minimal Gersgorin set.

What we are going to show here is that the generalized minimal Gerdgorin set is, in a way,
the best possible localization area for such matrix pairs. We start by introducing the equimodular
set of matrix pairs (A, B) and the extended equimodular set Q(A, B), as treated similarly in
{1, Chapter 4].

H

Q(A,B)::{(A,é):|a,-jgmga,»‘,g,|5t-j;m1b,-j|andifbfﬁé{), i z',jeN} (33)

Q

J 1

=

i

et}

. S i ' Goa
Q(A,B>:={(A,B):a.-jisiaul,b,jﬁézbf,»sandxfbu#o. = ;‘% z,JeNl (34)
ij ti

Now, as is natural, we take the spectrum of these sets to be the union of all the spectra of their
elements:

d@AB):= U oA B ad o@A.B)= ] oA, B (35)
(A, B)e(}(A,B) (A Belia B

It is evident from their definitions that
F(QUA, B)) So(QA, BYSTH (A, B) (36)
How tight these inclusions are, is described by the next two theorems.

Theorem 15
For any pair of matrices (A, B) from "7 and given an arbitrary ze C such that v(z), of (23),
satisfies v(z)=0, there exists a matrix pair (4, B) e Q(A, B) such that 7 is a generalized eigenvalue
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of the matrix pair {A", B). Thus, the following inclusions hold:

STM(A, BYS oA, BY Ca(Q(A, B STN(A, B) (37
Proof
Let e be such that v(z) =0. Then, from the facts leading to (24), we have that there exists a
nonzero y=[y1, va, ...,y,,]T, with y20, such that Q.y =0, or, equivalently,

Y. ibgjz—akilyj=|buz—awly forallkeN
JENAEY

which, according to (17) and (i18), for every ke N can be written as

Qi Ak
z-gi_ blyi+ 22 lagly;= Z—b—; ibulyy when ke f(k) (38)
JEBONK) kj jeRuonik; ki
or
ag; .
3 z_.l;i. brilyi+ 3. lajlyj=lawlyx  otherwises (3%
Jeptk) kj JERUN R

Now, let the real numbers {¢, j}ﬁ‘ j=1 satisfy

_ (Z _ E{fz) i (40)
by

ay
=2
by

for each ke N and each j e (k). Having these numbers, we define the matrices /i:[&kj} and
B ={Ekj], both in C"", by means of

agby 1bjle ¥, jeBk)
= Y - (1)
Kl jepik)
and
. byt e Btk
{_ 1 jeB )

b=
o, jeBm

where j, ke N. After a closer look, we can see that (fi, B)e A, B), so that from (38) and (39)
respectively, it follows that

agj \ » - gk \ »
> (Z—..—j)bkjyj-f- 3 akjyj=(z~«}:——)bkkyk when k< (k)
JjeBun (k) 5

bij JeBoniny ik
and
ij \ » . , .
3 obze==bgyi+ 3. dyy;j=dmye otherwise
jehv \ i JERNK]
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DOL 10.1002/n8



GERSGORIN-TYPE LOCALIZATIONS OF GENERALIZED EIGENVALUES 897

This leads us to the conclnsjorl that (A—zB)y=0, ie. Ay=zBy. Thus, z is a {generalized)
eigenvalue of a matrix pair (A, B), and consequently, from (35), z ea(QA, BY). "

As the first inequalities in (36) and (37) turn out to be equalities for the usual minimal Ger§gorin
sets (see Theorem 4.5 of [1]), the same is true here.

Theorem 16
For any pair of matrices (4, B) from C™",

(@A, B =T%(A, B) (43)

Proof

Let z be any point of I"‘m(A, B). Then, v(z)20, and, from (23), we have that there exists a nonzero
vector y € R?, with y 20, such that 0,y == v(z}y. Writing the last expression by components, we have

Y tbyz—aily; = bz —agd +v(z)) v for all ke N, 44y ©

FEN\(K]

Now, we define real numbers {Skli_; as

2o jenv bz —aglyj — vy
LA R o d —=- i 3 |byz—aijly;>0
Sy = ZjeN\{kH Jej 2 igj 1Y JeN\[k) (43)

| if Z Ebka-“akjEyiju
JeN\{k]

Obviously, from (44}, (45) and the fact that v(z)y; 20 for each k € N, it follows that 0<.d, <1, and
WE Can Comstruct matrices A = {ajx)and B=1[b;1such that (A, B)c XA, B), in the following way:

for all keN, ap, =ay, and bkk:bkk, while for every for Jje N\ k], Ezkj mékakj and Bkj mékbkj.
Now, it is readily verified that

Wk 2 — il i = 1bakz — e |y = 2 lbgz—aglyi—v@w=0 T Ibyz-agly;
JeN\Ik) JeN\{k}

= Y ibyz—ayly; forallke,
JENN)

which is the same as the starting point of the proof of Theorem 15. As before, we can proceed and
can obtain the pair of matrices (A, B) €Q(A, B), such that z € a{A, B}. Now, it similarly follows
that z€Q(A, B), which completes the proof. .
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