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§ 1. Introduction

The purpose of this paper is to investigate block iterative methods for cycli-
cally reduced matrix equations. To first describe the basis of the cyclic reduction
methods, consider the partitioned system of # linear equations in # unknowns

(1.1) l I, _B1,2] . [xl} - V?l
—Byy Iy, X2 ky
where I, ; and I, , are respectively 7 x 7 and (n— 7) X (n—7) identity matrices,

1=7<n. We assume that the X » matrix of (1.1) is non-singular. Since the
7. X n matrix of (1.1) can be written as — B where

0 By,
By, 0]’

H

(1.2) B=

then B is weakly cyclic of index 2 [15, p- 39], and thus if y is a non-zero eigenvalue
of B, then so is —u [15, p. 40]. Hence, the non-singularity of /— B implies the
non-singularity of 7+ B. Multiplying (1 1) on the left by the non-singular matrix
I+ B yields, in partitioned form, the matrix equation

I1,1 ‘*B1,2Bz,1 0
13) [ | |
0 l 12,2_32,1 B1,2

X1

KXo

— [k1+Bl,2 kz]
byt 32,1 ky '

and we see that the matrix of (1.3) is completely reducible [5; 15, p. 43], i.e., (1.3)
can be written as the pair of wncoupled matrix equations
(1.4) (11,1_ B1,2 Bz,1) =k B1,2 ks,
(1.5) (12,2’“ Bz,1 Bl,2) x22k2+Bz,1 ky,
in the unknowns x, and %5, where the matrices (I1,1— Bys By ;) and (I 22—
By 1 B, ;) are non-singular. Hence, if we can solve for (or approximate closely) the

unique vector x;, in the lower order matrix equation of (1.4), then x, can be
explicitly formed from (1.1) by means of

(1.6) Xo= B, 1 %+ k,,
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thus eliminating the need to solve fwo lower order matrix equations. We have
thus reduced the solution of the matrix equation (1.1) of order # to the solution of a
single lower order matrix equation (1.4) of order 7, 1 <7 <u. For the numerical
solution of second-order elliptic partial differential equations with large numbers of
mesh points, typical of such problems arising from practical settings, the order of
the reduced matrix equation of (1.4) is approximately half that of (1.1); conse-
quently, such reductions can be important in practical applications.

There has been a great deal of effort expended in making efficient the iterative
solution of the original matrix equation (1.1). The basic successive overrelaxation
iterative method of YouNG [17] and FRANKEL [4] and its newer variant, the cyclic
Chebyshev semi-iterative method [6], have both been theoretically and practi-
cally coupled successfully with the use of block or multi-line techniques, con-
sidered in [1, 3, 8, 11, 13, 16]. The first purpose of this paper is to theoretically
couple the use of these block or multi-line techniques to the iterative solution of
the cyclically reduced matrix equation (1.4), and to determine conditions which
insure that these block techniques, applied to the cyclically reduced matrix
problem of (1.4), are asymptotically iteratively faster than the corresponding
block techniques applied to the original matrix problem of (1.1). The second
purpose of this paper is to present the results of numerical experiments which
indicate the practicality and utility of these newer iterative methods in solving
second order elliptic difference equations.

The basic idea for this reduction of the order of the matrix equation of (1.1) to
that of (1.4) might be attributed to FROBENIUS [6], who in essence proved that
any weakly cyclic matrix B of index p =2 is such that B? is completely reducible.
(See also [15, p. 43].) SCHRODER [14] was apparently the first to couple the
weakly cyclic nature of B with the complete reducibility of B2 for Laplace-type
elliptic difference equations. While SCHRODER suggested that cyclic reduction
might improve rates of convergence for the point JacoBI and point GaufB-Seidel
iterative methods, this was actually proved in [15, p. 157] for the matrix B non-
negative, symmetric, and convergent, by applying the regular splitting theory of
matrices [16]. We shall first extend this regular splitting theory so as to be able to
apply it in the comparison of block iterative techniques applied to (1.1) and (1.4).

§ 2. Induced Regular Splittings for Cyclically Reduced Matrices

We begin by recalling [15, p. 87] that M — N is a splitting of the n X n complex
matrix 4 into two # X # matrices M and N if A=M— N and M is non-singular.
This splitting of the matrix 4 defines a natural iterative method

M =Nx® Lk  n>o0,
or equivalently
(2.1) A= MANKM L M1k 40,
for the iterative solution of the matrix problem

(2.2) Ax=k.

Numer. Math. Bd. 6 8



108 Louts A. HaceEMAN and RICHARD S. VARGA:

The process (2.1) is convergent [9] for any initial vector %% if and only if the
spectral radius* of the iteration matrix M~1N is less than unity: o (M~1N)<1.
If the splitting M — N is such that the matrices N and M~! have only non-negative
real entries (written N=0, M~1=0), then M — N is called a regular splitiing of
A [16, 15, p. 88]. While an arbitrary splitting M — N of 4 does not in general
give rise to a convergent iterative method (2.1), it has been shown [16, 15, p. 89]
that regular splittings on the other hand do if A71=0. We formally state this
result as

Theorem A. If M — N is a regular splitting of the # X #» matrix 4, and 471 =0,
then

(2:3) o(M-1N) =21

oA Ny <

The comparison of spectral radii of iteration matrices arising from different
regular splittings can be made by means of the following known result [16; 15,
p- 90]:

Theorem B. Let M, — N, and M,— N, be two regular splittings of 4, where 471
has only positive real entries (written 4-1>0). If0< N, < N,, equality excluded **,
then

(2.4) 0<o(M{*N) <o (Mz*Ny)<1.

The above result has been used [16] to compare particular block (or multi-line)
iterative methods applied to a fixed matrix equation. Now, we seek to compare
a particular block iterative method applied to the matrix equation of order »

I 1,1 T B 1,2

x k
29 EER R M
( “Bz,l I2,2 Ko ky

with the equivalent or induced block iterative technique applied to its cyclically
reduced matrix equation (1.4) of order 7:

(2.6) (11,1”“ Bl, 2 B2,1) %=k + B1,2 k.

We shall make this comparison by means of extensions of Theorems A and B.

Let M — N be a regular splitting of the »# X # matrix A =1I1— B of (2.5), where
the # X » matrices B and N have the weakly cyclic of index 2 form:

0 B 0 N
2. B = 1,2 — 1,2 .
o1 BN O Y

By, ©
We assume that N < B and that B is irreducible *** and convergent, i.e., o (B) <1.

* The spectral radius ¢ (B) of an arbitrary » X #» matrix B with eigenvalues 4, is

defined as p (B) = Igntaécnl Al

** By this we mean that neither N, nor N, — N, is the null matrix.
**% An 5 X # matrix Sis irveducible [15, p. 20] if there exists no » X »n permuation

matrix P such that PSPT = Su1 5y, 2], where the diagonal submatrices are square
and non-void.

2,2
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We now define the 7 X # matrices 4 , M , and N as

A

M= 11,1 - (B1,2— le) (Bz,1 - N2,1) ,
(28) N=B, By — (By,a— Ny o) (Byy — Ny i) =B, , N1+ Ny g By — N,y N 5,
A= —-N=1I,—B, ,B,,.
Note that the matrix M=A+N=I—(B—N) is necessarily non-singular by
hypothesm and since B— N is of the Weakly cyclic of index 2 form (2.7), it follows
that M is also non-singular. Thus, I — Nisatleasta sphttmg of the 7 X » matrix A.
A stronger result, analogous to Theorem A, is given in
Theorem 1. Let M — N be a regular splitting of the % x # matrix A =1— B,
where the matrices B and N have the form (2.7), and B is irreducible and conver-
gent. If N< B, then M— N is a regular splitting of the » X » matrix 4 =1 ,—
B, » B, 1, where M and N are defined in (2.8), and

(2.9) o (M1 N)< o(M-1 N)<1.
If, moreover, N, , NV ; has at least one positive entry, then
(2.10) o1 Ny< o (M- N)<1.

Proof. Using a result of FROBENIUS (see [15, p. 43]) the non-negative, irre-
ducible, and convergent character of B enables us to state that the 7 x » matrix
B, 5 B,y is also non-negative, irreducible and convergent, and thus 0(By, s By )=
0 (B) <1. Next, since N < B by hypothesis, then

Og(Bl 2—Zvl 2) (B2 1_N2 l)gBl 2 BZ 1

which shows that the 7 X 7 matrix N of (2.8) is non-negative. From the inequal-
ities above, it follows from the Perron-Frobenius theory of non-negative matrices
that o{(B,, 2= Nyo) (By1— Ny, }<g (By,2 By1)<1, and from this, we conclude
[15, p. 83] that M-1zo. Thus, M—Nis a regular splitting of the 7 X » matrix A4,
which proves the first part of the theorem.

We now show that the inequality of (2.10) is valid if N, o N, ; has at least one
positive entry ; from this, the inequality of (2.9) follows from a continuity argument.
We first point out that a strengthened form of the proof above showing that

M-1=0 also shows that 4~ 1>0and A-1>0 [15, p. 84]. Hence, from the strict
monotonicity of x/(1+ ) for ¥=0 and the expression (2.3) of Theorem A, it
follows that

(2.11) oM N)< (M1 N) & o(Ad1 N)< (41 N).

Consider now the % X # matrix %l + B, and the 7 X  matrix i\} + B, B,y asa

function of A>0. Since B and B, » B, are non-negative and irreducible, and

N >O with IV, , N, ; not the null matrix, then the spectral radii g{ + B} and

{ + B, 5 By 1} of these matrices are strictly decreasing functions [2] of 2> 0. As
8*
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is easily verified [7], there exists positive numbers x4 and » such that

(2.12) Q{%+B}=1 and p=0(41N)>0,
(2.13) Q{%+31,232,1}=1 and y=(A*N,)>0.

Now, since the # X #» matrices B and N both have the form (2.7), so does the matrix
B+ % For any 4 >0, we verify directly from (2.8) that

o+ Fefmemas £ 580
>0{B1,2B2,1+7N}~

The last inequality in (2.14) follows because N, , N, ; is a non-negative matrix
with at least one positive entry. Hence, if welet A=y of (2.12), the above inequality
yields

(2.14)

N
1 >Q{B1,2 Bs +7}

The strictly decreasing nature of p {Bl, 2 By 1+ %} as a function of 4> 0, coupled

with (2.13), finally gives us that v:g(/i“ll\Af)<Q(A‘1N)=/L, which from (2.11)
is equivalent to (2.10), completing the proof.

With the definitions of (2.8), we shall call M— N the induced regular splitting
of A derived from the regular splitting M — N of A. These definitions of induced
splittings of A were chosen so that ¢-line iterative methods arising from the
5-point finite difference approximations to Laplace-type differential equations
induce #-line iterative methods for the reduced matrix equation (2.6). This will
be described in more detail in § 4.

In analogy to Theorem B, we now compare the spectral radii of fwo induced
regular splittings of A.

Theorem 2. Let M;—N, and M,—N, be two regular splittings of the # X »
matrix 4 =1— B, where the matrices B, N;, and N, have the form (2 7) and Bis
irreducible and convergent. If 0N, <N,< B, and M N and M N2 are the
induced regular splittings of the » X # matrix A, then

(2.15) 0= (M N) <o (M5 Ny <1.
If, moreover, §N §ﬁ2, equality excluded, then
(2.16) 0<o (M2 N,) < o (Mz* Ny)<1.

Proof. From the proof of Theorem 1, we have that 121”1> 0. Thus, the inequali-
ties of (2.16) follow immediately from Theorem B, while those of (2.15) follow from
(2.16) by an obvious continuity argument.

In the spirit of SCHRODER’S original observation [14] and its subsequent
development in [15, p. 157], we can now define new splittings of the reduced 7 X 7
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matrix 4 which lead to improved iterative methods for the cyclically reduced

matrix problem of (2.6). If we let K be the non-negative diagonal 7 X 7 matrix
defined by

(2.17) K=diag (B1,2 B2,1) — diag {(B1,2“" Nl 2) (32,1”‘ N2,1)}:
then, in analogy to the definitions of (2.8), define
(2.18) M=i—-K, N=N-K.

It is not difficult to verify, following the proof of Theorem 1, that M—Nisa
regular sphttmg of the reduced 7 X » matrix A. But, since M—Nisalsoa regular
splitting of A, and N <N by construction, we immediately have from Theorem B
the following corollary of Theorem 1.

Corollary 1. Let M — N be a regular splitting of the # X # matrix A=1— B,
where the matrices B and N have the form (2.7), and B is irreducible and conver-
gent. If N< B, then

(2.19) o (M-1N)< o (M-1N)<1.
If morever, the matrix K of (2.18) has at least one diagonal entry positive, then
(2.20) o (BI-1N) < o (M1N)<1.

For additional results which, in particular, compare the GauB-Seidel method
applied to the original matrix problem (1.1) with various iterative methods
applied to the cyclically reduced matrix problem (2.6), the reader is referred to [7].

In the practical applications of §4, only the improved induced splittings

M— N of A will be discussed, since they give rise to iterative methods which are
computationally more efficient as well as more rapidly convergent. For brevity,
these splittings will henceforth be called simply induced regular splittings.

§ 3. The Block Successive Overrelaxation Iterative Method

Let the matrix problem 4 x=F% be written in the partitioned form

Ay Ay Ay, a1 ky

(3.1) Agy Agoe Ay | | % | _ ko
: Nl : :

Ayt Apo A Xy R

where the diagonal submatrices 4; ; are square and non-singular. If we let

A, 0 .. 0 0 0 ..0
p=| 0 ez 0| pg p=_ |4 O O}

: AN : N\

0 0 ..dy, Ay Ay s

then the matrix 4 can be expressed as
3.2) A=D—(L+U),
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where U=D—L— A. Because of the non-singularity of the matrices 4; ;, D is
also non-singular, and hence, letting M =D and N =L+ U, we see that (3.2) is a
splitting of A.

The block successive overrelaxation method [1] associated with the decompo-
sition (3.2) of 4 is then defined to be

(3.3) Dl = o {La D | Uyl | k} 4+ (1—w) D™,
where the parameter w is called the relaxation factor. This equation can also be
written as
(3.4) x(n+1):£wx(”) +oD—wl) 1k,
where &,= (D—w L) {o U+ (1—w) D} denotes the block successive overrelaxation
iteration matyix.

In what follows, we shall employ [17] the asymptotic rate of convergence R, (2,,)

Roo (gw) =—1n 4 (Qw) )

as a measure of the effectiveness * of the iterative process (3.4). Upon defining the
block Jacobi matrix J associated with the decomposition (3.2) of 4 as

(3-5) J=D"Y(L+U),

we obtain the following well-known relationship [1; 15, p. 111; 17] between

Ry (L) and g(]).

Theorem C. Let 4 be a 2-cyclic matrix which is consistently ordered [15,
p- 101]. If the eigenvalues of the block Jacobi matrix J arereal and less than unity
in modulus and if

b

6 = 2
(3.6) Wy Vi
then

Ry (o) >R, (L) if wz=w,;
R, (Qo)=—1n(w,—1).
Moreover, as o (J)—1—, then

(3-8) Ry (o) ~212 [Ry ().

Thus, if the conditions of Theorem C are satisfied, the asymptotic rate of
convergence of the block successive overrelaxation method can be determined
directly from the spectral radius of the associated block Jacobi matrix. If several
block Jacobi splittings D— (L4 U) in (3.2), arising from different partitionings
of A in (3.1), are all regular splittings of A, then the comparison theorems of § 2

can be used to compare the asymptotic convergence rates of the associated block
successive overrelaxation methods.

(3.7)

§ 4. Applications of Cyclically Reduced Iterative Methods

We now apply cyclically reduced iterative methods to the numerical solution
of the following second-order self-adjoint elliptic partial differential equation in

* If Cis a convergent matrix, then the number of iterations required to reduce the
initial error of the iterative method #(®#+1) — C zx(#) +¢ by a certain factor is roughly
inversely proportional to Ry, (C). See, for example, [10].
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two space variables
(41) - (P(x: y) ux)x'— (Q(x: y) %y)y+ O'(%, y) M(xr y)—_“f(x: y):(x: y) €R,

defined in an open, bounded, and connected set R in the plane. For simplicity,
we assume Dirichlet boundary conditions on I', the boundary of R:

(4.2) u(x, y)=y (), (% el

and that P, (, o, and f are given continuous functions in R, the closure of R, with

(4.3) P(x,9)>0, Q% ¥)>0, o(x =0, (v y)ck.

The application of cyclically reduced iterative methods to the numerical solution
of (4.1) with more general mixed boundary conditions and discontinuous coefficients
P, Q, 0, and { can similarly be made.

We now impose a non-uniform (in each coordinate direction) spatial mesh on R.
Following the discretization of (4.1) — (4.2) as given in [I5, p. 183], a five-point
finite difference approximation of (4.1) based on
integration leads to a system of # linear equations yt
in # unknowns of the form

(4.4) Sw=g,

where the # X% matrix S is a real symmetric
irreducible Stieltjes matrix [19, p. 187]. It is geo-
metrically evident that the mesh points of the
discrete problem can be divided into two sets, one
set consisting of square (or black) mesh points, the
other consisting of circle (or 7ed) mesh points, as shown in Fig. 1 below. The nature
of the five-point approximation of (4.1) is such that each unknown w; of (4.4),
corresponding to an approximation of « (x, v) at a mesh point of one set, is coupled
to at most four other w;"s, which are approximations to % (x, y) at mesh points of
the other set. Because of this, there exists orderings for the mesh points of the
discrete problem (see, for example, Fig. 1) such that the matrix S of (4.4) can be
written in partitioned form as

(4.5)

Fig. 1

’

S:‘ Dl _Bl
—Bf D,

where D, and D, are positive # X7 and (n—7) X (n—7) diagonal matrices, respec-
tively. We now rewrite the matrix equation (4.4) as

I,, —B X k
(46) [ 1,1 1 . [ 1] — 11 ,
—Bf Iy X ko
or equivalently,
4.7) Ax=(I—DB) x=k,

where I, ; and I, , are respectively 77 and (n—7) X (n—7) identity matrices,
and
(4.8) DB, D;t*=B,; x=Diw;, k=D%g; i=1,2.
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It is clear that the # X # matrix B of (4.7) is weakly cyclic of index 2 (cf. (1.2);
moreover, since the matrix S of (4.4) is an irreducible Stieltjes matrix, it follows
that B is convergent, as well as irreducible and non-negative (B=0). Thus, as in
§ 1, we can cyclically reduce the % X % matrix equation (4.7) to the lower order
matrix equation

(4.9) (11,1_ B, B{) =Pk + By %,

where A =0,—B Bl is an » x » matrix. Because of our use of five point finite
difference approximations, it follows that the 7 X ¥ matrix ([1,1—B1 BIT ) corre-
sponds to a 9-point approximation. Fig. 1 indicates the typical coupling of a
(shaded) circle mesh point to its eight (darkened) circle mesh points. The non-zero
entries of the reduced matrix 4 are easily deduced from those of 4 by graphical
considerations. For details, see [7]. Summarizing, we have shown that the
discrete five-point finite difference approximations of (4.1) — (4.2) lead to matrix
equations of the form (4.7), which can be cyclically reduced to matrix equations of
the form (4.9).

We now apply the results of §2 on induced regular splittings to the matrix
equation of (4.9). First, consider the partitioning of the original 7 x % Stieltjes
matrix S of (4.5) which couples into blocks the mesh points of ¢ successive hori-
zontal mesh lines, for any /=1. With (4.8), this partitioning defines in a straight-
forward way (cf. § 3) an associated block Jacobi splitting M, — N, for the related
matrix 4 of (4.7); moreover, using the Stieltjes property of S, this splitting is
necessarily a regular splitting [15, p. 90] of 4, and the associated iterative method,
which we call the /-line block Jacobi method

(4.10) M, x" V=N, x" L p
is necessarily convergent.
From the results of § 2, there is associated with the regular splitting M, — N,

of A the induced regular splitting le{ - Z\~7[ of the reduced 7 X » matrix 4. Moreover,
from Theorem 1 and Corollary 1, we have that

(4.11) o N} < oM PN} <1,
Stemming from the five-point finite difference approximations used to derive
the matrix problem of (4.4), it is not difficult to verify (cf. [7]) that the induced

regular splitting Jll,—ﬁl of the 7 X 7 matrix 4 corresponds to a partitioning of the

matrix 4 which analogously couples in blocks the circle mesh points of £ successive
horizontal mesh lines. Moreover, the iteration matrix deduced from the regular

splitting Z\% Hﬁ[ of 4 is again just the /-line block Jacobi matrix of the reduced
matrix equation of (4.9). Because of this, we now use the shorter notation & JO =

(M,)“12\~7g and J® = M; N, to denote the block Jacobi iteration matrices for these
related iterative methods. Thus, (4.11) becomes

eFJ) =o(J) <1.

Using the stronger form (2.10) of Theorem 1, which is always applicable when the
total number of horizontal mesh lines interior to R is greater than #, gives us

(4.12) e(*J9) <o (J9) <1.
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To obtain a related inequality between the asymptotic rates of convergence of
the associated block successive overrelaxation methods, we simply apply Theo-
rem C. However, it is necessary to assume now that /=2, since it is easily shown

that the matrix 4 is not a 2-cyclic matrix for 1-line horizontal mesh line parti-
tionings. The result then is

(4.13) R, (¥) <R, (), ¢=2,

which compares the asymptotic convergence rates of the block successive over-
relaxation iterative methods (with optimum relaxation factors) applied both
to the matrix equation (4.7) and to its associated reduced matrix equation (4.9).
The main conclusions to be drawn here is that the #-line block successive over-
relaxation iterative method (with optimum relaxation factor) applied to the
cyclically reduced matrix equation (4.9) is asymptotically a faster iterative
method than the #-line block successive overrelaxation iterative (with optimum
relaxation factor) applied to the matrix equation (4.7), independent of the par-
ticular non-uniform mesh used on R.

Unfortunately, the above application of the results of § 2, while showing the
superiority of accelerated iteration methods for the reduced matrix problem, does
not give any estimate of the precise value of the ratio of asymptotic rates of
convergence in (4.13) in the general case. If we confine our attention now to the
model problem, i.e., the solution of the Dirichlet problem in a square domain of side

7, with a uniform mesh A=Ax=Ay= % in each coordinate direction, the methods

of [16, 7] based on regular splittings of matrices could be used to estimate their
ratio for small % (i.e., ~—0). However, PARTER [11, 12], by means of a different

analysis, has shown the following exact asymptotic behavior:
Oy 1 — 272,
(4.14) 915] l,)
o*J)~1—4Lh2,  h—0, (=2,

Consequently, from (3.8) we obtain

(4.15) R, (W) ~2V)2¢h, and R, (F&N~2)Elh,  h—>o0,
so that (4.13) becomes
(4.16) R, (¥ ~VER, (YD), h—o0, (=2,

Actually, Parter’s analysis yields asymptotic results like those of (4.14) for
somewhat more general problems than the model problem, but in any event, his
results compliment what might be called the discrete results such as (4.13) which
hold for still more general problems.

It is also interesting to mention that PARTER [12] considers the partitioning of
the reduced matrix 4 which couples into blocks the circle mesh points of # suc-
cessive diagonal mesh lines (cf. Fig. 1). This partitioning of 4 is a regular splitting

of A, but it is not an induced regular splitting of A in the sense of § 2. For the
associated block Jacobi iterative method, PARTER gives the asymptotic result

(4.17) o(RjEdiael 1 2/p2 -0,
which compares favorably with (4.14).
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Asin [16], the asymptotic rate of convergence of an iterative method must, for
practical reasons, be considered i conjunction with the arithmetic requirements of
the method. To this end, we define Ry (C), the effective rate of convergence of a
convergent matrix C, as

(4.18)

where M(C) is the average number of multiplications required per mesh point to
carry out one complete iteration of the associated iterative method*. Since
actual time spent on a computer performing iterations is roughly inversely pro-
portional to the effective rate of convergence, we shall use the effective rate of
convergence as a basts for comparison of the various iteration methods introduced.

Table 1

£ Ro(8) | R(e) | R (") e ("ef)) | Ra ("2 | Ry ("08))
s ] /64

2 V16 1 667 h vg.h 1.026 & V32 h 11314

31 Vean 6397 V32n 1.170 V48 & 1.260 h

4 V32h 5957 ]/-%ih 1.188 % V64 1.280 %
— 160

51 Vaon 554 _3_h 1.159 % V80 4 1.260

The following table, Table 1, gives the asymptotic and effective rates of con-
vergence for the various methods considered in the numerical solution of five-
point difference approximations of the model Dirichlet problem in a square domain
of side 7z with a small uniform mesh spacing %; the asymptotic rates of convergence
are computed using (4.14) and (4.17). For comparison with the line methods
given in Table 1, the asymptotic and effective rates of convergence for the point
successive overrelaxation method are, respectively, 2% and 0.4 4.

The arithmetic requirements of S}Efz s RS&Q and Rszﬁﬁ;,diag) are easily seen to increase
linearly with 7. On the other hand, from (4.15), the asymptotic rates of convergence
of these methods for the model problem are proportional to }/7 for small 4. Thus,
we see from Table 1 that Ry (20)) is maximized for /=2, R, (*Q{)) is maximized
for /=4, and Ry (Rﬁgﬁ’,;diag> is maximized for /=4. It should be emphasized that
the results of Table 1 were obtained under the assumption of small uniform mesh
spacings % for the model problem. For problems with discontinuous coefficients
P, Q, and ¢ and general non-uniform mesh spacings, it is not possible to directly
compare a/l the different iterative methods given in Table 1. Nevertheless, even
for these more general problems, we have shown that

Ry (")) > Ry (&), 1=2,
if the number of horizontal mesh lines are greater than /.

* The additional work required in passing from the original matrix equation of
(4.4) to the reduced matrix equation of (4.9) and back again through (4.8) and (1.6)
is neglected in the results given here. Generally, this additional work is about equi-
valent to the work required to perform two iterations on the original system. For more
details, see [7].
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§ 5. Numerical Results

We now give some results of numerical experiments which directly compare
the 2-line cyclic Chebyshev semi-iterative method [6] applied to (4.4) with 2- and
3-line cyclic Chebyshev semi-iterative method applied to the cyclically reduced
equation of (4.9). We have chosen to use the newer variant, viz. the cyclic Cheby-
shev semi-iterative method, of the successive overrelaxation iterative method
because of its superior error norm behavior for smaller number of iterations. Its
asymptotic rate of convergence is the same as that of the successive overrelaxa-
tion method [6], so that the results of (4.13) and Table 1 apply equally well to
this newer variant.

The programs, which differed only in the method of solution, were written
for the Philco-2000 digital computer. We shall refer to them as:

Program 1 Uses the 2-line cyclic Chebyshev method applied to the original

system.

Program 2 Uses the 2-line cyclic Chebyshev method applied to the cyclically

reduced system.

Program 3 Uses the 3-line cyclic Chebyshev method applied to the cyclically

reduced system.

These programs were applied to the numerical solution of (4.1), where the
fuctions P= (), and o were chosen to be constant in each subregion R; (cf. Fig. 2),
and the region R and its boundary I" take the various forms of Fig. 2, along with

Problem A p=0
Region 1
e | 95 R |geo
P=Q | 1.0
(o] 0.0 @=0
Uniform Mesh: 2304 mesh points
699_
Problem B 3;—0
Region 1 2 3 4 /;4
— 3 I~
0 =0
P=Q 50 | 4.0 | 9.0 | 1.0 14 ke ?
¢ 00 | 0.0 | 00| 0.0 L
9 =0
<
Non-uniform Mesh: 2304 mesh points
0
Problem C 5e=0
Region 1 2 >
7
S~
P=Q | 20 500.0 9p_] v 9%_,
o] .05 .05 ;;E ﬁg
99,
6‘y=0

Non-uniform Mesh: 576 mesh points
Fig. 2
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the various prescribed boundary conditions. In each problem, we assumed that
/(x,¥)=01in (4.1), so that the unique solution of each discrete problem is the
null vector. All components of the initial vector were taken to be 103, and all
iterations were continued until the maximum vector component was less than
107%. The results are given in Tables 2 and 3. For a more complete description of
the numerical results, see [7].

Table 2
Iteration routine
Program No.
Time Iterations

1 .0346 61

2 .0194 52 Problem A

3 .0161 43

1 .0957 169

2 .0537 145 Problem B

3 .0429 116

1 .1016 792

2 .0575 681 Problem C

3 .0467 554

Table 3
No. of iterations ratio Iteration time ratio
Problem Program 1 Program 1 Program 1 Program 1
Program 2 | Program 3 Program 2 Program 3

A 1.173 1.419 1.784 2.149
B 1.166 1.457 1.782 2.231
C 1.163 1.430 1.767 2.176

We remark that the ratios given in Table 3 agree quite well with the corre-
sponding ratios determined from Table 1.
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