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§ 1. Introduction
Let 4 =(a; ;) be afixed n X n complex matrix, and let X () = diag (x;, %,..., %,),
where x,>0, 1=¢=n. Upon forming the matrix X (x)4 X(x), the radii 4, (x)
of the Gerschgorin disks [z—a; ;| =<A,(x), determined from row sums of
X1(x) A X(x), are given by

(1.1) /li(a:):<2 [aif[x])/xi, 1< <n.
o 14
i /

Further, let

(1.2) dy ;= |a e —a; |, 1=7, k=n.

In analogy to [4], we make the following definition.
Definition 1. Let B, be the set of all vectors &> 0 such that

(1.3) dy j—A;j(®) —Ay(e) =0 for all j==rk.

It B, is non-null, then the matrix 4 admits, under diagonal similarity trans-
formations, an isolated k-th Gerschgorin disk.

Assuming there exists an a,cB, for which strict inequality is valid in (1.3)
for all j=£, then it follows from GERSCHGORIN’S original paper [3] that there
is exactly one eigenvalue of A in the disk [zwak’ x| =4, (). In order to find
improved eigenvalue bounds for this isolated eigenvalue, it is quite natural to
think in terms of varying the vector xyc P, so as to decrease A, (x,). Indeed,
this approach was already suggested by GERSCHGORIN [3], and has subsequently
been employed numerically with success by Taussky [8] and WILKINSON [12].
Yet, in terms of finding the smallest possible radius p for this disk, obviously
given by
(1.4) = inf A, (x),

X<Pr
only recently did Henricr [4] give a convergent algorithm for finding y in a
special tridiagonal case. The first object of this paper is to extend (Theorem 1)
this convergent algorithm to the general case. We do this by using the theory
of M-matrices [§].1 Next, we also give a convergent non-linear Gauss-Seidel

! The next paper, by Professor Joux Topp, gives an alternate matrix proof of
this extension. The author wishes to express his thanks to Professor Topp for help-
ful discussions.
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type algorithm (Theorem 2) which, for large order matrices, may be more useful
in practical computations.

The results for the specific matrix 4 actually are valid for a set of matrices éA .
Continuing the investigations of [10], we show (Theorem 3) that every point

of an annulus v=|z| < is an isolated eigenvalue of some 7 X7 matrix Be£,.
Finally, a numerical example is included.

§ 2. Some basic Lemmas

Since our goal is to obtain bounds for certain eigenvalues of the matrix 4,
we may first assume without loss of generality that A is ¢rreducible®. Next,
if some set P, is non-null, we may further assume, again without loss of generality,
that k=1 so that the first Gerschgorin disk |z—a, ;| =4, () can be isolated.
This reduction to the case k=1 can obviously be accomplished by means of a
similarity transformation by a permutation matrix applied to 4. We hence-
forth assume that the set P, is non-null, and thus from Definition 1,

(2.1) dyj—A; (@) — 4, ()20,  2=]=mn,

for all ®cF. Since A;(fax)=A;(x) for any f>0 and any 1=j=n, we may
assume, as a final normalization, that x;=1 for any xc?. Note from (1.1)
that A4, (x) is then linear in the variables x,, %3, ..., %,.

Let Q=/(g; ;) now be a fixed real #X#» matrix, whose entries are defined by

(2.2) {Qi,i:dl,i:|a1,1—ai,i|: 1=1=mn,

ql,j:[al,i[, 27 <n; qi,jz—lai,f-l, 37, 11

The matrix Q is, by construction, irreducible. For notational simplicity in what
is to follow, we introduce the following partitioning of Q:

@3 L

where Qis an (n—1) X (n—1) principal submatrix of Q, &% = (|ay, 4|, |ay 5], ---. |@1,4])
and @"=(|ag1|, |a51|, ---. |@n1]). Let I,_; denote the (n—1) X (n—1) identity
matrix, and let § be the column vector with #» —1 components obtained from y
such that 7= (y,, ..., y,). Conversely, given ¥, let y denote the unique column

vector with # components determined by y and y,=1. With this notation,
we have

Lemma 1. acP, if and only if >0 and

(2.4) (Q—A,@) I, )r=a.
Moreover, ¢ P, implies
(2.5) Qx=A,(x)x.
2 An n X% matrix 4 is ivreducible if there exists no # X » permutation matrix P

such that PAPT = [‘(;11’1 A“], where A, and 4, , are square nonvoid submatrices.
2,2

Otherwise, A is veducible.
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Proof. Both parts of this lemma are a direct consequence of Definition 1
and our normalization in B,.

Based on a simple argument using the irreducibility of the matrix 4 and the
inequalities of (2.1), we can show that there exist constants 7;, S; such that

(2.6) 0<r;=%,<s;, 2=i<n,

for any @weP. Thus, as A, (#) is linear in the components Xy, eees X,, WE s€€
from (2.6) and (2.4) that the set of vectors B, is compact. Hence, there neces-
sarily exist vectors # and w in P, such that

(2.7) w= inf A, (®)=4,(z), and o=supd,(x)=A1,(w).
xEP,; xEP,

From (2.5) of Lemma 1, we necessarily have that Qz=zuz and Qw=ocw. We
shall actually show by means of the next lemmas that 4 and o are eigenvalues
of Q. Moreover, we shall show that the eigenvectors z and w corresponding
respectively to p and ¢ are uniquely determined in P,. Finally, the method
of proof we employ gives rise to an algorithm for determining y=2A4,(2) and z
which, in the tridiagonal case, reduces to the algorithm of [4].

The next lemma establishes a connection between our problem and the
theory of M-matrices3 [5].

Lemma 2. For any real number ¢<g, (@ —t1I, ;) is an M-matrix, and

(0—tI, )1 @>0.

Proof. We consider first the special case t=¢. With o=, (w), weckh,, let
X=diag(wy, w, ..., w,), and let E=X1(0—oI,_,) X=(e;,), 1=<4, j<n—1.
It follows that the diagonal entries of E, given by e; ;=d, ;41— 0, are positive

real numbers from (2.1) since weP,, and the off-diagonal entries of EN, given

by ¢ ;=—|a;11 ;14| W;11/w;1, are non-positive real numbers satisfying
n—1 .

(2.8) '21 [eq ;| =41 (w) —(] @ip11][0ig1), 1=i=n—1.
i=
JF

Thus, since weP,, we have from (2.1) and (2.8) that

n—1

(2.9) €, ;— leei,;',Z |@ii1,1] /0120,  1=i<n—1,
=
71

which proves that Eis diagonally dominant [9, p.23]. Since A is irreducible,
not all of the components of @ can vanish, so that for some L1ZI<n—1,

(2.10) 1> 2 eyl

i1
If é is irreducible, so is E, and thus, with (2.10), E is wrveducibly diagonally
dominant [9, p. 23]. Because of the sign pattern of the entries of E, it follows

3 A real zXmn matrix B=(b;,;) with b; ;=0 for all i#j is defined to be an
M-Matrix if B is non-singular, and B-1>0.
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[9, p. 85] that E is an irreducible M-matrix, and as such E-1>0. This of course
implies that 6 —o0 I, , is an irreducible M-matrix with (@ —ol,_;)>0.
Again, since @ has at least one component positive, this positivity insures that
(QN ~0In_1)'1&>a But the above argument is actually valid for /=o, and
we have thus established the desired result in the case that (5 is irreducible.
If Q~ is reducible, the desired conclusions are established in a similar (but more
tedious) way, the proofs now making use of the reduced normal form [2, p. 74;
9, p. 46] of a reducible matrix. For brevity, we have omitted the proof in the
reducible case.
Corollary 1. If A is any eigenvalue of (5, then Re A>o0.

Proof. If B is an M-matrix, it is known [§] that any eigenvalue « of B satis-
fies Re o> 0. The result then follows from Lemma 2.

For any {=¢, we define the vector y, from (0 —tI,_,) §,=a, and it follows

from Lemma 2 that g,>0. Thus, as A, (y,)>0, we see that the function g(t)
defined by g(t) =4,(y,) is positive for all £=0. We now show that g(¢) is
strictly increasing and strictly convex wpward.*

Lemma 3. For any <o and for ¢> 0 sufficiently small,
(2.11) glt+¢) =g(t)+ 2 c,&* where ¢,>0 for all k=1.
E=1
Proof. By definition, (QN— (t+el,y)Yr,=@, and (0 —tI,_) §,=a. If
we let B=(Q —¢I,_,)™, then it follows that
(2.12) §1o={ —eB} Ba={I —¢B}'y,.

Thus, for ¢>0 sufficiently small,
[ee]
(2.13) Gore=¥,+ X " Ba.

From Lemma 2, we know that B=0and Ba> 6, from which it follows inductively

that B**1@>0. Recalling that A, () is linear and that A, (x) =a”Z, then the
series expansion for g (¢ -+ &) =4, (y,,,) in (2.11) directly follows from (2.13) with

(2.14) g=alB*la, Ek=1.

Thus, the coefficients ¢, are all positive, completing the proof.

Lemma 4. y,cP, if and only if t=g(¥).
Proof. Since g,>0 for all t=g, it follows from Lemma 1 that y<F if and
only if (Q—4,(y)I,—) §,=@, or equivalently, (Q—g(t)I,—1)y.=a. Now,

(2.15) Q=g 1)) o=+ (t—g () Y,

and it therefore follows that (Q~ —g(tI,—y) ;=@ if and only if £=¢(f), which
completes the proof.
We now show that there exist values of ¢ such that t=g(f).

¢ More precisely, g(¢) is strictly absolutely monotonic [11].
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Lemma 5. For any @< P, ¢ =g (f) where A, (%) =£. More over, (QN—tIn_l) F=a
with strict inequality for some component if and only if £>g(z).

Proof. Since xcP, and A,(x)=¢, then from Lemma1 we know that
(0—tI, )&=d, and hence &= y,>0, using Lemma 2. Thus, t=4, (x)=
Ay (y,)=g(?), which, by Lemma 4, assures us that y,c 5. Moreover, if equality

~

is valid in all components, ie., (Q —¢I, ;)& =a, then surely x=y, and thus
t=A,(x)=4,(y,)=¢(). To prove the remaining part of this Lemma, we assume

for simplicity that é is irreducible. From the proof of Lemma 2, we then have

that (Q —¢7,_,)1>0. If (QN— t1, )& =a with strict inequality for some com-

ponent, the positivity of (Q —¢7,_;)7 allows us to deduce that &>7,, i.e.,
strict inequality in all components, and thus ¢=A,(x)>A4,(y)=g(#). The

extension of these results to the case when 6 is reducible is again based on the
reduced normal form of Q, and is omitted.

Corollary 2. There exist two positive real numbers u,, o, with M=g (1)
and o;=g(0y) such that t=g(¢) if and only if 0<u,<t<o,.

Proof. Since, by Lemma 5, there exist positive values of ¢ with ¢= g(t),
this result then follows directly from the strictly increasing and strictly convex
property of g(#), established in Lemma 3. We remark that if t1<<0y, then
t>g(¢) if and only if u,<<t¢<<o,.

Lemma 6. uy;=u= i‘éﬁl Ay (x), and ¢,=0=sup A4, (). Moreover, u and o

XEP;
are eigenvalues of Q, whose eigenvectors Yy, and y, are uniquely determined in B,.

Proof. Sincey,,,c B, by Lemma 4 and Corollary 2, it follows that , > ,i,él;/ll () =p.
On the other hand, there is a vector z€ B, such that A, (2) = . Thus, from Lemma 5
and Corollary 2, u=p,, and we thus have y=pu,. Next, since (QN—‘uInﬁl) y,=a
by definition and g(u)=p, it is readily verified from (2.3) that QYy,=uy,, and
as y,>0, then y, is an eigenvector of ( corresponding to the eigenvalue u. To
prove a somewhat stronger form of the final result, suppose that Q= px where
@ is any complex vector with @ =#0. If x; were zero, then w would be an eigen-
value of d which contradicts the result of Corollary 1. Thus, x, =0. Forming
(@/2,), it follows from Q@=pa that (Q —ul,_,) (#/x)=a, but as (§ —ul, )
is non-singular, then necessarily (5/x1)=g7”>a Thus, x=x,y,. Similar argu-
ments prove analogous results for ¢,=o.

To complete this section, we point out that the Gerschgorin circles for the
irreducible matrix X(y,) QX (y,) all pass through u, i.e.,

which is related to a result of TAUsskY [7]. From (2.16), it follows [10, Theorem 3]
that x4 is a boundary point of the minimal Gerschgorin set for Q. The same is
true for o.

§ 3. First Convergence Theorem

With the lemmas of the previous section, we now prove

Theorem 1. Let 4 be an irreducible # X 7 matrix which admits a first isolated
Gerschgorin disk. Then, the smallest radius p, under all diagonal similarity
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transformations, for this isolated disk is an eigenvalue of the n X% matrix Q,
and its corresponding eigenvector y, is uniquely determined in 3. If xycB,
and Qxy=A, (x,)x,, with strict inequality for at least one component, then
the sequence of vectors {#;}i2 defined by

(3.1) (Q—Ay (@)1, @1 —a, 1=0,

are all elements of B, with lim #;=y,, and the sequence {4, ()} is strictly

decreasing with 11_1)r£10 A () =p.

Proof. The first part of this theorem is a restatement of Lemma 6. Next,
for any reP,, it is readily verified that Qr=/, (r)r with strict inequality for
at least one component if and only if (6 —A, (1) 1,_,) ¥ =a, with strict inequality
for at least one component. Thus, with Lemma 5, the hypothesis tells us that
to>>g (t,) where ty=/A1,(%,). Next, from (3.1),

it follows that a, =y, , and we now ask if y =t
Qa,=A, (2¢,)x,, with strict inequality for |
some component. Since A, (#;) =g ({,), it fol- =g(t)
lows from (2.15) that !
(Q’“Al () In—-l) Zy ! i i
32 = (Q”*g (%) In—l) 37;0 e R ;
R e u &t 4 o ¢
=a+ (t—¢g) y,> a, Fig. 1

so that inequality now holds for all # —1 components. This means that the
above argument applied to &, can be applied to #,, and thus & =4, (x;)>g (¢)-
Inductively, with ¢;=4, (®;) and ®,,,=1y,,, it follows that

(3.3) bo> g (b)) =1,> g (t) =1t,> -

so that the sequence {4, (#;)}{2, is strictly decreasing. Similarly, the components
of the vector sequence {x,};2, are nonincreasing. If lim #;= 9, then clearly 6 =pu,
1—>00

but since ¢;> g (¢;) =%,41>f;,5, it necessarily follows that d=g(d), which from
Corollary 2 implies that 0=y, completing the proof.

The iterative procedure of (3.1) has a rather simple geometrical interpretation.
Starting with a,€ F; such that u<<A,(x,) <o, it follows that the Gerschgorin
disks | g , — 2| = A, (%), k> 1, do not all touch the first (isolated) disk |z| =4, ().
The essence of (3.1) is that we now determine a positive vector ®; such that
the new Gerschgorin disks | g, ,—z| =4, (%), k>1, are now all fangent to the
old first disk || =4, (x,). This is done by decreasing the components x; of @,
j>1, in such a way that the radii /;(%) all increase for />1. But then, the
first disk has smaller radius, viz. 4, (%), and the process can be repeated.

The iteration of (3.1) to find u, the smallest radius of the first isolated
Gerschgorin disk, is actually the method of successive substitutions, which is
represented by the staircase curve lying between y=¢ and y=g(f) in Fig. 1.
We also remark that monotone convergence of the A, (#;) to u is had for any
real initial value A, (), with 4, (x,) <o.

Numer. Math. Bd. 6 26
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The iterative procedure of (3.1) requires at each step the solution of a system
of (n—1) linear equations in (#z—1) unknowns. In [4], HENRICI considered
the special case where @ is essentially tridiagonal, since such matrices arose
naturally in the problems of finding the zeros of a polynomial. For this case,
the algorithm of [4] for solving the matrix equation (3.1) simply reduces to
Gaussian elimination which is known to be efficient for such matrix problems.

It is natural to ask about the rafe of convergence of the A, (;) to u. First,
it is quite clear that the rate of convergence for the iterative method of (3.1)
must be linear. In fact, writing ®;=y, +€;, then A, (x,)=u +1,(€;), =0, and
since (QN—A1 @)L, 4) @ =a= (@—Mln_l) Yy, it follows that

64 B A (0~ A @I L) 5y~ A0 —p L) 2E), e

It is also natural to apply other iterative methods to this problem of finding
the smallest real zero, u, of f(f)=¢—g(f). As an example, consider Newton’s
method. Given any real number {<Co, then previous definitions give us

~

(3-3) (Q—tl,_)y,=a and A (y)=¢g(t).

Define now the vector w, and the scalar 4(f) by

~

(3-6) (Q—tl,_)w,=y, and A (w)=h().

Clearly, w,= (G—tln_l)'2ﬁ, and thus from (2.13), we see that 4 (f) =¢'(¢). Hence,
Newton’s method is then defined by

(3.7) tHlEti—«—i’—_%%—, when A (¢;) &=1.

The point here is that the derivative g’(¢), which is necessary in the formulation
of Newton’s method, can be directly calculated by solving an additional system
(3.6) of (n—1) equations in (» —1) unknowns. Though the rate of convergence
of this method is quadratic, convergence of these iterates #; to u cannot be
guaranteed for all initial values ¢,<Co, as is clear from Fig. 1. On the other hand,
we remark that the iterates #; of Newton’s method (3.7) converge monotonically
for the initial value £,=0, but the associated vectors y; are no longer elements of F,.

§ 4. Second Convergence Theorem

The particular algorithm given in Theorem 1 required the solution of a
system of (#—1) linear equations in (#—1) unknowns at each iteration. For

large #, this algorithm may not be practical unless the matrix QN has some
special structure (e.g. tridiagonal). To derive another convergent algorithm, we
recall from Lemma 1 that

~

(4.1) Qr=a-+A,(x)x for any xch.

As in Theorem 1, we assume that we are given an initial ¢ P, such that strict
inequality is valid for at least one component in (4.1). We may, without loss
of generality, assume that strict inequality in (4.1) occurs in the second vector
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component. This implies, upon rewriting, that
(4.2) |a1,2] (4672 + {Z |as,i| 4% — 92,2} () + 2 |ag,| 47 <0,
I>2 152

which is a (possibly degenerate) guadratic inequality in #{. Since 4 is irredu-
cible and %> 0, the last term of (4.2) cannot vanish and is thus positive. Hence,
if we define &) as the least positive root of

4 sl G {Z A g () 4 3 o] 50 =0,

it is clear that 0<x{)<x{). We now show that this new vector #®, obtained
by reducing the second component x§ to x{" is still an element of the set P,.
The remaining inequalities of (4.1) can be written for /> 2 as

flon ol 47+ a3} 2+ {(49) (£ Lo %) +

+ 2 laji| 47 — g, 47 o0,
=k
12

(4.4)

which are linear inequalities in #§) for all /2. Because the coefficients of x{)
in (4.4) are nonnegative for j>2, it is clear that replacing %) by a smaller
quantity leaves all these inequalities unchanged. Thus, we have that ®®cP.
Moreover, since " <&, then A, (@)=, (x©).

We now point out that since 4 is irreducible, at least one coefficient of #{
in (4.4) is positive for some j> 2. Thus, while the new vector %) by definition gives
equality in (4.3), there is some j>2 for which strict inequality is now valid in
(4.4) for this vector. This means that the above process can be continued. In
fact, there are several natural ways in which the iteration can be continued.
One can cyclically improve the components %,; in succession, 2=7=#, by solving
at each step a quadratic equation similar to (4.3). This corresponds to a non-
linear Gauss-Seidel iterative method [cf. 1]. One can also improve the components
%; by a free-steering method [cf. 6], where one makes the added assumption that
each component x;, 2=j=<w#, is improved infinitely often. For simplicity, we
consider only the cyclic non-linear Gauss-Seidel iterative method, although the
basic conclusions are valid also for free-steering methods. Starting with strict
inequality in (4.2) for the second component x,, let ™ now denote the vector
obtained after having improved the components ¥; in succession, 2=<j=ux.
Using the irreducibility of A4, it follows that A, (x®) <4, (®®), and in general
Ay (V) <A, (™). Moreover, since each ®®cP,, and &Y<z it is not
difficult to verify that lim ™=y, and nli)rr;o Ay (™) =pu, which gives us

n— 00
Theorem 2. Let A be an irreducible 7 X # matrix which admits a first isolated
Gerschgorin disk, and let {#™}® ; be the sequence of vector iterates of the
cyclic non-linear Gauss-Seidel iterative method, where Q#(®=A, (2®)2® with
strict inequality for at least one component. Then, all the vectors &® are ele-
ments of 7} with lim x"=y,, and Ji)n;lo A (™) =p.

Hn—>00

This nonlinear iterative method of Theorem 2 can also be given a simple
geometric interpretation. Starting with a,cP, such that u<4, (x,) <o, we now
26*
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cyclically treat each component x; separately, 2=7=n. Evidently, decreasing
%;, 2=j=mn, decreases /,(x), but increases 4,(x). Thus, the iterative method
of Theorem 2 in essence selects a new component x; such that the disks |z| =4, (x)
and |g; , —z| =4;(x) are now tangent. Since the radii /,(x) of the remaining
disks k==7, are made smaller in the process, we can then apply this procedure
to other components.

As a final comment in this section, we point out that the procedure of
WiLKINSON [12] in essence is the first step of the above Gauss-Seidel procedure
for very diagonally dominant matrices (. He shows in these cases that an
excellent approximation to the solution x{Y of (4.3) is obtained simply by drop-
ping the first term of (5.3) and solving the resultant linear equation for x§.
For such very diagonally dominant matrices, it is also clear that standard linear
methods, such as the Gauss-Seidel method, should be rapidly convergent when
used in conjunction with the iterative procedure of (3.1). In fact, just one
iteration is often sufficient to give good estimates of y in such cases [12]. In
any event, since the vector iterates of these convergent algorithms are elements
of the set B, rigorous bounds for the first isolated eigenvalue can be obtained
at any step in the iteration.

§ 5. The Set of Matrices Q A

In this section, we again assume that the #X# matrix 4=(a, ;) is an irre-
ducible matrix which admits a first isolated Gerschgorin disk. We further
assume, without loss of generality, that the entry a, ; of 4 is zero. Otherwise

we could consider the new matrix 4 —a, ;I. In analogy with [10], let .QA be
the set of all 7 x#n matrices B= (b, ;) such that [0; j| = |a; ;| for all 1=14, 7<n

Then, the #x# matrix Q of (2.2), derived from 4, is the same for all BG.QA.
Hence, each matrix BE!jA has an eigenvalue in the disk Oé]z[ =u, where
p=1 1nf Ay (x). Let s(éA) be the set of all complex numbers Z with 0=|z| =p
such that zis an eigenvalue of some B EQA In other words, s (.QA) is the spectrum
of the set .QA restricted to the disk 0=|z| =u. Our object now is to determine
precisely s(éA).

Lemma 7. (!jA) is a closed, bounded, and connected set. Moreover, if
zes(Q ), then zexpz (pES(.QA) for any real .

Proof. That s(.QA) is closed and bounded is obvious from the definitions
above. To show that s(éA) is connected, let A, lles(éA), where Bz,=2,,
BleéA, 1=0,1. Writing B;=(|a; ;| expidf}), then the nxn matrix T,
defined by
(5.1) T,=(|a; 4| expi{(1—») 9% +2»90), o0=v=1,

is surely in the set éA , and Ty=2DB,, 1I,=DB;. Since the entries of T, vary con-
tinuously with », then 7, possesses an eigenvalue #(v) with |¢(»)| =p which also

varies continuously with ». Since £(0) =, and (1) =1, then s(£2,) is connected.
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Next, suppose zes(éA). Then, there is a BE!§A such that Be=zz, £ =+0. But

clearly, exp(i ¢) B is also in the set .(3A, and thus zexp? ¢€s(!5A), which com-
pletes the proof.
With this lemma, we now prove

Theorem 3. There exists a nonnegative real number 7 with T< g such that
s ={z|r=|2| =u}.

Proof. First, we note that the % xX#» matrix Q of (2.2) is an element of the
set £,. Thus, from Lemmas 6 and 7, p exp ¢ p€s(£2,) for any real p. It is now
clear that s(£,)={z|7=|z| =u} for some 7=0, and it remains to show that
7<p. Equivalently, we shall show that there is some zes(,) with |z| <u.
Starting with the % xX# matrix Q of (2.2), change the sign of the last diagonal
entry of (, thereby forming the new # X7 matrix Q;. Clearly, Q;c£,. One can
then show that the minimal Gerschgorin set

(defined in [10]) for Q,, is disconnected, S\ SN
with one connected component lying in the @
‘ A /B S

open disk |z| <w. From this, it follows [10]
that @, has one eigenvalue which satisfies
|z| <p, which completes the proof.

We remark that the nonnegative quantity = of Theorem 3 can be positive

Fig. 2

in some cases and thus s([jA) is a proper annulus. This is illustrated in §O6.

§ 6. Examples
To illustrate the preceding results for a particularly simple example, con-
sider the following matrix
1 12 42
(6.1) A=} 12 4 42
1/2 1/2 6
It is readily verified from Definition 1 that the vector §=(1, 1, 1)¥ is simul-
taneously in the sets P, B, and I, so that all the eigenvalues of 4 can be
isolated by positive diagonal similarity transformations. Using the results of

the previous sections, it can be shown that there is exactly one eigenvalue of
A in each of the following annuli:

0.01584 = |z — 1| = 0.1608,
(6.2) 0= |z —4]| £0.3139,
0.04593 < |z — 6] < 0.2301,
which is schematically indicated in Fig. 2.
The actual eigenvalues of the matrix 4 of (6.1) are:

2, =0.9807 —0.12434; Ay =4.0121 —0.064234, and A3 =5.9982 -+ 0.18854.

We remark that the iterative method of Theorem 1 is a rapidly convergent
method for finding the exterior radii of the annuli of (6.2), for the initial iterate
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unity. For the annulus with center z=1, the first four iterates A, (x;) of The-
orem 1 are 1, 0.2258, 0.1645, and 0.1610. For the cyclic non-linear Gauss-Seidel
iterative method of Theorem 2, the corresponding first four iterates A, (%;) are
1, 0.2957, 0.1644, and 0.1609.

Finally, we briefly mention that there is a 6 X6 example given?® in [3], which
isolates each of two complex eigenvalues in a disk of radus 0.000287. Because
of the increased generality of Theorem 1 of §3, it is possible to decrease this
upper bound to 0.0001242. We omit the numerical details.
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