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DISCRETIZATION ERRORS FOR WELL-SET CAUCHY
PROBLEMS. L.*

By GARRETT BIRKHOFF AND RICHARD S. VARGA

1. Introduction. It isgenerally believed that, given a well-set Cauchy problem,
there exist accurate and numerically ‘“‘stable” difference approzimations to the
differential equations (DI’s) defining the problem, from which (in principle)
the solution can be computed to any desired degree of accuracy in finite time.
However, to do this in practice is a very different matter.

Specifically, one must construct a difference approximation which:

(i) simulates the DE’s to a reasonably high order of accuracy, and

(i) is numerically stable to small errors (e.g., of roundoff).

As is well known, condition (ii) may fail if too large time-steps are taken.
The most practical test for (ii) is provided by the von Neumann condition (§7).

An attempt to treat the problem from a rigorous modern standpoint naturally
leads one to interpret solutions u(x, ¢) of well-set problems as orbits % (t) in suit-
able function spaces. For example, if these orbits lie in a Banach space B, then
one can define the discretization error at time ¢ (following Kantorovich [9]) as the
norm || v(¢) — w(¢)]] in B of the difference between the approximate solution
»(t) and the exact solution u(¢). One’s objective is really to minimaize this error,
in a given amount of computing time.

There are few systematic general theorems which one can apply to this ques-
tion. The most important of these is due to Lax and Richtmyer [11]. It applies to
general systems of first-order linear partial DE’s with constant coefficients, in
domains without boundaries. It states that a given consistent difference scheme for
solving such a Cauchy problem, well-set in a giwen Banach space, is convergent if
and only if it is uniformly bounded (‘‘stable’’). In special cases, similar results
were obtained independently by Douglas [5].

In the present paper, we deal with the same class of linear Cauchy problems
with constant coefficients, assuming only the coefficients given. It is shown how,
for any such problem which is “well-set” in the sense of Petrowsky, one can ob-
tain semi-discretizations having arbitrarily high order of consistency and finite
“stability index” (the natural algebraic criterion for stability), by using central
differences; our main results for semi-discretizations are in §5.

We then study true discretizations, and in particular those obtained by com-
bining central space differences with Padé approximations to ¢” in time. Perhaps
our strongest result (Theorem 5) is that uniform central space semi-discretiza-
tion, coupled with diagonal Radé approximations, can give arbitrarily high orders
» of consistency. Moreover, for such discretizations, the von Neumann condition
is satisfied with At = rh” independently of r and a.

Finally, we apply the general machinery developed to an interesting (ap-
parently new) difference approximation to systems equivalent to the telegraph
and Klein-Gordon equations.

* This work was supported by the Office of Naval Research.
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In Part II (not yet completed), we will show how one can interpret our con-
clusions in suitable Banach spaces defined by ‘‘Fourier integral norms”.

2. Notation: stability index. An important class of Cauchy problems, amen-
able to Fourier transform methods, refers to systems of linear partial DE’s with
constant coefficients of the normal form

(1> 8%-/81 = le;l pj/c(Dla Y Dr>uk ) D; = 6/6231' y
where the p;; are polynomials with real or complex coefficients:
(1,) pj/c<D> = Zc Oljk(.Dil Di', { = (ll y T lr>'

We exclude the trivial case that aj, = 0 unless £ = 0.

One can consider the Cauchy (“initial value’”) problem for (1) on any Car-
tesian product X = X, , = R'C"” of Euclidean s-space R’ and an (r — s)-torus
O The dual of X is Q = X* = R°Z"asin [2, §1]. The z, and ¢ are all real: R is
the real line; C the real circle; Z the set of integers.

Let P(iq) denote the n X m matrix with entries pj(ig:i, ---, 4¢,) and let
Mi(q) denote its eigenvalues. Then the stability index for the Cauchy problem (1)
on X is defined as in [2, §3] by

(2) A(P) = supiq {Re Ni(q)}, qc€Q.

If p(T) denotes the speciral radius [15, p. 9] of a matrix T (i.e., the maximum of
the moduli of the eigenvalues of T'), then the stability index of (1) can also be
described as

(2) A(P) = supq {In plexp P(iq)}}, q€Q.

It is bounded if and only if the Cauchy problem for (1) is well-set for ¢ = O.
More precisely, it was shown in [2] that A(P) < 4+« if and only if (1) defines a
Cy-semigroup on a suitable Banach space.

Following the notation of [2], we can formally write

(3) u(x; 1) = fof(q, e dQ, 40 = dgs - - dg, .

It follows from (1) that

from which we infer (still formally) that
(5) u(x, 1) = [ exp (Piw)(g, 0)6* dOQ.
Q £

For any fixed q, the linear system (4) of ordinary DE’s is called strictly stable
when Lim; 4w € = 0, and stable when Lim sup.; 4« || € || < + o ; ¢f. [3, p. 81].
(These conditions are independent of the matrix norm || ||; ef. §5.) It is well
known that these are equivalent to the following conditions on the elgenvalues
M(q) of P(iq), respectively:

(6a) A(P(iq)) = sup; Re {N(ig)} < O (strict stability),
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and
(6b) A(P(iq)) = 0, and Re{\(iq)}] = 0 implies that
N\: is a non-degenerate eigenvalue for P(iq). (stability)

We shall therefore call the system (1) strictly stable when (6a) holds for all real
wave-vectors q, and stable when (6b) holds for all such q.

Clearly, the condition A(P) < 0 is sufficient for strict stability, while the con-
dition A(P) = 0 is necessary for stability, as defined above. Following [2], we
shall call (1) regular when A(P) < 4+ «. Evidently, one can convert any regular
system (1) to a strictly stable system by setting v = ¢~ ‘™ *y. This replaces
(1) by a system of the same form with stability index —1.

Analogous notions will be defined in §§3, 7 for discrete and semi-discrete ap-
proximations to (1).

3. Semi-discretization. We now consider a uniform rectangular spatial mesh
H in X. We can reduce to this case (that H is rectangular) without loss of gen-
erality, because of the following result.

LEMMA 1. Let H be any discrete r-dimensional mesh in the quotient-group
R'/S = X, ,, where S = Z°. Then H has an integral basis of vectorsh;, --- , h,
in R'/S, such that z:h; + -+ 4+ zh, € S if and only if each z; is an integral
multiple of n, , where n; is some nonnegative integer.

Proof. Let H be the discrete subgroup of R’ consisting of the cosets of S which
correspond to mesh-points (we assume one mesh-point at the origin). Then /1 is
a free discrete Abelian group with r generators, which contains S as a subgroup.
The main theorem about canonical forms of matrices of integers under row- and
column-equivalence asserts™ that bases can be constructed for A and S with the
property specified, for which moreover n; | nq for< =1, --- | r — 1. Q. E. D.

Accordingly, let h = (hy, ---, h,), h; > 0, be the vector whose components
specify the mesh spacings in each coordinate direction of X, and let H be the set
of all mesh-vectors, mh = (mihy, --- , m,h,), where the m; are integers.

On any such rectangular spatial mesh H, there are many ways in which one
can approximate each partial derivative D‘u; = Di' - - - Diu; of any u;(x), by
a divided difference of the form

(7> (H’* hilk)Zm “gl:ll)uj(xl + mlhl’ Ly Xy + mrhr) = 6l[uf]y

where the u\’ are fized, finite in number, and independent of h. The assignment of
a particular choice of a set of such divided difference approximations (7) to each
term ;. D in (17) will be called a semi-discrelet finite difference scheme A.
When both the scheme A and the mesh-vector h are specified, we will speak of a
sema-discretization of a system (1), and denote the resulting approximation to
P(Dy, -+, D,) by II(A, h).

* Asin [14]. The idea of semi-discretization goes back to Lagrange. See also D. R.Hartree
and J. Wormersley, Proc. Roy. Soc. A161 (1937), 353-66.

t See for example R. Thrall and L. Tornheim, ‘“Vector spaces and matrices’’, Wiley,
1957, p. 241.
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EXAMPLE 1. Let (1) be the convection equation u, + u. = 0, whose general
exact solution is u(z, t) = w(z — t, 0). Then r = n = {, P(ig) = —1g, and
A(P) = 0. Consider the semi-discretization scheme (7) defined by the backward
divided difference wu, = [u(z) — u(z — h)]/h. For given h, this replaces
us + u, = 0 on the mesh of mh by

(8) QY/ At = [Yms — Yml/hy  Yym(t) = u(mh, t).

For the initial values ym(0) = 6w (delta-function), the solution is given ex-
plicitly by ‘

"/ (m), mzo
m < 0,

9
the semi-discretization (8) defines a semigroup of nonnegative linear transforma-
tions for ¢ > 0. Clearly, the y.(t) are the expectations of the Poisson process™.
Tor fixed ¢ = 7h, the maximum of the approximate solution occurs near m = 7.
Using Smrhng s formula to approximate m! we see that this maximum is
Ym(mh) = 1/4/27m. Qualitatively, whereas any exact solution propagates along
the characteristics # — ¢ = const. without change of form, the semi-discrete
approximation (8) produces considerable dispersion over a belt of width O(n/m)
in distance mh.

In general, each difference operator (7) carries ¢ into a constant multiple of
itself. Therefore, any semi-discrete approximation II = II(4A, h) to the operator

(8) yn(7h) = {0

iq-X

P(D,, -+, D,) in (1) has the property that, for any complex n-vector b and
any real n-vector q
(9) I[be®] = A(q, T)be ™.

Here, A(q, II) is an n X n complex matrix defined from II by (9). We call
A(q, II) the infinitesimal amplification matriz associated with (1) and (7) (asin
[13, p. 55]).

Evidently, A (q, I) is an approximation to P(4q), whose entries are conttnuous
in q. Denoting the eigenvalues of A(q, II) by \i(q, IT), we define, in analogy to
(2), the stability index of II as

(10) A(TT) = supi,q {Re Ni(q, D)}
A semi-discretization scheme A will be called uniformly regular if, as h varies,
(10" sups A(TI(A, b)) < .

To compute the (7, k) entry az(q, h) of A(q, ), consider again the partial
derivative D% u; = DY ... Diry; . Inserting the finite difference approximation
(7) of this partial derivatlve into (9) contributes

(Hkh;lk) Zm Q) w -mh

* W. Feller, “Probability Theory”, 2d ed., Wiley, 1950, p. 401. To derive (8'), one can
write y(t) = exp [t(c — I)]y(0), where ¢ is the shift operator olym] = Ym-1 .
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to the entry a,,(q, h). Hence, from (1), we have
(9’) ajk((l, h) = Zl aﬂcl{(Hk h;h) Zm ug)eiq.mh}.

Any such semi-discrete approximation defines, in analogy to (3)—(5):

(11) wix; t) = [ #(q, )" dq,
(12) of(q, t)/9t = A(q, IDf(q, 1), and
(13) w(x, 1) = fQ exp [1A (g, E(g, 0)e"* dQ.

EXAMPLE 2. For the pair of equations u; = v,, v, = u,, arising from the
wave eqUAtion Uy = Uz, , the functions pi(D) of (1) are simply pu = 0 = px,
p12 = D1 = pu . The finite difference scheme (cf. (7))

= vz + k) —v(z) L ou(@) — u(zx — h)

A Pz = Vg = A 5 PaU = Uy = A
gives rise for each A to the 2 X 2 infinitesimal amplification matrix
0 (e — 1)/h
A(Qa H) = —iah ’ o= H(Ay h)y
(1—-e""/h 0
whose entries are continuous in ¢. Note for comparison that, for any fixed g,

P(iyg) = [2(; z)q:l satisfies | aj(ig) — pi(ig)| = O(h): in the terminology to be
introduced in §5, the difference approximations of Examples 1-2 are consistent
to order one.

4. Central difference schemes. An important class of one-parameter semi-
discrete difference schemes is defined by letting each spatial derivative Dyu; be
approximated by the simplest central difference quotient:

u;i (X + hier) — u(x — hiex) _ oy

(14:) Dk U; = 2hk 511?}5’

here, e; is the k-th unit vector, and we have used the central difference symbol &
usually reserved for [u;(z + h/2) — u;j(x — h/2)]/h. Higher order derivatives
can be approximated by simply iterating (14). In practice, one usually replaces
second derivatives by
(14") Diu; = 8iu;/hi
where
Sty = [ui (X + heer) — 2u;(x) + ui(x — hyer)].

EXAMPLE 3. As in Example 1, let (1) be-u; + u, = 0. Then (14) replaces
the ordinary DE (9) by
(15) AYm/dt = [Ym-1 — Yms1l/2h.
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This scheme has higher “order of consistency” » = 2 than that » = 1 of Example
1, since we now have

lalg, ) — p(ig)| = O(K) for any fixed g,

whereas in Example 1 the difference was only 0(h).

Nevertheless, the scheme of Example 1 is actually preferable! This can be seen
by integrating (15) exactly for y,(0) = & . Again setting y.(0) = 8y, and
t = rh, we see that since the Bessel functions satisfy [3, p. 58, Ex. 6]

(15") 2 n(2) = Jpoa(2) — Jma(2)

and Jn(0) = &% , yn(hr) = Jou(r) for all m and r. For any fixed m, J.(r) = 0(s")
as 7 — . Moreover the semi-discretization (15") makes J_n(7) = (—1)"Ju(7),
whence

Yot L ym(t) = et L y=n(D) [,

which does not represent reality at all. Although the semi-discretization (8) in-
volves some unrealistic diffusion, it makes ,(¢) vanish for m < 0, ¢ > 0, and
makes y,.() vanish exponentially as { — « for any fixed m, as it should. (Inci-
dentally, the value of y,,(m)—which would be 1 if the method were exact—is with
(15) asymptotically

Julm) = (k) = K™ + 0(n™)

where K = T(3)/2%3%r.)
In general, for u = €%, the central difference approximation (14) yields

(16) su;/6xr = 1qilsin (hegr)/Pugrlu = 1Qeu.

Formulas (16) and (9) together show that, for any real vector g, the entries of
the matrix A (g, II) are exactly the same as the corresponding ones of the matrix
P(4§) for suitable §. That is, we have the following

LEMMA 2. For the semi-discrete difference scheme A, based on the central
difference approximations (14),

(17) A(g, ™) = P(ig), where g = (?12}%_@&2) .
k Yk

Now, returning to the ideas introduced at the end of §2, we make a definition.

DEFINITION. The algebraic spectrum S(I) of T is the set of all eigenvalues
(g, I) of A(g, IT), for (real) q € Q.

COROLLARY 1. In R, the algebraic spectrum of II(A. , h) is a subset of that
of P, and

(18) A(IT) £ A(P), for any h.

o Watson, ‘“Bessel functions”, p. 232, (2). We note that (15) is a widely recommended
recipe for treating hyperbolic equations such as u; + uz = 0. See K. Friedrichs, Comm.
pure appl. math. 7 (1954), 345-92; P. D. Lax, ibid., 159-93; [8, p. 136].
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In other words, if P(2q) is regular in R, then II(A,, h) is uniformly regular
as h varies™. We therefore have

COROLLARY 2. If (1) is regular in R, then the systematic use of central
space differences (14) yields a semi-discretization which is uniformly regular
(i.e., satisfies A(T1(A., b)) £ A¥ < o, where A™ is independent of h.

With hyperbolic DE’s, the spectrum of P is usually concentrated near the
imaginary axis, and that of e” correspondingly is concentrated near the unit
circle (especially for small ¢). In Examples 1-3, for instance, the spectrum is
precisely the imaginary axis. Likewise, the spectrum of the (hyperbolic)
telegraph equation (53), to be discussed below, consists of the interval
—1 = X = 0 of the negative real axis, plus the line A = —1 == 7 parallel to the
imaginary axis.

The spectrum of the heat conduction equation, to be discussed below, is very
different: it consists of the negative real axis (— o, 0]: Limg,.. Re {\(7q)} =
— . This behavior is typical of parabolict DE’s and provides a fundamental
difference between hyperbolic and parabolic systems. As we shall now see, this
difference makes it much easier to discretize parabolic systems stably and
accurately. :

EXAMPLE 4. Let (1) be the heat conduction equation u; = s, . Then (14)
specializes to

(19) B AYm/ At + 2Ym = Ymir + Yot ©
Setting 7 = 2¢/k” and 2z, = €y , this gives
(19") 2 dzm/dr = Zpi1 + Zms .

For initial values taken as the delta function ¥,, = z, = 6 , we obtain a set of
defining conditions for the modified Bessel function I,.(r) = z, . Hence

(19”) w(mh, B'r/2) = ¢ "I.(7).

We thus get for 7 > 0 a semigroup of positive linear transformations. Moreover,
as we shall now see, the semi-discretization (19) is very accurate.

Indeed, let .(0) = u(mh, 0) = &, as is previous examples. According to
Whittaker’s scheme of cardinal interpolation [17], this corresponds to the initial
value function

h i/ iqx h . 7z
(20) u(z, 0) = — e dg = — sin == .

21 dex/h T h
Hence, defining f(¢, 0) as the step-function equal to h/2x for | ¢| < w/h and
zero otherwise, we can compute an expression for the solution of u; = . , a8 it

(5). Since P(ig) = —¢’, this is given by
(20") f(hg, 1) = exp (igz — tg").

*The hypothesis of regularity in R” is made to cover the (exceptional) case that (1)
is regular on some torus but not in R, discovered by A. Seidenberg [2, p. 306].

1 I. G. Petrowski (Mat. Sbornik 2 (1937), 814-68) and many subsequent writers use this
property as their definition of parabolicity.
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By comparison, the semi-discretization (19) gives

(20") g(hg, 1) = exp (ige — (4t/h") sin’ (hg/2)).

As a result, as h | 0 for fixed g, ¢, the difference between f and g is extremely
small. Furthermore, as ¢ increases the high-frequency (large q) components be-
come negligible very quickly, so that excellent accuracy is obtained. Finally, we
note that even better results can be obtained by using higher-order central
differences; see §5.

We now generalize some of the ideas suggested by the preceding example, to
the case that P(4q) has n eigenvalues \i(q).

DEFINITION. The system (1) will be said to be of smoothing type” when

(21) Limgjae Re {7\l<q)} = — o0, =1, --,n

Evidently, any system (1) which is of smoothing type is regular, since the
Ni(q) are continuous functions and hence bounded on compact sets. A similar
remark applies trivially to any semi-discrete approximation. We have

LEMMA 3. Let TI = II(A, h) be any fized semi-discrete approximation to a
Cauchy problem (1). Then the initial value problem du/ot = II(A, h)u is regular
—i.e., A(TI(A, h)) < Ao

Proof. By a change of basis, we can assume that the vector h describing the
spatial mesh in X has unit components. Then, for any vectorn = (n1, *+* , 1)
with integral entries n.,

H[bez‘(q+21rn)~X] — H[beiq-x] — Abeiq-x.
Since A (g, II) is continuous in g, so are its eigenvalues \;(q, IT). Therefore
A(II) = supy,q;1s- Re [Ni(g, ]

is the least upper bound of a continuous function on the compact set lgi| £ =,
whence A(II) < +«. Q. E. D.
The same argument shows that the spectral radius of II is bounded:

(22) R(h) = supu,joizx | Mg, )| < + o0, j=1,-,m

which will be useful later (in §7).

Note that the preceding results hold whether or not the initial value problem
is well-set for (1)—i.e., whether or not A(P) < + . Thus (for any fized scheme
A and mesh H) they hold for ¢ < 0 as well as for ¢ > 0.

. Order of consistency. We now consider the asymptotic behavior of semi-
discrete difference approximations II(A, h) based on a fixed scheme A, as the
mesh is indefinitely refined—i.e., as h — 0. For this purpose, we define (algebraic)
consistency T in a way which is independent of the norm (‘“norm-free”).

_* Such systems are necessarily parabolic, but the converse is not true, as. the example
Uy = v, 0y = —Uzzes (Vibrating rod): shows. , ,
1 This definition is a semi-discrete analog of the earlier notion of “‘compatibility’” of
Fritz John [8, p. 160, and of the notion of consistency for fully discretized problems of Lax
and Richtmyer ([11], [13]).
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DEFINITION. Let A be any semi-discrete difference scheme (7) for approxi-
mating spatial derivatives by difference quotients, and let its associated semi-
discrete operators for (1) be II(A, h) and A(q, II). Then A is consistent with
P(7q) when

(23) limn,o A(q, IT) = P(4q) for anyreal q.

It is understood that the limit in (23) refers to each entry of the matrices
A(q, ) and P(4q). The matrix A(q, II) of Example 1 is a consistent approxi-
mation of P(7q).

LEMMA 4. If the semi-discrete difference scheme A is consistent, then the
error matrix A (q, II) — P(7q) = E(q, h) is an entire function of the 2r variables
qu e 7qf7h1) te ,hr~

Proof. Evidently, P(iq) is a polynomial function, while by (7) and (9")
A(q, ) is defined (when all h; % 0) as a power series in the ¢, and h;, every-
where convergent since exponential polynomials are. This series has a finite num-
ber of pole-like terms with power-products of the h; in the denominator. If A is
consistent, these terms must vanish (since P(4q) is bounded on bounded sets);
moreover the terms involving the ¢; alone (without any factor h;) must have
P(7q) as sum since the difference would otherwise be 0(1).

It follows that, if all terms with zero numerator are dropped, the error matrix
E(q, h) gives a power series which is everywhere convergent since it vanishes
identically on the hyperplanes h; = 0. Such a series is uniformly convergent on
any bounded set, and represents an entire function®. Q. E. D.

In one space dimension (if » = 1 in (1)), we can therefore write A4 (g, h)
P(ig) + h'P.(g) + 0(k"*") for some greatest positive integer », the order of con-
sistency of the scheme whose amplification matrix is 4(g, h). When r > 1, the
situation is more complicated, since the set of vectors v such that E(q, h) has a

non-zero component of the form hi® - - - A Py(4q) need not be characterlzed by
a single “order of consistency”.

To avoid the resulting complications, we will therefore restrict attention when
r > 1 to one-parameter families of semi-discretizations. By this we mean that A
is fixed (i.e., that each term a;uD’ of (1) is approximated by a fixed difference
quotient (7)), and that the mesh-vector h is given explicitly by h = k6, where 0
is a fixed vector with all 8; > 0, so that spatial mesh-ratios are ﬁxed For snnphclty,
we will denote the operator

(24) (4, h) = TI(4, Koy, b, -~ , ) = TLi(4, 8)

of this one- parameter family of semi-discretizations by II,, and the matrix

A(q, ) by A(q, h).
For any fixed mesh-ratio vector 6 with all §; > 0, collecting terms of the same

total order I = (1) 4 --- 4 I(r) in h, we can therefore write the error matrix
as : : S
(24" E(q,h) = D 1= h'Ri(q, 8), for given Tx(4, 0).

* Loosely speaking, we may therefore say that E(q, h) has a removable singular locus on
the hyperplanes k; = 0.
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Here R,(q, 6) is an entire function in q and h, explicitly computable from the co-
efficients a1 in (1'), the weights wi . and the components 6; 5 0 of 6.

This result motivates the following definition.

DEFINITION. A consistent one-parameter family II,(4, 6) of semi-discretiza-
tions is consistent o order v = v(A, 8) when

(25) A(q, h) — P(iq) = O(h") foreach q, as h [O.

We say that A has exact order of consistency » (for given 6) if there is no larger »
for which (25) is valid.

An examination of the one-parameter semi-discrete schemes of Examples1-4
shows that » = 1 in Examples 1 and 2, while » = 2 in Examples 3 and 4. It is not
difficult to see that semi-discrete schemes based on central difference approxi-
mations (14) have orders of consistency two, while the forward and backward
difference approximations analogous to (14) have orders of consistency one.

By using the operational calculus, it is easy to construct & + 1 point central
difference schemes having arbitrarily high order of consistency. Thus, if
Clu] = [u(z + h) — u(x — h)]/2h, then, since "’ is by Taylor’s Theorem the
shift operator f(z) — f(x -+ k) on any entire function, AC' = sinh AD. Hence,

(26) D = (1/h) sinh™ hC = C — K’C*/6 + 3h'C°/40 — - - - .
By truncating this series after k& terms and, denoting the result ox(RC)/h, i.e.,
(26") D = ax(hC)/h,

we get a finite difference scheme A whose order of consistency is » = 2k.
Remark. For future reference, we now bound '

—do(isin§) = sin @ + (sin®6)/6 + 3(sin’ 6)/40 + - - - .

As 6 varies, | sin ] < 1; hence the sum of the preceding series of positive terms is

bounded by sinh™ ¢ = sin™' 1 = x/2, proving
(26") | ox(isin 8)| < /2 forall k=1,23, ---, andreal 6.

This procedure can be applied to each coordinate z; in turn. Moreover, one
can use repeated substitution to get from these a difference approximation to each
D' = D' ... D! having an arbitrarily high order of accuracy. The governing
principle is the rule that if each D'¥ is approximated to order » by some difference
quotient E'” then 2 a; DY is approximated to order » by > a;uE". More-
over, if each D is approximated to order » by some expression I in divided differ-
ences and pj;: is any polynomial, then p; (D) is approximated to order » by pu(E).

We now define a semi-discretization scheme A to be uniform when each deriva-
tive operator D; is approximated in the same way in all its occurrences in (7).
For example, using central differences one can replace each D; by o2(hC:)/h =
C; — R*C?/6 from (26"). Dropping subscripts, this gives

(27) [C — KCY/6)e"™ = ige'™,
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where
(27 ¢ = [(sin gh + %sin’ qh)/qhly = —ioo(isin qh) /h.

In this case, one verifies that | ¢

< | ¢]. In general, we have

THEOREM 1. Let 11,(4, 6) be any uniform one-parameter family of central
semi-discretizations, where D; = o4(hC;)/hin (26") and k = 1. Then IL,(4, 6)
is consistent to order 2k, and A(q, h) = P(4q), where §; = —iox(2sin q,h;)/h;
and | §;| = |g;| forally=1,2, ---,7.

Proof. The previous discussion shows that the one-parameter semi-discretiza-
tion is consistent to order 2k. It remains to show in general that |[§;| < | ¢;l.
Setting z = gh, the identity 1 = (1/4) sinh™ (i sin z) gives us that

1= %{Sinz —f—és'mgz —+ &%sinsz + }
For 0 < z = w, truncation of this series after n terms gives a function ¢, (z) which
satisfies 0 < ¢, (2) =< 1, since all terms are positive or zero. Since the functionis
even, the numerator periodic of period 2, and the denominator increasing, it
follows that |¢,(2)] = 1 for all real 2. But, since i§; = o.(7sin ¢h;)/h; =
Wi (qihi) -q; , then | §; | < | ¢; |, which completes the proof.
In particular, we have proved

COROLLARY 1. Any system (1)—(1") can be approximated to an arbitrarily
high order of consistency » = 2k by a suitable one-parameter family of uniform
central semi-discretizations.

Note that, although the definition of consistency assumes fixed mesh-ratios
6, , the order of consistency is independent of the mesh-ratio vector 0.

A much sharper result concerns the stability index of semi-discretizations, as
defined in §3. By analogy with ordinary DE’s, we call the semi-discretization
(A, h) strictly stable when A(A, h) < 0, and we define the asymptotic stability
index of a one-parameter family of semi-discretizations as

(28) A(TT) = limg.gsup A(A, h8).

Theorem 1 has the following additional consequence.

- COROLLARY 2. If A is any consistent one-parameter family of uniform
central semi-discretizations, then its asymptotic stability index is at least that
in R of the system (1)—(1") which it approximates.

Proof. For any fixed h, A(A, h) < A(P) since the eigenvalues of A(q, h)
are a subset of the eigenvalues of P(i§). Moreover, since §;(¢g;, h) — ¢, as
h — 0, and the eigenvalues \; of P(iq) are continuous functions of q, for any
fixed P, strict inequality is impossible. Q.E.D.

We now show that, for any one-parameter family of semi-discretizations I,
the exact order of consistency » = »(A, 6) is a positive integer in non-trivial
cases. '
~*Any such family I, is defined as in (7) by a specific divided difference ap-
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proximation scheme A to each separate term of (1'). This approximation is of
the form (7), where the coefficients ui are independent of h. From (7) and (9",
it follows that the entry az(g, h) of A(g,h), the infinitesimal amplification
matrix, is given by a finite sum of the form

(g, 0) = (TLe (h) ™) X '™ ™,
where mh = (m@ih, -+, mbh). The corresponding term pi(iq) of P(iq) is

prliq) = (ig)™ -+ (i)™

If A(q, h) is a consistent approximation of P(iq), then az(q, h) — pix (1Q)
as h — 0, and their difference can be expanded as a power series in h for each
fixed q, due to the fact that each term £0mh i¢ o entire function of h. This shows
that, for each g, there is a largest positive integer » = »(J, k, q) such that

(29> ’ ajk(q’ h) = ka(Zq) + O(h")) h — 07

unless aj = pi for all h, in which case we put v(j, k,q) = + .
Now let 7, k, ¢ vary; it is obvious then that

(29") ' (I, (4, 8) = infjrqv(d, K, @)

Moreover, since the trivial case that P(D) is a matrix of constants has been
ruled out, then there is some entry of P(4q) such that pu(iq) is a non-constant
polynomial in g, and az(g, k) is similarly a non-constant polynomial in ™",
Their difference cannot vanish identically for all g, so that inf »(j, k, q) < + =,
proving that »(4, 8) < + . This proves :

LEMMA 5. For any consistent one-parameter family of semi-discretizations’
there exists a greatest positive integer v = »(A,0) (1 2v < »), such that
for any q,

(30) | A(q, h) = P(iq) + O(h") as h — 0.

Let A(q, h) be consistent with P(iq), and let » = »(4, 8) be the order of
consistency of A(q, h) to P(iq). If N(f) is any norm™ on the space of n-vectors
f (cf. (3)), we define as usual || B [lx = suPsgzo [N(Bf)/N(f)] as the associated
matrix norm of the matrix B. It then follows, for given N, that for allh = 1,

1) lexpltA(q b)) — exp tPG)] v = Mx(q, )R’
where My(q, t) is independent of h. This implies that
(31 Timyo exp [tA (g, k)] = exp [tP(4q)]

for any fixed q and . Moreover, for ¢ = At sufficiently small, Mx(q, At) =
My(q)At, so that

(31") | exp [AtA (g, h)] — exp [AtP(iQ)] [lv = Mn(Q)R"AL

* See A. S. Householder, “The Theory of Matrices in Numerical Analysis,” Bla isdell
1964, p. 37.
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6. Full discretization. On digital computers, one must discretize in space and
in time. We will consider below only the case of uniform rectangular meshes M
in space-time, with meshpoints (mh, At) = (mihy, mohy, -+, mbh, , MAL),
h: = h8;. Moreover, we will usually make At = 7A° for some fixed exponent «
and factor 7, considering A¢ (or h) or a variable parameter which is (theoretically)
allowed to tend to zero.

Many such discretizations can be constructed from semi-discretization schemes
I, by applying familiar methods for the approximate numerical integration
systems of first-order ordinary DE’s:

(32) du/dt = T [u].

For example, the Cauchy polygon method yields from any such II, the forward
time-difference scheme

(33) v(t + At) = v(t) -+ AtIL[v(D)] = (I + AtIL)[v(E)].

Other discretization schemes which can be constructed from any II, are the
(implicit) backward time-difference scheme

Il

(34) (I — AtIL)[v(t + AY)] = v(t),
and the trapezoidal (Crank-Nicolson) discretization
(35) V(i + Al = v(t) + AHILIV(t + A1) + v(2)]}/2,

which can also be written in operator notation as
(I — (ML) /2)[v(t + AD)] = (I + (AtHL)/2)[v(1)].

For instance, if applied to Example 1 with Iifu] = [u(z — A) — u(z)]/k
and At = rh, the forward difference scheme (33) gives for u; + u, = 0 the dis-
cretization

(36) v(z, t + At) = ro(x — h, t) + (1 — r)o(z, t).

The backward difference scheme (34), applied in the same way, gives the
implicit discretization

(36") (1 4+ r)o(z, t + AL) = v(z, t) + rv(z — h, t + Ab).

Ten other discretizations can be constructed from Examples 1-4 by use of
(33)-(35). In each case, it is important to know the order of consistency and
stability index of the scheme. We now define these conepts precisely, for rectan-
gular discretizations of any system of the form (1).

DEFINITION. For each wave-vector q, let B(q, A, h) = B(q, A, h, 7, a)
be the matrix expressing the effect of letting the one-parameter discretization
scheme A operate on be™ with At = A% where 7 and « are positive constants.
Then the scheme will be said to have order of consistency v as b | 0 if entry-wise

(37)> B(q, A, h) — exp [AtP(Zq)] = O(R’At), At = rh"
for all ¢ € Q. It will be said to be consistent if (37) holds for some » > 0.
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For discretization schemes A constructed from one-parameter families of
semi-discretizations, it is particularly simple to compute B (q, A, h) from the
matrix A (q, h) for fixed At (cf. §5). Thus, if (33) is used, we have for Al = rh*:

(33") Big, A, h) = I + AtA(q, h) = I + rh"A(q, h).
Likewise, if (34) is used,

(34") Bu(q, &, h) = (I — AtA(q, b)),

while the Crank-Nicolson (trapezoidal) formula (35) gives

(35") Bi(q, A, h) = (21 — AtA(q, h))™'(2] + AtA(q, h)).

As one would expect, discretizations defined from consistent one-parameter
families of semi-discretizations by any of formulas (33)-(35) are themselves
consistent. More precisely, we have

LEMMA 6. Let A be a consistent one-parameter family of semi-discretiza-
tions which is consistent to order ». Then for At = rh%, the Bi(q, 4, R) of (33')-
(34") are both consistent to order min [», &] for 7 = 1, 2 and Bs(q, A, h) of (35")
is consistent to order min [, 2a].

Since this result will be proven in greater generality later (Theorem 4), we
omit the proof.

EXAMPLE 5. From the DE u; + u, = 0 and the semi-discretization v, =
[w(z — h, t) — v(z, t)]/h of Example 1, the forward difference method (27)
yields for Al = rh, the discretization

(38) oz, t + At) = (1 — rv(z, t) + w(z — h {).

By Lemma 6, this is consistent to order » = 1, for any r. For r = 1, it is exact.
This shows that the order of consistency computed from Lemma 6 may be merely
a lower bound to the exact order of consistency; the latter may be greater through
cancellation of errors.

Order of efficiency. The order of consistency of a one-parameter family of
discretizations of a system (1)—( 1') is not the best measure of its computational
efficiency. This is because the total computing time for a given difference scheme
on a given domain is proportional to the number of mesh-points per unit volume:
the mesh-point density. For At = RR® in r space dimensions, this density is
0(r~"**). Hence, if the order of consistency of a given one-parameter family is
y, the mesh-point density required to reduce the discretization error to e is
0(¢ """, and the asymptotic computing time is also 0("""), as € 0.
For given 7, »/(r + a) is therefore a better measure of computational efficiency
than ». Allowing for the fact that, with « = 1 (typical of most schemes for
hyperbolic systems), the computation time would normally be expected to have
a factor » -+ 1 in the exponent, we define (r + 1)»/(r + «) as the asymptotic
order of efficiency™ of a given one-parameter family with At = RA% in r space
dimensions.

* A related concept was described in [5a, p. 30] for parabolic problems with r = 1.
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7. Von Neumann Condition. It is well known that many plausible explicit
difference schemes “blow up” if too large time-steps (for a given space-step) are
taken. Thus, it was observed by Courant, Friedrichs and Lewy [4] that this
happens with the wave equation uy = wus, for Al = #(Az)?, if # > 1. (This also
happens with the convection equation u; + u, = 0 for any At, if one uses the
“bad’ semi-discretization du;/dt = (u; — u;1)/h in place of that of Example 1,
§3. In general, explicit schemes derived from semi-discretizations whose asymp-
totic stability index (28) is o« never converge.)

A systematic general criterion for the bound on At is provided by the von
Neumann condition ([12], [13, Ch. TV, §8]). This is the condition that the eigen-
values of the set of discretizations under consideration should have uniformly
bounded eigenvalues on any finite interval 0 < { £ T. As is observed in {13], this
is a necessary condition for convergence in any Banach space. We now correlate
the von Neumann condition with the concept of stability index.

DEFINITION. The stability index of a fully discrete approximation, with
given h and At is defined in terms of the eigenvalues u;(q, h) of the matrices
B(q, A, &, At) of (37), as the number

(39) A(A, b, AY) = -A}Zln {suprq | m(B(q, A, h, At) |}.

A one-parameter family of discretizations, defined by a difference scheme A with
Az; = h8; and At = 7h%(6, r, « fixed) is said to satisfy the von Neumann condition
when

(40) lim supy o A(4, kO, 7A%) < + .

The preceding definition is easy to apply. Thus, in Example 5 of §6, there is
only one space variable (r = 1) and a = 1, so that w1 = u = B(q, A, h, 1, 1).
Hence

- L0 iah 1 ifosr=1
w(B) =1+ r(e 1), sup | m(B) | = {, o — 1] otherwise,

and the von Neumann stability condition (40) is satisfied if and only if 0 < r < 1.
Again consider the forward difference scheme based on the semi-discretization
of Example 3 of §4, with At = rh*:

(41) vz, t+ A1) = o(a, 1) + 2 bl — h, £) — oz + b, DI

In this case, u; = 1 + Atle™™" — ¢""]/2h = 1 — ¢rh*" sin gh, so that sup, | u; | =
(1 4+ 7B**™)} For « = 1, we find from (37) that

In (1 + Ar/2r, o= 1)

Tha—2/2, « > lj, h i 0.

A(A, h, TR%) N{

Thus, this particular discretization satisfies the von Neumann condition if and
only if @ = 2.

We now prove a very general theorem, which guarantees the existence of a
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consistent one-parameter family of difference schemes satisfying the von Neu-
mann condition (40), for any well-set (“regular’) Cauchy problem (1).

THEOREM 2. For any well-set Cauchy problem (1) in R, any fixed spatial
mesh-ratios 6;, and any consistent one-parameter family of uniform central
semi-discretizations II, , there exist constants R and « such that the combina-
tion of the II, with forward time-differences using At = Rh® yields a consistent
one-parameter family of explicit discretizations satisfying the von Neumann
condition.*

Proof. By Lemma 6, the resulting one-parameter family of full discretizations
is consistent. Moreover since uniform central space differences are used, we can
write (from §5):

pr= 1+ Atn(g, B) = 1 4+ Atyi(8), ¢ = —dow(d sin gihy)/hy,
where h; = hf; and the v,(q) are the eigenvalues of P(¢q). Thus

|w "= 1+ At{2Revi(q) + At vi(Q) [*}.

In order to find an asymptotic bound to this expression as h | 0, we first note
that, by (26"):

1leé7r/2hef) j=172J"'7T'
By a theorem of Gelfand and Shilov [6a, p. 67], there exists a constant c>0
such that max; | v:(§) | £ C(1 + || §l)°, where | § I? = 25| g [Pand 8 =
max; (di/k), di being the degree (as a polynomial in the g;) of the coefficient of
~"*in the characteristic polynomial of P(iq). Setting n; = 6;  and K = «|| n ||/2,
n = (g, -+, n), these inequalities together give

|w [ S 1+ At{2A(P) + AC*(1 + (K/R))™).
For At = RA™, we thus have

(42) lw [P £ 1+ At{2A(P) + RC*(h + K)™}.

In (39)-(40), we therefore obtain (since In(1 + z) = z):

(42") A(A, ho, RR®) < A(P) + RC*(h + K)*/2. -
which shows that the von Neumann condition is satisfied. Q.E.D.

COROLLARY. For any well-set Cauchy problem of the form (1), and any
fixed spatial mesh-ratios 8, combination of the uniform central space-difference
schemes (14) or (26") with the forward time-difference schemes (33) yields,
for suitable R, «, a consistent explicit difference scheme which satisfies the von
Neumann condition, for any At(h) < Rh". =

Note that, from (42'), the asymptotic stability index is

(42") lim sups.o A(A, k0, RR*) £ A(P) + RC’K*/2.

* We owe to Mr. Martin Schultz the precise form of Theorem 2, as well as other helpful
comments. For the case » = 1, see Aronson [1], Our results for » = 1 were obtained in 1960;
see Abstract 567-8, Notices Am. Math. Soc. 7 (1960), p. 888.
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Much stronger results can be proved for the implicit schemes defined by [34]-
[35] from II, , by backwards and trapezoidal time-differences. We have

THEOREM 3. Let A be any of the uniform central difference schemes de-
fined by (26") from a given stable Cauchy problem (1). Then, for any fixed
6,7 > 0and a > 0, the (implicit) discretizations defined from II1(4, 78) by (34)—
(35) and At = rh” are consistent and satisfy the von Neumann condition.

For, the conformal transformations z — 1/(1 — z) and z — (2 4+ 2)/(2 — 2)
map the left half-plane Re{z} = 0 into the unit disc |z | =< 1. Actually, the
scheme defined by (35) has second-order consistency.

8. Padé approximation. In §6, we studied difference schemes (33")—(35')
obtained from any semi-discretization u, = II,[u] by three standard formulas
(33)-(35) for numerically integrating systems of first-order ordinary DE’s.
Letting z = AtIl, , these formulas correspond to three approximations

(43) € =1+ ¢, € =(1—2)"" € =(242)(2—2),

to the operator exp (Atll,) which gives the eract solution to the semi-discretiza-
tion u, = IIx[u]. We now show how one can obtain arbitrarily high order of
consistency v in discretizations, by combining highly consistent semi-discretiza-
tions with Padé approximations to e—an idea first suggested in [14] (cf. also
[10]).

The three approximations (43) are just the first three non-trivial upper
left entries in the doubly infinite Padé iable [16, Ch. XX] for the best rational
approximation to ¢’ in the neighborhood of z = 0, of the form

(44) e = 1:(2) = n4,i(2)/dii(2),

where n; ;(z) and d; ;(2) are polynomials of fixed degrees j and 7, respectively.
Since ¢” is analytic, one has [16]

(44") ¢ = r:;(2) + 0(| 2|7, 2 — 0.

It is interesting to note that other entries in the Padé table for ¢” also correspond
to familiar time-discretizations of u; = II,[u]l. Thus, the entry 7o2:(z) =
1 + z + 2°/2 corresponds to the modified Euler method, and ro4(z) = 1 + 2 +
2/2 + 246 + 2'/24 corresponds to the fourth-order Runge-Kutta method
(ef. [3, pp. 179, 208]).

Given r;;(z) and a semi-discretization u, = II;[u] of (1), one can obtain a
full discretization of (1) by writing

(45) di ; (AT [v] = i ;,(AIL)[V],

as an implicit (for 7 > 0) difference scheme™. To obtain higher-order consistency,
we now appeal to the following extension of Lemma 6.
THEOREM 4. For any system (1), », and o, let At = rh% and (7 + j)a = ».

* The use of 7 > 1 has the inconvenience in practice of requiring the inversion of mat-
rices which become progressively fuller as ¢ increases.
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Then the combination of any semi-discretization consistent to order » with (45)
gives a discretization which is consistent to order ».

Proof. Since ¢’ = 1, d;;(0) = 1 and so (by continuity) d;;(z) # 0 for all
sufficiently small z. Hence, for all At sufficiently small, d;;(AtA(q, 7)) is nonsin-
gular and 7;(AtA) is well-defined. Writing

R = exp ((AtP(iq)) — ry(ALA(q, b)),
we have for each q by (31”) and (44"):
R = [exp (AtP(4q)) — exp (AtA(q, h))] + lexp (AtA(g, b)) — ri(atd(q, )]
= 0(AIR’) + 0((At)™™).

Since (At)™ = (rh®)™* = 0(Rh’At), we have the desired result.

Diagonal Padé approximations. We next show that the von Neumann stability
condition can also be satisfied for all At, by choosing 7 = j. The proof depends
on some special properties of the diagonal entries . :(z) in the Padé table for
¢’, which we now describe.

It can be shown by an application of Darboux’s two-point expansion”, that

dii(z) = nji(—2):

(46) ¢ = ny;(2)/ni(—2) + 0(z "), 2] —0,
where
(47) n; (z) = > NC Rl RF L jz0,

S eNEG — )t

is a polynomial of degree j in z.
This last expression for n; ;(z) shows that it converges uniformly to ¢ in
any bounded domain, as j — «. Thus, it follows that

(48) rii(2) = n;(2)/nj;(—2) =€ as j— =,

uniformly in any bounded domain.

The property (48) of the r; ;(z) is of course shared by the partial sums rq, i(2)
of ¢*. However, the next lemma establishes a property which these partial sums
do not share.

LEMMA 7. Let 2%, 1 £ 1 £ j be the zeros of the polynomial d; ;(z) =
nj ;(—z). Then

(49) Rezf’ >0, 1=12j,

I

1.

Proof. This is a well known result from the theory of passive networksf, so
we merely sketch the proof. Decompose n;;(z) into two polynomials e;(2)

* J. de Math. 2 (1876), p. 271. See also P. M. Hummel and C. L. Seebeck, Am. Math.
Monthly 56 (1949), 243-7.
 Cf. Dov Hazony, Elements of Network Synthesis, Reinhold, New York, 1963, p. 206.
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and f;(z), which respectively contain only the even and odd terms of n;;(z).
Then, with g;(z) = ¢;(2)/f;(2), it follows that

z n;;(2) 25+1
M g 0=

_e(z) + fi(2)

_ 0(|2[#) = g:() + 1 0(]2[**).
oo — fie O = gy T
Multiplying through and collecting terms, we obtain
0n(2) = £ 1T £ 0(2[") = coth (2/2) +0(] 2.

The function coth z has a continued fractions expansion given by

(50) coth z = = + —-1—— 1
z + P S 1
T2+ -

and it can be verified that g;(2z) is the j-th continued fraction approximant
of coth z. Since the coefficients of this continued fraction expansion of coth z
are positive real numbers, it follows from a result of Wall [16, p. 178] that n; ;(2)
has all its zeros in the open left half plane. But since n;;(z) = d;; (—z), we
have the desired result of (49).

A final property of the diagonal Padé approximations is given by

LEMMA 8. Forall Rez =0, |r;;(z) | £ 1

Proof. Since r;;(z) = n;;(2)/n;;(—2), it follows by symmetry that
[ r;,;(e) | = 1 for all real o. Next, it is obvious that |7; ;(z) | — 1 as |z| — .
By Lemma 7, r; ;(z) is analytic in the left half-plane Re z < 0, and the result is
then a consequence of the maximum principle.

Now, let (1)~(1") define a regular Cauchy problem; we can suppose it strictly
stable after a trivial substitution, as shown in §2. Using the preceding lemmas
we now prove finally

THEOREM 5. Let (1)-(1") define a strictly stable Cauchy problem, and
let II, be any uniform semi-discretization obtained by a systematic use of central
difference approximations having order of consistency » = 2k. Then for At =
rh® the Padé discretization (45) with ¢ = j has order of consistency » for any
a 2 k/j, and satisfies the von Neumann condition (40) with index A(A, k8, rh%)
=< 0 for all @ and r.

Proof. The consistency is covered by Theorem 4. By Theorem 1, we know
also that A(II,) = 0, or equivalently, that Re X\;(q, 78) =< 0 for all eigenvalues
of A(q, h#). Since the eigenvalues u; for the discretization (45) are given by

#l(qy h: At) = ni,i(Aw\l(q) he))/di,J(An\l(q) he))}

it follows from Lemma 8 that | ;| £ 1 for all h. Thus, by (39) and (40), the
stability index (39) is nonpositive for all h, which completes the proof.
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Theorem 5 generalizes the well known result [5a] that the coupling of three-
point central space-differences with trapezoidal time discretization is uncon-
ditionally stable for the heat equation.

COROLLARY. Any regular Cauchy problem of the form (1)-(1") has a
discretization which satisfies the von Neumann condition end has arbitrarily
high order of consistency.

9. Characteristic methods. The preceding methods by no means yield all
good partial difference schemes. For hyperbolic systems, it is often best to use
the method of characteristics. Thus, in Example 2 of §3, using the variables
U=u-+wvV =u— v one gets the system
(51) Ui = Uzg Viz "'V:c-

This can be solved exactly by setting
(51) Uz, t+h) = Ule + ht), Viz, t+h) =V(@-—ht),

a scheme motivated by the method of characteristics.
In the preceding example, one can also obtain (51") (artificially) by combining
the semi-discretization

(52) U, = [Ulx+ ht) — Ulz, DI/,  Ve=[V(z—ht) = V(z, O/h,

with the forward time difference Padé approximation (33) with At = h. How-
ever, we do not believe that such a treatment is possible for the following, slightly
more complicated example.

EXAMPLE 6. Consider the (mildly dissipative) hyperbolic system
(53) U — U + U =V, v + v, + v = w.

Exact solutions of (53) satisfy the integral equations

h
u(x,t+h)=u(:c+h,t)+/ w(z +h —s,t+s)ds
(54) °
v(x,t+h)=v(x-—h,t)—f w(z —h+s,t+s)ds
0

where w = » — u. In particular, this is true of all solutions of the form w =

F(@)e™, v = g(t)e™™.
Hence, by the standard trapezoidal formula for approximate quadrature, on
any square mesh with Az = At = h, solutions of class C* will satisfy

uf™ = ufn + B — )T+ (0 — w)in) + ()
o = 0l 4 3hl(w — )} (u — 0)jal + O(R).

The order of consistency of the scheme obtained by neglecting the 0(h®) remainder
isy = 2, by the following result.

LEMMA 9. If a discretization with At = Rh® is obtained by neglecting terms
0(AZ"Af") with m + no — o = », then it has order of accuracy at least ».

(55)
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Proof. We fix q, and refer to (37). The difference in question involves only
terms of order m 4 na — « or more. ‘ '

Collecting terms and eliminating, we get from the approximate equations
(55) the four-point, explicit, (one-step) discretization

(56) (44 4h)ult = (4 — B)ufe + (20 + K)ol + (20 — B0y + Buf— .
(56") (44 4n)of = (4 — K)ol 4+ (2h — Bl + (2h 4+ B)ufes + hja

It seems unlikely that the discretization (56)—(56') can be obtained from a semi-
discretization of (53) by approximating ¢’, since the convection terms u} " =
wi , 07 = v} are formed from the semi-discretization of u; + 4, = v, — v, = 0
by using the forward explicit approximation ¢ = 1 4 z, while the trapezoidal
quadrature terms h(w} ™ 4+ whi)/2 and —h(w} ™ + wj-;) are obtained by an
implicit approximation. :

The characteristic equation of the system (53) i8 us; + 2u; = Uss , which is a
form of the telegraph equation and well known to be stable (dissipative). We
now show that the same is true of the difference approximation (56)—(56),
whose amplification matrix is

1 ( 2¢'" — ih’singh 2k cos gh + ik’ sin qh)

(67 e .
24+ 2h \2h cos gh — th’singh 267" 4 ik’ sin gh

The matrix of (59) has the form (Z* z*), and so its roots A1, A2 satisfy \; =

Re {a} = [|b]" — (Im {a})"}}, by elementary algebra. In the present case, one
finds that
Re {a} = (1 + k)™ cos qh,

b — (Im{a})* = (1 + h)7[A* — sin’ ¢h)
N = (1 + h)7'[eos gh £/ — sin? ghl.

When & = | sin gh |, \;is real and the radical is at most &; hence | ;| £ (1 + &)/
(1 +h) = 1. When h < |sin gh |, \; is complex and | );| < 1/(1 + &) < 1.
Hence the difference scheme (56)—(56') is stable; as a corollary, it satisfies the von
Neumann condition.

It is interesting to consider also the analogous discretization of a related
conservative (non-dissipative) hyperbolic system of partial DE’s, whose charac-
teristic equation is % + 4 = U.. , the Klein-Gordon equation.

EXAMPLE 7. Consider the system

(58) Ut — Uy =V, v+ v, = —u.

I

Much as in Example 6, solutions of class C* of (58) must satisfy

W™ = e+ R 4 ol + 00
(59)

n n h n n
0] = vfq — ) [wi ™ + wj) + 0(R).
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This yields the following analog of (56), whose order of consistency is again
= 2 by Lemma 9:
(4 + WHur™ = qul + 20l + v-y) — Blul,
(4 + B! = 4l — 2h(ufy + uln) — B .
The amplification matrix associated with this discretization is (setting 8 = h/2):

(61) 1 [¢" =8¢ hcosgh
T+ 6\ —hecos gh & — g)

(60)

This matrix now has the form (_Z Z*), where b is real. Its characteristic

equation \* — (a + a®)\ + (aa® + b°) = 0 has a negative discriminant. Since
aa®* 4+ b* = 1, as elementary calculations show, the complex conjugate roots
have magnitude 1, whence the discretization (60) is also (neutrally) stable.
Hence the von Neumann condition is satisfied. :

Since » = 2 and the von Neumann condition is satisfied, the dlscretlzatlon
(60) seems satisfactory.

We do not know of any comparably simple discretization for the telegraph
or Klein-Gordon equations which has an order of consistency » > 2, and satisfies
the von Neumann condition.
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