Received June 16, 1967

Helena Medley and Richard S. Varga

On Smallest Isolated Gershgorin Disks for Eigenvalues, II
\[
\begin{bmatrix}
\mathbf{g} \\
\mathbf{\ell}
\end{bmatrix} = \mathbf{g}
\]

The following result holds:

Thus, define as the set of all vectors \(\mathbf{x} \) for which \((\mathbf{x})^T \mathbf{v} > 0 \) is valid, is nonempty.

Where

\[u = \mathbf{x}^T \mathbf{v} \]

for all

\[0 \leq \mathbf{x}^T \mathbf{v} \leq \mathbf{x}^T \mathbf{v} < \mathbf{x}^T \mathbf{v} \]

such that

\[(\mathbf{x}^T \mathbf{v})^T \mathbf{x} = \mathbf{v} \]

To begin, we assume as in [1] that the given irreducible \(n \times n \) complex matrix

\[V \]
Here, we are using the notation that if C is an $n \times n$ matrix, then $C = |C|$. If we are using the notation that if C is an associated $m \times n$ matrix with nonnegative elements, then

$$|C| = |C|$$

(11)

for any real number x, the following holds true:

$$|A| \geq |I - u|$$

(10)

and we can write that

$$|A| = |I - u|$$

(11)

and we consider the method of successive substitution

$$z = \frac{1}{1 - u} \left(I - u \right) g = \frac{1}{1 - u} \left(I - u \right) g$$

(11)

where $z = \frac{1}{1 - u} \left(I - u \right) g$. With the previous lemma, we can deduce that for any z, if z is an H-matrix and non-degenerate by Theorem 2.1, then z is an H-matrix. Moreover, from Lemma 2.1, for any real number z with $z = \frac{1}{1 - u} \left(I - u \right) g$, we can deduce that z is an H-matrix. Since z is non-degenerate and non-negative, it follows that z is non-negative. Since z is non-negative, we can deduce that z is an H-matrix.
\[
\mathbf{y} = (\mathbf{y}) \mathbf{L} \quad \text{and} \quad \gamma = \gamma
\]

From (10), this means that

\[
\gamma = (\mathbf{y}) \mathbf{L} \quad \text{and} \quad \gamma = \gamma
\]

Theorem. Let \(\mathbf{L} \) be an irreducible \(n \times n \) matrix which admits a first positive

\[
\gamma = \gamma
\]

For any \(\gamma > |(\mathbf{y}) \mathbf{L}| \), the discrete method of successive approximations converges.

This implies that for all \(\gamma \) sufficiently large,

\[
\gamma = \gamma
\]

Moreover, since \(\gamma > |(\mathbf{y}) \mathbf{L}| \) it follows that

\[
\gamma = \gamma
\]

Therefore, the sequence of \(\gamma \) is monotonically increasing for any \(\gamma > |(\mathbf{y}) \mathbf{L}| \) as follows:

\[
\gamma = \gamma
\]

Thus, defining \(\gamma \) as follows:

\[
\gamma = \gamma
\]

Hence, we have that

\[
\gamma = \gamma
\]

Since \(\gamma > |(\mathbf{y}) \mathbf{L}| \) the sequence is monotonically increasing for all \(\gamma > |(\mathbf{y}) \mathbf{L}| \), and we have from (11) that

\[
\gamma = \gamma
\]

Therefore, we have from (12) that

\[
\gamma = \gamma
\]

Finally, we have from (13) that

\[
\gamma = \gamma
\]
On Smallest Isolated Geršgorin Disks for Eigenvalues

References

Table

Together with the actual eigenvalues of \(A \),

the following table gives the first four

eigenvalues of \(A \) for each of the

eigenvalues of \(A \).

which was also considered in [4],

which is the associated set \(P \),

and \(P \) is

can be isolated by positive diagonal

transformation, and in fact the

is then guaranteed by Theorem 1.

where these both that \(\alpha > |y| \),

and the strict inequality

At this point we reach our second

case in which both \(0 \leq |y| \leq 1 \). With

this

in the disk

is a simple consequence of the fact that the matrix

In applying this process, we start with

\[A = \begin{bmatrix}
2 & 1 \\
2 & 1
\end{bmatrix} \]