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Numerical Solution of the Two-Group Diffusion
Equations n x-y Geometry”

R. S. VARGAf

Summary—The problem studied in this paper is the numerical
solution of the two-group diffusion equations describing the re-
activity and power distribution of a nuclear power reactor. The
problem is treated in two dimensions (Cartesian coordinates). The
method of solution by replacement of the differential equations by
finite difference equations is outlined. The properties of the result-
ing matrices are studied in detail. The method of successive over-
relaxation is described and the theory developed. The convergence
properties of the method and its application is indicated.

I. INTRODUCTION

HE PROBLEM we are concerned with here is the

“ numerical solution of the two-group diffusion equa-

tions for a heterogeneous reactor in a rectangular

region B of the z-y plane with external boundary T.
These equations are of the form:

V- [Dz, ) Ve(z, Y] — o.(z, Y¢(z, v)

+ Ziz, Yilz,y) =0
V- [Dyz, Vz, )] — oz, )¢z, y)

+ 12z, Yolz, ) = 0.

The functions ¢(z, v), ¥(z, y), D,V¢, and D,Vy, where
defined, are to be continuous interior to the region R.
With homogeneous boundary conditions specified on T
such as the vanishing of both ¢, ¢ on I', we seek to find
the pair of functions ¢(z, y), ¥(z, y) satisfying (1) interior
to R and the specified homogeneous boundary conditions
on T, corresponding to the smallest (in modulus) eigen-
value 4.

The problem stated above is what may be called the
two-group, steady-state diffusion problem in z-y geometry
for the continuous case. In order to solve the problem
numerically, we shall replace the problem for the con-
tinuous case by what is called the discrete case, making
certain simplifying assumptions in the passage from one
problem to the other. The conditions and assumptions
which we shall make are just those used in the machine
code QED." The subsequent sections contain a complete
mathematical analysis for the discrete case and the relevant
mathematical discussion of the iterative procedures used
to solve this discrete case.
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t Bettis Atomic Power Div., Westinghouse Elec. Corp., Pitts-
burgh, Pa.

1 This is a Bettis Atomic Power Division (of Westinghouse) code
for the IBM-704. It had as its predecessor the Cuthill code for
UNIVAC, which was developed at the David Taylor Model Basin
by Drs. Cuthill and Davis.

II. Tee CoNTINUOUS AND DiIscrRETE PROBLEMS

A. Statement of the Problem in the Continuous Case—
Passage to the Discrete Case

To state precisely the problem in the continuous case,
we assume we have a finite set of regions B; and C; and
internal interfaces v;, which separate the various regions
(see Fig. 1). Together, the regions R; and C; plus the

r

Fig. 1.

interfaces v, constitute R, our rectangular region of
interest. All internal interfaces are composed of horizontal
or vertical line segments only. The regions R; are called
diffusion regions and interior to any diffusion region R;
the functions ¢(x, y), ¢¥(z, y), called respectively the
slow group flux and the fast group flux, are defined and
satisfy (1). The quantities D,, Dy, o,, o;, 2/, and Z,; are
assumed to be region-wise constant, and they are all
positive except for Z,; which is nonnegative. For the
region R;, (1) reduces to

D, V¢(z,y) — 0.z, v)
+ 2, ) =

D, .z, y) — o,.:¥(z, Y)
+ 92550z, y) = 0,

Across any internal interface v, between two diffusion
regions, the quantities ¢, ¢, D,V¢, and D,V¢ are con-
tinuous. These restrictions are referred to, respectively,
as eontinuity of flux and current.

For the regions C; with boundary v; the slow group
flux ¢ is not defined interior to C; but satisfies

_D. 3
¢($y ?/) an z,yeyi

where ¢ is a postlive constant, and the derivative is taken
perpendicular to v, in the direction of C,. For the fast
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group flux ¢, C, is a diffusion region with 3,; = 0in C,,
so that ¢(x, y) satisfies, interior to C;, the Helmholtz
equation:

D/vz‘/’(x7 y) - 0'/\//(.’2), y) = 0. (4)

On the exterior boundéry T of R, y(z, y), and ¢(z, ») ’

where defined, satisfy the same boundary conditions on
each segment of I'. The boundary conditions which may
be used are

Yz, y) = élz,y) =0, or =0. (5

gI&
I
g

Having stated the problem for the continuous case, we
now proceed to the problem for the diserete case. Since
all internal interfaces v; and the external boundary T are,

"by assumption, composed of horizontal and vertical line
segments only, we impose a mesh A of horizontal and
vertical lines on R 4 T in such a way that all internal
interfaces and external boundaries lie exactly on mesh
lines. The mesh spacings in the z and y directions need
not be constant. With the mesh A the unknowns in the
discrete case are defined to be the values of ¢, ¥ at the
intersections of the horizontal and vertical line segments
of A. By replacing the differential conditions of (2)—(5)
with difference equations in the unknowns of the discrete
case, we will have defined the discrete problem. The next
section gives the derivation of the difference equations
for the discrete case.

B. Derivation of the Difference Equations

For an arbitrary mesh point (x,, %) which does not
lie on an interface v; defining a region C;, each of the
regions in the neighborhood of the point (2, ¥,) is, there-
fore, a diffusion region. The following group-independent
derivation is standard, but it is included for the sake of
completeness.

TFor each of the regions R; surrounding the point
(%o, Yo), the diffusion equation for that region is

D V’u(z, y) — oaulz, y) + 8@z, y) = 0,
t=1,2,3,4, (6)

where the Laplacian operator is, of course, in Cartesian
coordinates. Integrating each of these diffusion equations
over the appropriate rectangle, say r; of Fig. 2, we have,
since the constants D,, o; and =, are region-wise constant,

D; ff Viulz, y) dz dy — o, ff w(zx, y) dz dy

+ 3 [[ S@pdzay =0, i=1,234

By Green’s theorem, the first term of (7) can be reduced
to a line integral about the circumference d, of the rec-
tangle r,, which gives
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f (x, ?/)ds—a.ffu(x ) dz dy

+ 3 [[ 86,9 ldy =0, i=12314 @

where du(x, y)/on is the derivative in the direction along
the outward normal to d;, the line integration being per-
formed in the usual counterclockwise manner, as indicated
by the arrows in Fig. 2.

Adding the four expressions of (8) we obtain

S [ Zewa-

i=1

2 ff u(z, y) dr dy

+ = ff Sz, v) dx dy} = 0. 9

If T denotes the circumference of the union of the rec-
tangles 7, 7., 73, and r,, then using the continuity of
current of Section II-A, we have an exact theoretical
cancellation of all line integrals which do not coincide

with 7', and (9) reduces to
;ffu(fc, Y) dz dy

:{ fa @, v) ds —
sy ff Sz, 1) dx cly} -0,

where d; is that part of d; common to 7.

In order to reduce this specifically to a five-point
formula, we now make numerical approximations to the
integrals above. Basically, the approximations made are

(10)
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f,, 2 f gz, y) de dy = gla, , b)[(a: — a)(b, — b)];

[ o@ dr = gadie — a. ap
TFurthermore, derivatives such as d(z, + h,/2)/dy are
approximated by the central difference formula:

du h) - u(xo , Yo 4+ ) — ulz, yﬂ)_

?a_y(xoyy0+2 h[

(12)

The final numerical approximation to (10) which will
be our five-point formula can be written in the form:

(DJLZ':*—' - ‘D' 4h‘)u(-‘lio ) Yo + Ry)
2h,

Dy + Dol
+ (‘D‘l"b“é:;“:’”h)u(xo — ha , Yo)

+ (M)u(% s Yo — ha)

2’l3
n (Dsha + D4h.>u(mu g0

2h,

Db, + Dy . Db, 4+ D,h,
-~ u(z, , yo){ 2n, + h,
D,h, + Dihy ;| D3hs + D,

AT T

4+ Hohy + aohohs + ashshy + aJLJL,)}

4 Solzo ’ yo)'
(Elhlh2 + Zohohy + Zahshy + 24]7'4’11)
4

= 0. (13)

We observe that the coefficient of u(z,, yo) is strictly
greater, in absolute value, than the sum of the coefficients
of the other u(z, ¥)’s since o, a physical cross section,
is positive. This will be of importance in Section 1I-C.

If the chosen mesh point (z,, ¥o) does lie on an interface
7v: defining a region C; and the group considered is the
slow group, the above derivation of the five-point formula
is not valid. We shall show, for example, how the five-
point formula for the slow group is derived at the corner
(%o, Yo) of the region C, of Fig. 3. The other cases follow
in a similar manner.

In regions R,, R,, R,, the diffusion equations are
Divzu(xy y) - U'iu(x: y) + E;S(.’I}, y) = 0,

i=1,2,3. (14

Integrating over the three rectangles r,, r,, r,, we have,
as before:

D; f[ Viulx, y) dz dy — o; ff w(x, ) dz dy

+ X ffS(x,y)dxdy:O, r=1,23. (15)
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Using Green’s theorem and the continuity of current, we
have analogously after adding the three expressions above

3

Z{D; L g%(x, ) ds — o, ff uz,y) dedy  (16)

=1

+ 2 ff Sz, y) dx dy} =0.

The numerical approximations of (11) and (12) are used
on all terms of (16) with the exception of the integrals:

Vvot+hi/2
au
D, j;. (—35(:50 ,y)d?l,

and

zothal/2
u
D, f 5 @ W) do.

°

From (3) we have that

u 4

Pl C2%) ’1.- =~ pu=,y)
at all points of v,. Thus,

voth /2 Ju vo+hi/2
le a(iﬂo,y) dy: —Cf u(xo:y) dyl

Yo

and /

Tothal/2 Ju Zo+he/2
Dt! f @ (xy yo) dz = _cf u(x; yO) dx;

and these integrals are approximated numerically, respec-
tively, by —c(h./2)u(xo, yo), and —c(hy/2)u(@,, yo). The

final numerical approximation to (14) ecan then be written
in the form
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Dyh, + Dshy | Dshs he 4y .
-+ oh, -+ h, + ¢ 5 Fig. 4.
hihs + oshohs + o3hsh
4 Dot I e 42 2t .,} the slow group by skipping such points within regions C;,
and the matrix equations are now
+ S, 1) LE=B¥;  Ad = B3 (19)
(E,h,h, + 22};2”3 + zshﬂh‘) = 0. (17) where A,, B, are N’ X N’ real matrices with N’ < N.

Again we remark that the coefficient of u(x,, %) is, in
absolute value, greater than the sum of the coefficients of
the other u(z, y)’s since ¢ and the o’s are positive.

Although the slow group flux ¢ theoretically is not
defined interior to the regions C,, a trivial five-point
formula with coefficients all zero is, nevertheless, desig-
nated for ¢ in the diserete problem.

C. Properties of the Matrices Defined by the Discrele Approxi-
malions

If the total number of interior mesh points is N, then
with the previous section for each group we have N
linear equations in N unknowns. As yet, no systematic
numbering or ordering of the N' unknowns for each group
has been given, but since the heterogeneous reactor
problem has been stated only for rectangular regions, the
most natural ordering of the points is to number the
unknowns by consecutive rows, as shown by the example
in Fig. 4. For the example, both ¢, ¥ vanish on T. Thus,
having ordered the unknowns, we may write the N equa-
tions in N unknowns for the two-group problem in the
matrix form:

Al‘; = BHZ
A = nByp.

Here A,, 4,, B,, B, are N X N real matrices, and the
column vectors ¢, ¥ represent, respectively, the slow
group flux and the fast group flux for the discrete case.

If in the problem to be solved there exist regions C,
then since the slow flux is not defined in the interior of
each C; while the fast flux is defined there, we see that
the total number of essentzal unknowns in the discrete
numerical approximation for the slow group flux is less
than that for the fast group flux. In such problems we
see by the closing remark of Section 1I-B that B, must have
rows of zeros and is, therefore, singular. For mathematical
convenience then, we shall renumber the unknowns for

(18)

Theorem 1: For all heterogeneous reactors of the type
described in Section II-A and for all positive values of the
mesh increments in both z, y directions, we have:

A,, A, are symmetric and positive definite, the
diagonal elements of both being positive, whereas the
off-diagonal elements of A,, A, are nonpositive.

B,, B, are diagonal matrices, B, having only
positive diagonal elements, whereas B, has non-
negative diagonal elements.

Proof: Everything except the positive definite nature
of 4, and 4, follows immediately from the discussion in
the previous section. Let D, and D, be positive diagonal
matrices such that D,4, and D,4, are matrices with
one’s on their main diagonals. Thus, we may write D, 4, =
I — M, and D,A, = I — M,; M, is an N’ X N’ matrix
with zero diagonal elements, and M, is an N X N matrix
with zero diagonal elements. Furthermore, M, and M,
have all their elements nonnegative and, by virtue of the
preceding section, the sum of the elements in any row of
M,, M, is less than unity. Thus, by Corollary 1, (Section
IV-A) the spectral norms of M,, M, are less than unity.
Thus® 4,, 4, are positive definite. (QED).

We shall refer to the matrices M,, M, as the initial
tteration matrices.

Theorem 2: A, and A, are ordered consistently and
satisfy property (A) in the sense of Young [1].

Proof: This is an easy consequence of the definitions
given by Young [1].

The results of the above theorems will be useful when
the iterative procedure is discussed in Section ITI.

D. The Well-set Nature of the Discrele Case for Helero-
geneous Reaclors

In the initial statement of the reactor problem for the
continuous case, we stated that we sought the solution

2 See Young, {1}, p. 94.
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pair ¢(z, ¥), ¥(z, y) corresponding to the smallest (in
modulus) eigenvalue. For heterogencous reactors, it has
not been shown for the steady-state case, with any
number of groups, that the smallest (in modulus) eigen-
value for the continuous (space) case is positive and has
multiplicity one.

Tor the discrete space case, with or without time de-
pendence, the problem is considerably easier to answer;
it is known [2] that for two groups, or more generally for
n groups, for every set of positive mesh increments the
smallest eigenvalue in modulus is positive, has multi-
plicity one, and the corresponding neutron fluxes can be
taken to have positive components. The proof holds in
any dimension. With this fact, we can actually prove
that the iterative procedure to be described converges.
Thus, by virtue of the fact that in this paper we are inter-
ested in solutions obtained from computing machines
we are guaranteed of a well-set problem for the machines’

III. Tuge ITerATIVE PrOCEDURE USED TO SOLVE
THE DISCRETE PROBLEM

A. The Power Method of Solving the Eigenvalue Problem
in the Discrete Case

From Section II-B, the matrix equations to be solved are
{ Ai$ = B
Asf = 1B:9,

(20)

where all matrices are N X N. By Theorem 1), 4, is
positive definite and therefore nonsingular. We may then
reduce the above set of equations to the single equation

T A$ = BiATBG = L3, (@1)
By definition, the product L = B,A;'B, is an N X N
matrix. Since the N X N diagonal matrix B, has diagonal
elements zero and, therefore, entire rows of zero elements
(corresponding to mesh points interior to the regions C;,
if they exist), the same will be true of the product matrix L.
As in Section II-B, we now may renumber our unknowns
for the slow-group flux, giving

A3 = I3 (22)

=2 -

By Theorem 1, A, is positive definite and thus non-
singular. If we denote the product matrix A7'L by 7T,
(22) can be written in the form:

$ = TF. (23)

EE

To solve the above eigenvalue problem, we use the welll
known power method, whose convergence is assured by
the well-set nature of the discrete problem.

Theorem 3: If &, is an arbitrary vector with positive
components, define

TRANSACTIONS ON NUCLEAR SCIENCE

December
L&
(I)"-H )\; 3
where T'®, = S‘-, and
;=(‘§\'y‘§€)] for i=0,1,2,---.
(Si ? CI){)

Then, the sequence {®.}7., converges to the discrete
slow-group flux corresponding to the smallest (in modulus)
eigenvalue 5. Moreover, n = lim,.. (I/\;) > 0, and if
lim,.. ¥, = &, then & has positive components.

Proof: The power method clearly converges since the
smallest (in modulus) eigenvalue 5 has multiplicity one,
on the basis of the results of Birkhoff and Varga [2]. We
also know from [2] that n = lim,... 1/)\; is positive, and
since the product matrix 7' is nonnegative and semi-
transitive [2], each vector &, has positive components,
and therefore, the sequence converges to a vector with
positive components.

The successive reciprocals 1/X; = »; are called the
successive eigenvalue estimates of y. The iteration defined
in terms of (23)_can be interpreted via (20). Specifically,
let n, > 0 and @0, a vector with positive components, be
initial estimates of the smallest eigenvalue and the
corresponding slow-group flux vector of the discrete
problem. Solve the second matrix equation of (20) for
¥i. With B, 1,[/1, solve for ¢, in the first matrix equation of
(20). With ¢,, no, $o, form

m o= ’70(;;_“‘*“1 "f")'
1 ¢1

Now we are in a position to repeat the process with 1,
s replacing 7o, $o, respectxvely By Theorem 3, we are
assured that lim, .. ¢;, lim,... ¥;, and lim,.. =, exist,
the limits giving rise to the sought-for solutions of the
discrete form of the two-group diffusion problem for a
heterogeneous reactor.

B. The Successive Overrelazation Method [1], [15]

In the previous section, we found it necessary, in order
to find the largest of the quantities 1/% by the power
method, to solve mtermedxate matrix equations of the
form:

A% =k, and A =F,, (24)

where A,, A,, ky, k, are assumed to be known. The method
that is used in the machine code QED-1 to solve these
matrix equations is the Young-Frankel method [1], [15].
If we first take the matrix equation 4,¢ = k., then, by
Section II-B, there is a positive diagonal matrix D, such
that D,4, = I — M,, where M, is a matrix whose diagonal
elements are zero and whose off-diagonal elements are
nonnegative. From A,¢§ = k,, we have

Dedoy = (I — MY = ¥ — Mof = Dok, (25)
or '

‘Z = M,y + f, where 7= Dk, . (26)
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If M, = || m{® || and F has components f:, we may write iterations of the type in (28) and (29) are required, in

(26) as general, to obtain exact answers to the matrix equations
is1 N of (24). Second, the number of iterations required to

Vo= om0 my 4 L, achieve a certain accuracy in (28) and (29) is very much
i=1 F=i+]

i=1,2,---,N. (20

The iterative method of successive overrelaxation is
defined as

i—1 N
T R ML R )

=1 j=itl
(n)
+ ‘l’in y 7N~

Similarly, for the first matrix equation of (24),

i-1 N’
{n+1) (1) y(n+1) (1) % (n) {n)
N = wx{E m;,; P; + Z mi %" + g — q>‘."}
i=1

f=i+l

=1, - (28)

+ &, (29)
where D,A, = I — M,,and M, = || m{}||, and g = D,,.
The parameters w,, w, are called, respectively, the suc-
cessive overrelaxation factors for the slow-group flux and
the fast-group flux. The convergence of these iterative
procedures is guaranteed by:

i=1)2)”' » N,

Theorem 4: The iterative procedures of (28) and (29)
converge for any w,, w, with 1 < w,, w, < 2. [furthermore,
the optimum rates of convergence for these iterative

procedures are obtained by selecting w, and w, according

to the formulas
2
1+ V1= [&0))P’

wy; =

14+ V1 — @My)P’

where g(M,), g(M,) are, respectively, the spectral norms
of the definition in Section IV-B, for the matrices M, M,.

Proof: From Young [1], to prove this theorem, it is
sufficient to prove that 4,, 4, are symmetric and positive
definite, satisfy property (4), and are consistently
ordered. But this is known from Theorems 1 and 2.

A priort, it is just as difficult to estimate w, and w, as
it is to estimate g(M,) and E(M,) for a general discrete
problem, so that Theorem 4, by itself, offers little to the
problem of estimating the «’s. To make the problem
- even more difficult, it is known that to achieve an opti-
mum rate of convergence it is necessary that the w’s
be chosen with great care. This has been demonstrated
both theoretically [1] and experimentally [14]. In Section
IV, we shall show how this factor can be estimated
accurately by a theoretically sound technique, whose
practical application results in an efficient means of
estimating the factors w.

C. Inner and Ouler Iteralzons

Two remarks concerning the iterative scheme of Section
ITI-B are now in order. First, an infinile number of

dependent on the initial flux estimates ¥, 3 a remark
that will be useful in Section V. »

The numerical solution of the discrete case is obtained
by forming sequence of vectors {‘5;}‘?_0 of Theorem 3
and truncating this sequence after a certain number of
steps in order to achieve a certain accuracy. By Section
I1I-B, we see that to form each new &; an infinite
number of iterations by the successive overrelaxation
method would be required to solve (24). This situation is
replaced by a more practical one in which only a finite
number of iterations are performed in each group. The
iterations in each group are called inner iterations.’
When sufficiently many inner iterations have been
performed in each group, the new eigenvalue estimate
n:41 18 calculated from the inner product:

(&;i y 5{+1) .

Niva = N 7= = (30)
L (@, i)
Also, the quantities #;., and 7., are calculated from
[ (3);
Ni+1 = 7N MM {—-(4—)} ’
i (q:'-'-n):‘ (31)
_ @), }
flsa1 = 7; Max {_.——
" i (®ie1); ,

where (3,); is the j~th component of &,. The transition
from 7;, &; t0 n:41, Biyy s called an outer steration.

The pairs of numbers {y,, %;}7., are pair-wise nested
[2] in the sense of Corollary 2, Section IV-A, if sufficiently
many inner iterations are performed in each group.
Furthermore, it is obvious that 7. < %; < 4; and all
three are precisely equal only if &, is the unique slow-
group flux solution of (20). Thus,

Ni — N
N

E; = (32)

is 2 measure of the accuracy of &, as an eigenvector in
(24).

Definition 1: If X has components z,, ¢ = 1,2, - - - ,n,
then || X || = D77, ] 2: | is called the norm of X.

Definition 2: B8l = Yty — :/;,,., R®, = &, — &,
are called, respectively, the residual vectors after m itera-
tions for the fast group flux and the slow group flux.

It is clear that the values 7;, 7., %; depend on the
number of inner iterations performed in each group. If
too few inner iterations are performed, there is the possi-
bility of a type of pseudo-convergence where I, becomes
very small without &, being nearly an eigenvector of (24).
To circumvent this difficulty, a positive number ¢ is
prescribed, where e is associated with the desired accuracy

* Much of the terminology which accompanies the numerical
solution of multigroup diffusion problems was introduced via the
Cuthill code.
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~of the I/'s, and enough inner iterations m,, m, are per-
formed in each group so that

WED S LBV, B

ma

| < el B 1.

Here m,, m, are functions of the number of outer iterations.
The problem is terminated when

I, <26,
IV. ComruraTioN oF THE SUCCESSIVE OVERRELAXATION
Facror ror Eacu Grour

A. Determination of the Spectral Norm of the Matrices M

The essential fact used in the determination of the
optimum overrelaxation factor w is that N X N matrices

M = || m; ;|| of Section III have nonnegative elements.
We begin with:

Definition 3: The n X n matrix A = || a;.; || is a Perron
matrix {(=)a;,; > Oforalls,j =1, .- n.

The following theorem is known [4].

Theorem &: If A is a Perron matrix, then the largest
(in modulus) eigenvalue of 4 is positive has multiplicity
one and its corresponding eigenvector has components
which may be taken to be positive.

The particular eigenvalue given by Theorem 5 is
called the Perron root of A and is denoted by A, (3], [4].

Lemma 1:if A is a Perron matrix,

1

%, and A':E——-i}, and

&1
I

1
m = max; (y:), m = min, (y,),
thenm < A; < 7.

Proof: We include the proof for completeness. It is
clear that y; = D", a;.; is the sum of the elements of
the i-th row of 4, and #, m are, respectively, the greatest,
least of the sums of the elements of each row of 4. If

v is the eigenvector associated with A 4, then v, > 0 for
1=12 ---,n,and

Z ;¥ = Ag; .

i=1
If we normalize » so that max; v; = 1, we have for at
least one value of the index 7, say », that

n
z Qi
i=1

)\,; = Zam‘”i <

i=1

since the a, ; > 0, and, therefore,

hid n
M S Za’r.i < max Ea"i = 7.
=1

¥ i=1

The other inequality follows similarly. QED.

Theorem 6: If A is a Perron matrix, and % is an arbi-
trary vector with positive components, then

December

[ n n
a) Z Qi Ui Z i, iU;
min |2t < A < max |A—o
i U i Uy J

b) J

max lmin
WeR i U;

n
Z a; Uj

i=1

i=1

"Z ;Ui 1
J

= A4 = min | max

) H
ueR i i

where R is the set of all vectors u with positive components.
Proof: Part a) is a special case of results by Stein [5] and
Collatz [6]. If B) is the positive diagonal matrix

L

Uy

o L
U

n

then ¢ = BAB™' has the same eigenvalues as 4 and,
moreover, C is a Perron matrix. Applying Lemma 1
to the matrix C, we have part a). Thus

;. iU;
max |min |4~

TeR i i

n
Z a;, U

< 24 £ min {max |[—-

9
WeR i U

and since the eigenvector v of A, associated with A 4, 18 an
element of R, then only equality is possible, proving part
b). QED.
element of R, then only equality is possible, proving b).

This min-max nature of Perron roots has been utilized
in a recent paper of Bellman [3].

Definition 4: The spectral norm g(B) of the n X n
matrix B is given by

A(B) = maxy.ys,..... | A |, where A, is an eigenvalue of B.

Corollary 1: If the n X n matrix B = || b,,; || has
nonnegative elements and v is an arbitrary vector with
positive components, then

min (____Eb;_,u,) < E(B) < max (—*—Eb"iu')
i Us; i Uq
Proof: By replacing the zero elements of B by ¢, ¢ > 0,
the new n X n matrix B* = || b¥, || is a Perron matrix,
and for u a positive vector,

min (E—b:—il'—’) < Age < max (M)
H U; i Ui
Keeping the positive vector u fixed, we have by Theorem
5 that A* = g(B*) for every ¢ > 0, and clearly
lim,;o Z(B*) = u(B). Letting ¢ | 0, we have the result.
Corollary 2: If the n X 'n matrix B = || b,; || has
nonnegative elements and no row of B has all zero
elements and u is an arbitrary vector with positive
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components, then let w, = B%u, k = 0, 1,2, --- . If
M4, m, represent, respectively, the upper and lower
bounds on g(B) by using u,, then

M < vy < gy < Ty »

Proof: From the assumptions of this corollary, z, has
positive components forallk = 0, 1,2, - - - . It is sufficient,
then, to show that the above inequalities are valid for
k = 0. By definition,

J'Z bi.k(Z bk.l“l)l
M, = max == =
) M n
; kz bi,kuk
-1

_ = b;.)‘uk 1
= max g 21 u

3 -1 Z bi‘lul I=1

i=1
n
b' KU — -

< max ) > |2y | = 7, .

T k=1

Z b:,

1=

Similarly, m, < m,. QED.
The corollaries above then give us a method for com-

puting both upper and lower bounds on @(B). With the

conditions of Corollary 2), we have

lim m, < lim #, .

k—oo ks

For the matrix M, which is of interest here, one can con-
clude [1] that the eigenvalues of M occur in == pairs, so
that for some vector w with positive components,
limy.o My < limye 4.

Theorem 7: Let M be the n X n matrix described in
Section II, and let % be an arbitrary vector with positive
components. If w, = (M + o)*u, k = 0,1, 2, --- and if
My, M are the upper, lower bounds, respectively, on
(M + al), then for every & > 0,

a) M < M < ﬁ(M) +a < My, < iy,
and
b) lim my = lim M, = g(M) + «.

koo koo

Proof: The matrix M described in Section II satisfies
the conditions of Corollaries 1 and 2, as does M + oI for
a > 0. Since g(M + ol) = g(M) + « part a) follows
from Corollaries 1 and 2. Since the eigenvalues of 3/ occur
in == pairs, then the largest (in modulus) eigenvalue of
M + ol is positive. By the well-known properties of
the power method, the vectors converge in direction
to an eigenvector corresponding to the largest eigenvalue
o of M -+ «ol, and thus part b) follows. QED.

This theorem gives then a practical means of obtaining
(M) to any desired accuracy. The selection of the positive
constant « will be discussed in Section IV-C. With the
spectral norm a(3), the optimum overrelaxation factor
w is simply computed by means of the formula
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B. Use of Weighted Inner Products for Improving Bounds

.on i(B)

We begin here with some elementary lemmas.
Lemma 2: If B is a symmetric # X n matrix and the
eigenvalues of B are ¢, with

<X - Lo,
then for z » 0,
g < (Bix,_.x) <o,.
(z, z)

Proof: The eigenvectors v, of B span V,(R) and can
be chosen to be orthonormal. If

n
2
(Bz,z) _ k}.:{ Cu

(=, 2)

n 2

2
Z Ci
k=1

and since this is a weighted average of the ¢,’s, the result
follows. QED.

By way of terminology, the quotient (BZ, z)/(%, 7)
is called the Rayleigh quotient, and the quotient
(B%, B1)/ (B, ) is called the modified Rayleigh quotient,
or the Schwartz quolient.

Lemma 3: If B is an arbitrary n X n matrix, z # 0
and (Bz, z) 5 0, then
(Bz, )
(=, 2)

n
T = ). v, then
k=1

(Bz, B2)
~ | (Bz,2) |

If B is symmetric and positive definite with eigenvalues
ox, where 0 < o, < 0, < --- < 0, then

< (lix,ﬁx) < (Bx“: sz) <
(x, ) (Bz, x)

n .

Proof: The first part is just Cauchy’s inequality. The
second part is known [7], and follows easily from con-
siderations of weighted averages, as in Lemma 1.

The modified Rayleigh quotient is not always a con-
servative estimate of the largest eigenvalue of a symmetric
matrix, as is seen by

Lemma 4: If B is a symmetric n X n matrix with
eigenvalues ¢; < 0, < -+ < 0, where ¢, > 0, then

(Bx, Bx)/(Bz, %) < o, for all vectors 7 5 0 if and only
if B is symmetric and positive definite.

Proof: By Lemma 3, we may assume that B is not
positive definite, so that o, < 0. If the eigenvectors of B
are v, with By, = a0 let £ = 3, + B, where 0 <

B < (on/—a)""™
(Bz,Bx) _ a0y + Bl
(B;,’ %) 0. + Blol

Then, > a,. QED.
We now return to the determination of the spectral
norm of the n X n iteration matrix M associated with the
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positive definite and symmetric matrix 4 of Section I1-B.
Let D be the positive diagonal matrix

1,
Ay
D = ’ ,
0 1
An,n

where A = || a;; ||, and let B = DA = I — M. Since
the eigenvalues A, of A satisfy g < A\ £ &, then the
eigenvalues v, of B satisfy 1 — g < v, < 1 4 4. Let
C = D™'’BD'Y? = DY?ADY* Thus, C is similar to B,
and C is obviously symmetric and positive definite. Its
eigenvalues ¢, satisfy

l—p<asl+g
For an arbitrary vector y 0, by Lemma 3, we have
1—a<s@h 4y (33)
@v ~
Setting y = D™'/’Z, we have
Cy,y) _ Bz, D'z)
(,y) (z,D7'v)
since D is symmetric. With B = I — M, (33) reduces to
.
i< M < . (34)
(z, D')

If we define the weighted inner product as [y, 2] =
> wire;.;, then (34) becomes

= < [. (35)

Although M is not in general symmetric, the weighted
Rayleigh quotient for M gives rise to a conservalive
estimate of the spectral norm of M. This gives us*

Theorem 8: If M is the n X n iteration matrix described
above and z is an arbitrary vector with positive com-
ponents, then

Furthermore, the eigenvectors of M are orthogonal with
respect to the weighted inner product.

As a result of this theorem, the best bounds on the
spectral norm g at the 7-th iteration will be

LLE2 D {(ﬂ{m}
[z, z] i (x);
At the present time, we are not using the weighted
inner products. In QED-1,

al)* %, with u, having all components unity are performed,
and the final upper and lower bounds on g are, respectively,

4 For a discussion of the orthogonality of eigenvectors with
respect to the weighted inner product, see Flanders and Shortley
{8l

four iterations u, = (M +

December

s and m,. From the sequence of modified Rayleigh
quotients {N\.}i_,, a 6° procedure [9], [10] is used on the
last three estimates in the form:

()\'5 - )\4>2 .
Ae — 2N + A

Gy = Ay —
Then &, is the final estimate of z. From the formula

wl(f) = 0<B<1,

2
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«(B) is a 1-1 function of B, so that
w(m) < w(@) < w(m,), provided m, < ¢ < M,
Performed in this manner, we have upper and lower
bounds on, as well as an estimate of, the optimum suc-
cessive overrelaxation factor.

C. Selection of the Parameter o

In Section IV-A, a positive parameter a was added to
the diagonal of the initial iteration matrix M in order to
insure convergence of the successive upper and lower
bounds A;, m; to the same limit. Although the final
estimates for the optimum w after four iterations are
quite insensitive to the value of « used, we include here
the analysis on the selection of « for the sake of complete-
ness.

Let the eigenvalues of the n X = iteration matrix M
beo;,7=1,2,---,n, wheres, < o, < --+ < 0,. Since
the eigenvalues of M oceur in == pairs, then o; = —a,,,_;,
i=1,2 ---, n Also, the eigenvectors 7; of M span
V.(R), so that for any vector z with positive components
we have

(36)

= 2 ;.
=1
Furthermore, using the fact that the matrix M is non-
negative and semitransitive, it can be shown [2] that
some power of (M + ol), « > 0 is a Perron matrix, so
that v, has positive components and that ¢, > 0 and
oy < a,. We have

(M‘*‘Od)m-. Ec(a, +a) v
=1
n—1 !
= ¢y(0n + )" [v,.-l— ;Z (U' ii) ?;]. (37
Definition 6: If
T(a) = max ﬁi_‘i , where o > 0’
jwl.2, 000 ne1 | O + @

then the rate of convergence R(«), as a function of «, is
given by
! Rl =

Clearly, r(a) gives a measure of the deviation in direction
of the vector i},,. = (M + o)™z from Z,,, and R(a) is
related to the number of iterations required to make the
norm of the term

= ¢ + a\"
2 Cn( +a> v; small.

—In r(@).
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The following lemmas are easily established.
Lemma &

(o) = %:_Fg for 0 <o < 3o, — 0.my),
and
R I S TN
Lemma 6
dR(e) Opy — O,
de  (on + @)(ous + oz)
for a > 3o, — 0,.)) > 0,
and
dR(cz) 20,

de ~ (on F o — )~
for 0 <a < 3o, — on_y).

With these lemmas, the proof of the following theorem
is trivial.

Theorem 9. The optimum rate of convergence is obtained
for

a* = 3o, — 0,1) > 0.

Furthermore, for any § with 0 < & < o*, R(e* + 8) >
R(a* — 8).

Thus, Theorem 9 states that it is better to overestimate
a, rather than to underestimate «. This is very similar to
the results on the selection of the optimum successive
overrelaxation factor [1]. For similar use of a parameter in
optimizing the rate of convergence of solutions to eigen-
value problems, see [11]-{13].

D. A Numerical Ezample

To illustrate the technique of estimating the optimum
overrelaxation factor described in the previous sections,
we consider the following numerical example.

1 —0.5 0 0 0
-0.5 1 —0.4 0 0
A = 0 —0.4 1.3333 —0.6667 0
0 0 —0.6667 10.3333 —0.6667
L O 0 0 —0.6667 1.6667 |

Matrix 4 is of the type considered in Theorems 1) and 2).
The associated initial iteration matrix M is given by:

0 05 0 0 0]

05 0 04 0 O
M=;0 03 0 05 0
0 0 05 0 0.5

L0 0 0 04 0

Varga: Two-Group Diffusion Equations in z-y Geometry 61

The following numerical results were obtained with
= 0.1. The quantities A, X are

Iter-

ation ~ .

No. A by A X o &
1 0.4 1.0 0.720 0.785366(0.70526 |0,776471
2 0.63636410.94444410.747934/0.767771/0.754661(0.775395
3 0.661224/0.882716/0.765365/0.777045/0.759956/0.771826
4 10.690578/0.853619(0.758357/0.765231{0.762577/0.769602 .

respectively, the Perron bounds on the spectral norm
B(M) of M; ), X are, respectively, the Rayleigh quotient
and modified Rayleigh quotient estimates of @(M); and
o, ¢ are, respectively, the Rayleigh quotient and modified
Rayleigh quotient estimates of z(}) obtained by using
the weighted inner product of Section IV-B.

If v, », are, respectively, the results from applying the
5" technique to the last three entries in the columns X
G, then

= (0.771850, v, = 0.765923;

and if w,, w, are the corresponding overrelaxation factors
associated with »,, »,, then

= 1.222640, = 1.217336.

For this example, the optimum overrelaxation factor is
wy = 1.217985.

V. EXTRAPOLATION AND RENORMALIZATION

We have seen in Theorem 3 that the sequence of
vectors {&;}7., converges to the discrete slow flux cor-
responding to the smallest (in modulus) eigenvalue of
(24). In order to increase the rate of convergence of this
iterative procedure, an _extrapolation scheme [11}-13] is
used on the sequence {3, }omor

Theorem 10: Let &, be an arbitrary vector with positive
components, let 5, > 0, and define recursively:

V.'n(l + ﬁ)‘i;in - Bn.»gl;?'

5?44 = y
Ni+1
where
T("Ii‘i’.*:) = (—I;H»l ’
7 ((sii»l y i‘)”:)
Nivr = i T =,
(‘Z)en , Piir)
and
. “ 7:PF H
Vigr = T
@i ]
Then, for
L+B8  fien
— > —_— ,
B8 Vil
fb,“ has positive components, ¢ = 0 1,2, -
Moreover, || n,,,8%,, || = || 7% ]|

Proof: Tt is sufficient to prove the first part for ¢ = 0.
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Let &, have components¢; > 0. Then, S, = »,(1 + B)d, —
Bn0®, has components:

Si = Vx(l -+ 5)‘//»‘ — Bned; -
For B8 > 0, S; is positive (=) (1 4+ B)/8 > (1/v.)) (ne:/¥s),

¢; > 0 since the matrix 7' has nonnegative elements. But
n0b;/¥; < 7y, so that S; is positive for all 7if (1 4+ 8)/8 >
#i,/v,. This proves the first part. The second part follows
from definition. QED.

The above iteration sequence {&%}7., can be thought
of as an extrapolation and renormalization performed
on the sequence {&;}7.,. The norm-preserving feature of
the definition of n,&* is important when the last used fast
group flux ¥, is used as an gnitial approximation in the
matrix equation:

Aa‘f—; = Bz(’?"&"f)- (36)

Thus, the norm of the vector of the right-hand side of the
equation above is kept constant in the course of the
iterations. It is fully expected that using the extrapolation
and renormalization scheme with the proper f's will
result in a reduction of effort in solving discrete matrix
problems, the reductions being as much as 50 per cent.
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