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1. Introduction

If a given irreducible # X7 complex matrix 4 admits s, 1= s=<#, Gerschgorin
disks which are isolated from the remaining disks, then it is well known that
the union of these s disks contains s eigenvalues of 4. It has been shown in [5], [9]
and [11] that, for the case where s =1, algorithms exist which yield the smallest
Gerschgorin disk under positive diagonal similarity transformations which con-
tains this isolated eigenvalue of 4.

The purpose of this note is to extend this idea to the case where s is greater
than one. It is shown, under slightly stronger hypotheses, that the analogue of
the first algorithm of [11], carries over to this situation.

2. Basic Lemmas

Let A=(«; ;) be a fixed irreducible #n X7 complex matrix, and assume that
A admits s, 1=s<#, isolated Gerschgorin disks, i.e., if

(1) i =g — |, 1=k j=n,
and
2 .
(2) Ai:Zl%,j,; 1= i=n,
-
T

then there exists a set S, SC{1, 2, ..., n}, such that the number of elements in
Sis s and

(3) dy j—Ay—A;,=Z0 forall k<S andall 7¢S.

57

Without loss of generality, we can assume that the first s Gerschgorin disks are
isolated, i.e., S={1, 2, ..., s}. Letting

@ 6i4) = |

we have that

5) (,CJFAA))mG}’(A) =@ forall {, with s<j=<wmn,

where G (4) denotes the interior of G,(4).
We wish to translate the matrix 4 so that the isolated disks are “centered”
at the origin®. The following functions are introduced to facilitate this translation.

! We remark that this is the analog in the special case s =1 of assuming that
@, =01in [9] or [11].
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Let C be the set of complex numbers, and for =0, let

(6) Kz, 7) = {26Clz— 2| =7}
Let

(7) I(s)= {we C|3r=0 such that ‘C:JlGi(A) ¢ K(w,7) and __6+1G¢ (4) CK'(w, 7)},

where K denotes the closure of the complement of K. We can associate with
each wel(s) a minimum 7, denoted by 7 (w). This 7 (w) is characterized by

®) 2K (w, () ~ 0 (Y.Gs(A)) 0.

With this characterization of #(w) and the definition of I(s) given in (7), it is
not difficult to show? that #(w) is Lipschitz-continuous on I(s) and that I(s) is
a closed subset of the complex plane. Furthermore, if I(s) =0, there exists a
unique yel(s) such that 7{y) :wig_f(s)r (w).

In the following, we assume? that our given matrix A is such that I(s)==0.
Let the center of the unique smallest circle containing @'U G,;(4) be y and let
7 =wier};fs) 7 (w) =7 (y). Consider 4, = (a;, J)=A—yIl.We further assume |4, | = (| 4, i
is such that not all the circles |z—|a; || =4; 7=1,2,...,m, are tangent to
each other at z=7%. From a result due to Taussky [8], the irreducibility of |4,
(which follows from the irreducibility of 4) and the above assumption on the
9G;(|4,|) are sufficient to imply # is not an eigenvalue of |4, and, hence, 4,
does not have an eigenvalue of modulus #. Furthermore, from the isolated nature
of the s Gerschgorin disks and this assumption on 9G;(|4,]), we now know that
the open disk |z—y| <7 contains precisely s eigenvalues of 4, and that the
open disk |z| <# contains precisely s eigenvalues of 4. The goal is to reduce

the radius of this disk.
Al — {Al,l Al,Zl i
A2,1 A2,2

Let
where A4, is s xs and Ay g is (n—s) X (n—s). As in [9] or [11], we set up a
comparison matrix B defined as follows:

!Al,ll IAI,Z‘ Bl,l Bl,2
©) B=|_\, = ,
"I 2,1| B2,2 Bz,1 Bz,2
where B, ,= (Zi' ) ASsj=n—s, is defined from 4, , in the following manner.
If Ay p=(e;), 150,705, then &, ;=]|e; | and b, j=—]e,;| for 7 ==,
From our choice of y, it follows that
(10) |a; ;| —|a: ] —A;—A;z0 forall j¢S andall €S,

where @, ,, are the diagonal entries of 4, . The assumption on 9G; (|4 i=1,2,...0m
implies that strict inequality is valid in (10) for some pair (7, 1), with j¢S and ¢¢ S.

2 Cf. reference 6, Lemmas 2.1 —2.4.
3 We remark that it is possible to have s isolated Gerschgorin disks of 4, 2 =s<mn,
with I(s) empty (cf. reference 6, Fig. 2), so that this is an added assumption.
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Lemma 1. For all |o| <%, B, ,—o[ is an H-matrix.

Pyoof. From the definition of an H-matrix given by OstrowskI [7], the proof
will be complete if we show that B, , —|¢|l is an M-matrix, for |¢| =#. By
definition, B, ;= (ZN)L ;), 1=1, {=n —s, has the proper sign pattern for an M-matrix.
Consider the case where |¢| =7 and B, , is irreducible. For each j¢S we have,
from (10), that |a; ;| —|a; ;| —A;—A,;=0 for all s¢S. Therefore, since

7= max {|a; | +4,
we have
|a;, ;| —7—A,=z0  foreach j4S.

7
Since

Z bj_s) foral ¢S,
k4=7 s

HV

we deduce that B, ,—71 is diagonally dominant. From the irreducibility of B
(which again follows from the irreducibility of 4), we know that B, ; contains
at least one entry different from zero. If the nonzero entry of B, occurs in the

7™ row of B, ,, then in the /* row of B, , —#I, we have thatb; ; —% — > |b; ;| >0,
i=1

i
and hence B, , —#1 is irreducibly diagonally dominant. But B, , —#7 iyrreducibly
diagonally dominant implies that B, , —#1 is an M-matrix [10, p. 85].

If B, , is reducible, then the proof that B, , —#1 is an M-matrix follows in a
similar fashion by consideration of the normal form for reducible matrices. It is
clear that if B, ,—#I is an M-matrix, then B, , —|o|I is an M-matrix for all
|| £7, which completes the proof.

As a consequence of Lemma 1, we have that B, , —o[ is nonsingular for all
|o| <% and we can now, in the spirit of FIEDLER and Pr4x [1], express B —ol,
|o| <7, as the following product:

Bl,l—ol—Bl,z(Bz’z—cI)“le,I'Bl,z(Bz)z——aI)“l}{ I I 0

0 I I 32,1132,2“01}'
From (11), we have that

det(B —ol)=det(B,;—0l — By 4(By 3—0I) B,y ;) det(By ;—0l).

(11)

Therefore, since det (B, ,—oI) =0 for all |¢| =7, we have that det(B —ol)=0
for some o, |o| =<7, implies that det (B, ;—ol — B, 4(B;,—0I)1B,,)=0, ie.,
o is an eigenvalue of By ;— B, (B, 3—0l)™ B, ;.

Using a tedious graph-theoretic argument [6, Appendix], it can be shown
that the following is true.

Lemma 2. If 4, is irreducible, then B, ;— By, (B, ,—¢I)™B,, is irreducible
for all ¢£<#. Moreover, for all 1<%, B, ,(By,—tI)™ By, has at least one non-
zero entry.

Let g(A)=0 (B — By,2(By,s —AI) ™ B, ,), with 0=A=7. Since
By —By3(By,— A1) B

26%
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is a nonnegative irreducible matrix for all 2, 0= A=7#, it follows, from the Perron-
Frobenius Theorem, that g(2) is a monotone increasing function of 4, 0=1=7%.
Also, from the Perron-Frobenius Theorem, we know that g(0)> 0. Therefore, if
g(?)<<7 then, since g is a continuous function of 7, it follows that there exists
a ] with <7 such that =g (By,— By s(Bs s — A1) By,). We now show that
we do indeed have g (#)<<7.

Lemma 3. If g(A)=0 (B, — By,s(Bye—A1)™ B,,), then g(7)<7.

Proof. Let E be a matrix of the same dimensions as B, ; but consisting entirely
of ones. Consider (B, , —#I)E+ B, ;. Each entry of this matrix is greater than
or equal to zero, since this is nothing more than the statement that

|a;,;| —max {la; )| + 4} —4;=0 forall 745,

which is true by virtue of the fact that

la; ;| —|a;,:| —A;—A;=z0 forall icS

and all j4S. Since B, , —#1I is an M-matrix, we have that
E=—(By,,—¥I1)" By,
Also, since B, , is nonnegative we have that

By 2 E=— By y(Bys —#1)* By,y.
Finally, we have that

(12) By 1+ By, E=B;— B,o(By,s—7I) By = C(#).
Considering row sums on both sides of (12), we have that for each row ¢, 1 <1<,
(13) {a; | + A=z pi,

where g, is the sum of the elements in the 7™ row of C(7). Since #= meagx{| a; ;| +A%,
we have that e

(14) =y, forall deS.
Therefore, we have that
(15) 7= max u, = ¢(C(7).-

However, from Lemma 2 and (11), equality in (15) would imply that # is an eigen-
value of C(#) and hence an eigenvalue of B, which contradicts our assumptions
on B. Therefore, 7> ¢ (C(7)). But ¢(C(#))=g(#), and the proof of the lemma is
complete.

Let A be the greatest real number less than 7 such that
A=0(B11— By,2(By,s — A1) B, ,).

We now wish to show that if 7 is any eigenvalue of A; ; —A; (A5 s —7I1) Ay,
then |1:] <, i.e., if we can find J, then A bounds the eigenvalues of A; which
are in the isolated region.

Lemma 4. If 1 is the greatest real number less than # such that
A=g (Bl,l — By 4(By s — A1) 32,1) )

then 4 is a bound for all eigenvalues of 4, in |z] =7, i.e., all eigenvalues of 4, in
|z] <7 are actually in |2] 2.
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Proof. Let T be an eigenvalue of 4; in |z| <7. Then

det (A1,1 — Ay o (Ag o —TI) A, -—‘5]) =0
and therefore
7| <o (A1,1 —Ay,2(4s5 “TI)_1A2,1) .

We then have the following inequalities:
IT{ §Q(|A1,1—Al,z(Az,z*T[)ﬁlAm])
=o(4y,.] + [4y,] [(Age—71)7 [ A1)
But, by the definition of B,
0(|4y,1] + |44, [(Ag,—TI)M |A4y4]) = 9(31,1“ By o|(Ag o —1I)? Bz,1)-

Also, as a result of the definition of B, , and Lemma 1, 4, , — [ is an H-matrix
and therefore we have [7] that [(d, , —71)7| < (B, — | 7|I)™%. It then follows
that

(16) | 7] §Q(B1,1“B1,2(Bz,2*,TII)ﬂBz,l)-
Since A is the greatest real number less than # such that
i=p (Bl,l — By,5(By,2 “’1[)-182,1) ,
it follows that A=|z|. Q.E.D.
Lemma 5. For £, <¢,<7%, we have
(17) — By,5(By s — 1) By 1= — By 3(By s —t,1) By 4

with strict inequality for at least one element.

Proof. Inequality (17) follows immediately from properties of M-matrices. The
strict inequality for some entry follows from the second part of Lemma 2. Q.E.D.

3. Convergence Theorem

We now state and prove our main result which, in the special case s =1,
reduces to the result of Theorem 1 of [11].

Theorem 1. Let 4 be an irreducible # X # matrix such that its first 5, 1<5s<m,
Gerschgorin disks are isolated. Assume I(s)==0 and let K(y, #) be the unique

s
minimum circle containing ,UlGi (4). Let
iz

where 4, ;13 s Xs.

’

All A12
A =4 —yI= > >
. 4 [A Ag,

Let B be the comparison matrix for 4,, assuming also that not all the Gerschgorin

circles associated with B pass through #. Then, there exists a monotone decreasing

sequence {4,}5° , converging to 1, where A is the eigenvalue of B of greatest

modulus in the region |z| <#. Furthermore, A bounds the eigenvalues of 4, in

this region and therefore bounds the eigenvalues of 4 in the region |z —p| <7.
Proof. Let

(18) ]'7;+1:Q(Bl,1~BI,Z(B&Z"—}%I)‘lB&l): n=0, =7
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I'rom the nonnegative irreducible character of the matrix
By,y — By,5(By,y —t1) " By 4
for ¢<# and Lemma 5, we know that for {,<7,
(19) 0 (Bi,1— Bi,2(Bya—t 1) By y) < 0(Byy — By a(By s — 1) By y)
if and only if #<C4,.

This inequality provides us with a basis for an induction on A, i.e., as a result
of inequality (19), if

lle(B — By 3 (By s —2I)" Bz,1)<ﬂo,
then 4,,,<4, for n=0, 1, 2, ..., and we will have a monotone strictly decreasing
sequence {4,}7> , bounded below by ¢ (B, ;) and hence a convergent sequence, i.e.,

lim A,=4 and A=g(By,— By y(Bys—Al)"By,).

n—>00

We, therefore, show that
I=p0 (Bl,l — By, 2 (B2 — }-ol)'le) <lg,

where A,=7. But this is nothing more than a restatement of Lemma 3, since
Ai=g(# and Ay=% Thus A,> 4, and inductively 4,.,<4, for all #=0. Then

lim A,=4 and A=g(By,— By y(Byo—Al)"By,).

n—> 00
The fact that A is an actual eigenvalue of B follows from the fact that
By,1—By,5(By s — A1) B,y
is a nonnegative irreducible matrix and thus the Perron Frobenius Theorem states
that A is an eigenvalue of By ; — By 5(By o —Al) ™ By, L€,
det (By, — By 3(Bg g — A1) By, —AI)=0

The factorization (11) then shows that this implies that det(B —AI)=0. That
this eigenvalue bounds the eigenvalues of A, in |z| <7 and 4 in [z—y| <7 is
a result of Lemma 4 and the construction of 4;. Q.E.D.

4, The Class Sel Ay

Since many matrices would have the same comparison matrix B associated
with them, it is natural to ask what class of matrices is involved. Therefore, we let

(20) Q4 ={C=(c; )|lci,;l = la, |, 1=4, 7=n},
where 4;=A —yI=(a, ;). From the definition of the comparison matrix B, it

is clear that each ma‘crlx CE.QA has prec1se1y the same comparison matrix and,

furthermore, B e.QA , ie, .QA —.QB—Q ;- It is also clear that each C EQA has
s eigenvalues in the disk |z| =<4, where 1 is that eigenvalue of B determined by

Theorem 1. The goal of this section is to describe the spectrum of the class IOQA‘,
restricted to |z < 4.
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Let
(21) ={z|0=|2|= A and C—zI is singular for some CESﬁAI}.
Let
(22) ‘Q[Allz{cz(ci,j)]ci,i [ I 1<7/<% and [Ci j[ —'iai,j|r 'lgh 7§%}

Let G(8)4,) be the minimal Gerschgorin set [3, 12] for |4,], i.e.,

(23) (@) =10, (06m),

where

(24) G, (x) = {zI]z —a; || = —;:i |a; ;| xj= Ai(w)}, 1=54
=

H/\

G(8,4,) also contains all the eigenvalues of each C belonging to £,,,. Let
(25) G (@) =Tt G (R4 ~ 2| 0= 1 = 2,

where rotG(.Ql 4,) is the rotation of the minimal Gerschgorin set about the
origin, i.e., z€rot G(Ql 4,)) if and only if z 6’966(!2 ,1) for some real 6. We remark
that the effect of G(.Q, 4,)) 1s to restrict con51derat10n to the disk ]z{ <2, just

as S (QA) by definition, is restricted to the same disk. Now, if g€S (QA ), then,
since oerot G(£,) [4] and |o] =4, we have that O‘GG(QMJ), e, S(Ry) <
G (Q4,)-

We assume that s> 1, since the spectrum S (QA ) has been characterized for
the case where s =1 in [11]. A dimensionality argument, together with a continuity
argument, shows that we have the following [6]:

Theorem 2. There exists a nonnegative real number 7 with v<C4 such that
EloZT= 1= CS ().

Under stronger hypotheses on 4, we can prove considerably stronger results.
As an example, we have the following theorem:

Theorem 3. Let 4,, 4, S(IOJAI) and (N}(.Q‘ 4,) be as in the previous discussion.

Let |4,| be essentially diagonally dominant [4]. Then S (!BAI):(?(Q‘ 4,))- Farther-
more, if the s isolated disks of |4,| are such that they cannot be isolated from
each other, then

S(fQA):é(QIAlI )=1{z]0=7=]zs| £4}, where 7<A.

Proof. In [4], it is shown that if |4,| is essentially diagonally dominant,
then the spectrum of .Q! 4, 1s equal to rot G (2 Al[) Since G(.Q| 4,)) is merely the
restriction of rot G (£2)4,)) to the disk || <A and S (QI 4) = (QAJ is the restriction
of the spectrum of 53, 4, to the same disk, we have that

(26) S(@y) =G @uy)-

We say that ®=(x;, %,, ..., %x,) T € P, if and only if the first s Gerschgorin disks
of X71|4,| X areisolated from the remaining disks, where X =diag (%, %, ..., %,,).
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We then say that the s isolated disks of |4,| cannot be isolated from each other
if for all @< P, and each proper subset L of S, we have that

(Y,6:(a0) (Y6t 9.
i€S

1f we now assume that the s isolated disks are such that they cannot be
isolated from each other, then, using the definition of (23), it is not difficult
to see that the minimal Gerschgorin set of |4,| must contain the segment of the
real axis from some 720 to A with 7= 2. Therefore, {z|0=t=|z| = /'L}:GN(Q,AII).

From Theorem 2, we have that {z| 0= 7= 2| =2} <S(£2,,) and that v<<4. Com-
bining this with (26) completes the proof. Q.E.D.

5. Numerical Example

In order to illustrate the algorithm of §3, we consider the following simple

example. Let 4 ol o

(27) 4=

For this matrix, 4, is given by

0 O 0 17

o o] 1 %
(28) 4= —— |

I

1 1 0 —6
and thus the comparison matrix B is

0 0[O0 1

: 5 o oj1 %
29) =

—3 —#5 0

—1 —1j0 6

Using A,4,=0(By1— By2(Ba,e —4,1) 2 By;) with 2y=7= $, for this particular
example, the first five iterates are 1.5, 0.4762, 0.3821, 0.3753, 0.3748 with all
additional iterates being the same as the fifth iterate, correct to four decimal
places.

JoHNsTON [2] considered an iterative technique similar to that of §3, but the
method involved norms. His method is also applicable to this example. With 4
partitioned as in (27) and using /y-norms, the result of JOHNSTON’S method is
that A has two eigenvalues belonging to the set {o||o —4]=0.420}. With 4
partitioned in the form

4 0] 0] 1
0 4 7

0 4= )
650) PR B
1 1 0|—2
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and using l,-norms, JOHNSTON’s result is that A has two eigenvalues belonging
to the set {o||c —4] <0.439}. The corresponding result for the technique of this
paper, as indicated by the iterates given above, is that A has two eigenvalues
belonging to the set {o||o —4| =< 0.375}.

Added in Proof: The case for which the first s Gerschgorin disks can be isolated,
under the stronger hypothesis that a; ;=a, =+ =4, has been recently studied
by ELSNER [13].
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