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§ 1. Introduction
We shall consider here the numerical approximation by the Rayleigh-Ritz
method of the eigenvalues and eigenfunctions of the following real self-adjoint
elliptic boundary value problem (cf. (21)):

(1.1) Lu(xy=AMu(x), 0<x<1,
subject to the homogeneous boundary conditions (cf. (2.2)):
(1.2) Uu(x)=0.

We shall do this by applying the Rayleigh-Ritz method to appropriately selected
finite dimensional subspaces. In particular, we consider subspaces of ““ L-spline ”’
functions, defined in [15], as well as polynomial subspaces. In so doing, we gen-
eralize the results of [1, 8, and 17], and obtain new error estimates for the ap-
proximate eigenvalues, as well as new error estimates in the uniform norm for
the approximate eigenfunctions. These results improve upon known results in
the literature, both for discrete difference methods applied to (1.1)—(1.2) (cf.
[9, 12, 16]), as well as continuous methods applied to (1.4)—(1.2) (cf. [1, 8,17]).

§ 2. The Rayleigh-Ritz Method

For the eigenvalue problem of (1.1)—(1.2), we assume that . and .# are
formally self-adjoint operators of the form

3

Lu(x)= 2 (— »1)7'[?7,(%) ol (%)]%;

7=0

2 (= 1)'[g;(0) @ 0)]?, o<x<1,

~

(2.1)
M (x)

I

where we require that 0=7< #, and we assume that the homogeneous boundary
conditions of (1.2) consist of 2% linearly independent conditions of the form

2n
(2.2) U, u(x) 21;1 {m; 0 ®00) + 7, ,u® V(1)) =0, 1=<7<2m.
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One special case of interest of (2.2) is the boundary conditions of

(2.2') u?(0) =u (1) =0, 0=j<n—1.

The coefficient functions #;(x) and g, () are real-valued functions of class C'[0, 1],
0=7=<mn,and class C k [0, 1], 0= k=7, respectively, and in addition, we require that
(2.3) #$, (%) and g,(x) do not vanish on [0, 1].

A value of A for which a nontrivial solution of (1.1)-—(1.2) exists is called an
etgenvalue, and a corresponding nontrivial solution % (x) is called an eigenfunction.

Letting & denote the set of real-valued functions of class C*”[0, 1] which satisfy
the homogeneous boundary conditions (2.2), and defining the inner product

1
(u, V)= [ u(x) v(x) dx for functions u(x) and v(x) in L2[0, 1], we assume that
0

the eigenvalue problem (1.1) —(1.2) is self-adjoint in the sense that

(2.4) (Lu, v)po=(u, Lv);, forall u,veD,
and
(2.5) (M, 0) o= (1, M), forall u,ved.

We also assume that there exist real constants K’ and d> 0 such that
(2.0) (Lu,u)pe =K' (u,u)p. and (Au,u)=d(wu,u), forall uweD.

With %, =%+ («+p).# where o is chosen so that K'+ad=0 and >0, it
follows from (2.6) that (Zu, u).=p (M u, u);, for all neZ. Because the eigen-
value problem % x= A4 x, % x=0, has the same eigenfunctions as ¥ x= /1.4 x,
U x=0, and eigenvalues simply translated by a«-f, then assuming (2.6) is es-
sentially equivalent to assuming that there exist constants K;>0 and >0
such that

(2.6 (Lu,u)pe =K (Mu,u), and (M u,u)=d(um, ). forall ueD.

Because we seek error estimates for the approximate eigenfunctions in the wmni-
form norm, we shall assume later in §4 that there exists a constant K,> 0 such that

(2.7) |#)pe = max |u(x)| = K,{(Lu,u)}} forall ucD.

0srs1

To give specific examples of eigenvalue problems (1.1)—(1.2) which satisfy
the above assumptions, consider the second-order eigenvalue problem

(2.8) — (py (%) u® (2))© - Py (2) u (%) = Ago (%) u(x), O<x<1,
where p; (¥)>0, and ¢,(x)>0 on [0, 1], with boundary conditions
(2.9) wV(0) =ogu(0), wV(1)=—oyu(1), where «,=0 and o;=0,
which was treated in [1] and [8], for example. In this case, we have
(L, 0)ps = (1, L) 2 = g p1(0) (0) 0(0) +ty 1 (1) (1) 0 (1)

(2.10) —!—Ofl{ﬁ (%) 1V () vV (%) + po (%) u (x) v (%)} dx  forall u,veD,
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and that
(241) (M, V)= (4, Mv Lg—qfqo x)v(x)dx forall w,vc2.

Next, since g,(#)>0 on [0, 1], then

(212)  (Mu,u)e=d(u,u);. forall wePD, where ‘5“01;“21%( ) > 0.

With «,=0, 0;=0, and p,(x)>0 on [0, 1], the boundary terms of (Lu, u);,
are nonnegative, and hence

()= J (10 (10 ()2 4 o) (1 ()% i

By virtue of the remarks following (2.6), we may also assume without loss of
generality that p,(¥)>0 on [0, 1]. It then follows from the above inequality

that
v ~ K - — Po (%) }
(212 (Lo, u)p= K (Mu,u), forall uecPD where Klwoggl{ 4ol |0

Moreover, the inequality above (2.12') also gives that

(Lu, u) = K, f {(s® (%)% + (e ()2} dov =K, |u|? ,
where
Ky= min {p,(x), p,(x)} > 0,

0=x=1

and by Sobolev’s inequality [18, p. 174] in one dimension, there exists a constant
K> 0 such that Ky|ufi2 = |4 e. Thus,

(2.13) {(Lu, u) $t = K} Ky |ufp forall uc.

As another example of an eigenvalue problem (1.1)—(1.2) which satisfies the
assumptions of (2.4)—(2.7), consider the problem of transverse vibrations of a
cantilever beam of variable cross-section but possessing constant flexural rigidity

(cf. [5, p. 253]):

(2.14) u¥(x) = 2(1+x) u(x), o0<x<1,

with boundary conditions

(2.15) %(0) = u (0) = u® (1) = u® (1) = 0.

In this case,

(216)  (Lu, V)= (4, Lv)1s :Oflu‘z) (%) v® (%) dx for all u,ve2,
and

(217) (M w,v)pe = (16, M V)p f1+x Yo(x)dx forall wu,ved.

0

From (2.17), we see that (#u, u);2= (u, u);:, giving the second inequality of
2.6').( Because of the boundary conditions of (2.15), the Rayleigh-Ritz inequality
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[11, p. 184] gives

1 1

[omparzf [hmpae f Joa,

and as |u(x)] =|[uM (f) dt] = {f(%(” (t))f’dt}é by Schwarz’s inequality, we thus
0 0
deduce that

(2.18) (L, u)2 = %(JZ% u). forall wed,
and
(2.18") {(Lu, u)pt = % fefpw forall uc.

To describe the relevant theory for the eigenvalue problem (1.1) —(1.2) under
the assumptions of (2.4)—(2.6'), we define the following inner products on Z:

(2.19) (u, v)p=(Mu, v). forall u,ve2,
and
(2.20) (u, v)y=(Lu,v). forall wu,veD.

Hence, from (2.6'), we have, with |u[}= (4, u)p and |ju[§ = (4, u)y, that

(2.21) || = d(u, w). forall ueZ, where d>0,
and
(2.22) |uly = VE |up forall we?, where K;>O0.

Thus, ||, and ||y are norms on &, and we denote by Hj, and Hy the Hilbert
space completions of & with respect to the norms |- |, and |||y, respectively.
As a consequence of the inequality of (2.22), we note that

(2.22") HyCHp.

It is well-known [5, p.230], [6], [7, p. 406], [10, p. 108] that solving the
eigenvalue problem (1.1)—(1.2) under the assumptions of (2.4)—(2.6") is equi-
valent to finding the extreme values and critical points of the Rayleigh quotient:

(2.23) Rlw]= |ing weHy, wz=£E0.

We remark that, because of the inequality of (2.22), R[w]= K> 0 for any we Hy
with w==0. We now state the results of BRAUER [2] and KAMKE [13 ], [14] for the
eigenvalue problem (1.1) —(1.2).

Theorem 1. With the assumptions of (2.4)—(2.6'), the eigenvalue problem of
(1.1) —(1.2) has countably many eigenvalues {1;}?2, which are real and have no
finite limit point, and can be arranged as

(2.24) 0<h=EhS - Eh=ha =

There is a corresponding sequence of eigenfunctions {p,(¥)}52, where @;(x)¢
C*[0, 1] and & @, (%)= 4.4 @;(%), 1 =1, and these eigenfunctions can be chosen

9 Numer. Math., Bd. 12
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to be orthonormal in the D-inner product of (2.19), i.e.,

(2-25) ((pi, (]77)1) = 51’7 for all 7:, 7‘ =1, 2, ey
and also
(2.26) ((p¢, ¢7)N == ),1 6%7 for all 7/., 7‘ = 1, 2, ...,

and the sequence of eigenfunctions {p; (2)}2, is complete in Hj,. Each eigen-
value 4, £=1, has the following characterization in terms of the Rayleigh
quotient of (2.23):

(2.27)  J=inf{R[w]: wec Hy such that (w, @), =0 for 1=/ <k —1} = R[p,],

k
(2.29) 4, = max {R [2 ‘, <p,}} ,
€y Coyenes Ok i=1
(2.29) Zk :ﬂx(ﬂ, va{ggf{,vk-l(x) (lnf {R [w] ; weHy, (w’ 7}f’)D =0,7=1,2..,k— 1})
linearly independent

and

k
(2.30) Ay = min ( max {R [Z ¢, v,}}) .

03(%), V(%) o, VE(X) o1, Ca,0ne, Ok i=1

linearly independent

Now, let S;; be any finite dimensional subspace of Hy, of dimension M, and
let {w;(x)}}L, be M linearly independent functions from the subspace. Thus,
any function w(x) in S; can be written as

(2.31) w (%) :ﬁlui w, (%) .

Instead of looking for the extremal points of the Rayleigh quotient R[w]
over the whole space Hy, as in Theorem 1, the Rayleigh-Ritz procedure consists
in looking for the extremal points of R[w] over the subspace S,,. Equivalently,
we now can view R[w] as a Rayleigh quotient of a symmetric matrix defined

over R, More precisely, let
2

M
M E ; Z@%;N o
(2.32) R[w]=R[uy, uy, ..., uy] =R {w =z;1ui wi}: - = E::}} .
z‘§1ui Yilp

To find the stationary values of % [u], we write

o5t 0%
(2.33) 85:1 =1 ag:} ’

which yields the matrix eigenvalue problem,

where the M X M matrices 4y = (") and By, = (%) have their entries given by
(2.35) o’ = (w;, W)y 0 = (w;, w)p, 1=4,j=M.

It is clear, from the assumptions made in (2.4)—(2.6'), that the matrices A4,
and B, are real, symmetric, and positive definite. Thus, the matrix eigenvalue
problem (2.34) has M positive eigenvalues 0<A,</,< - <1, and M cor-
responding linearly independent eigenvectors @, U, ..., ;. To each eigen-
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vector u,, 1= k=M, we associate the function

k
(2.36) Pr(x) = ;177‘;3, § WX

where ;, ; is the i-th component of the vector 4t,, and henceforth we will call J,
an approximate eigenvalue and ¢, (x) an approximate eigenfunction for (1.4) —(1.2).
Clearly, we have the following characterizations, which are analogues of (2.27),
(2.28), (2.29), and (2.30):

Ok
by =R = max%{R [ Zlci @}}
(2.37) =inf{R[w]; weSy, (w;§;)p=0

k
min (max {R Z%%}}): 1=k<M.
U (%), 0, VR (X)E S \eq, Cyyeenr Ok f==1
linearly independent

, 1=i<k—1}

Lemma 1. Let Sy, be any finite dimensional subspace of Hy with dim S,,= M,

and let 1, 1<k <M, be the corresponding approximate eigenvalues of (1.1) to
(1.2). Then,

(2.38) W=, A1=k<M.

Proof. The result follows immediately from (2.30) and (2.37). Q.E.D.

§ 3. Eigenvalue Bounds
We are now interested in the following problem. Let 1, be the k-th eigen-
value of (1.1)—(1.2), where we keep % fixed. Whenever the subspace S,, has
dimension M =%, we obtain an approximate eigenvalue 4, which is always an
upper bound for 2, from Lemma 1. Suppose now that we have a (not necessarily
nested) sequence of subspaces {Sy,}$2 where, if M;=dim S,;,, then lim M, =+ co.

i—>00

What is a sufficient condition on the asymptotic properties of S, which will
insure that Ak ; the approximate eigenvalue in Sy, corresponding to 4, tends
to A as ¢—oo? We will give an answer to this in Theorem 3. But first, we will
develop some machinery which, in essence, amounts to finding an upper bound
for /'Lk ;- For this purpose, we state the following result [1, Theorem 1], which,
is valid for our problem as well.

Theorem 2. With the assumptions of (2.4)—(2.6"), let {g;(x)}f_; be the first
k eigenfunctions of (1.1) —(1.2), orthonormalized in the sense that

(3.1) (i @)p =10, 1=14,]=k.

Let {§,(%)}i=1 be any “globally approximating set of functions” to {@; (%) Yien
in Hy, in the sense that

3
(3.2) 21”@ —gifb<1.
Then, the functions {§,(¥)}i_, are linearly independent, and if we define

(3-3) (%) =¢;(%) —gi(x), 1=i=k,

9*
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then i .
" (2 Iesli)
(3-4) hEL=ht+ T ree—= forall 1=j<k,
(1= St
where
~ 112
N ’ é C; @ ¥
(3.5) A;= max ’7—1-:7, 1< <k,
b .;_164) P D

is the j-th-approximate eigenvalue for the finite dimensional subspace of Hy
spanned by {f; ()}l
We now give our general convergence criterion for the eigenvalues.

Theorem 3. With the assumptions of (2.4)—(2.6"), let % be a fixed positive
integer, let {S);,};1 be a given (not necessarily nested) sequence of subspaces
of Hy with dim Sy, =M, >% for all # =1, and let z,m be the k-th approximate
eigenvalue, obtained from applying the Rayleigh-Ritz method (2.37) to the sub-
space Sy, n=1. If the first % eigenfunctions of (1.1)—(1.2) are ¢, (%), ..., @, (%),

and lim { é%f [ — %”N} 0 for each 1 <7< %, then the sequence {ik,n}le con-
n—o0 \w€ Sy,

verges to 4, (from above). Moreover, there exists a positive integer #, such that
for each n=m,, there exist & functions {@; n}, 1 in Sy, which are globally ap-
proximating functions to {g,}f_,, and consequently

R E [@sn— i %
(3.6) M= a=h+ =t forall n=n,.

(O T

Proof. If {p;(x)}5_, are the first & eigenfunctions of (1.1) —(1.2), then for each
n=1, let {p, ,(x } _, be defined in Sy, such that ||p; , —g,|y = é%f [ — @illx
wESy,

1< i< k. By hypothesis, lim i, — @s|y=0 for each 1=<7{=<k, and thus there

exists an #,=% such that Z [@in— @il = XJ2 for all n=mn,, where A, is the

first (positive) eigenvalue of (1 1)—(1.2). From the definition of Z; in (2.27), it

follows that [, , — gif = 7 [#;, — @& for all 1<i=<Fk and all #=1. Sum-
1

ming this inequality over ¢ then yields

}'ew ~ 1 : ~ 1
60 Sl S S-S Sorall a2,

Thus, the functions {@, ,}i., are globally approximating to {p,}*_, in the sense
of (3.2) for n=n,, and (3.4) of Theorem 2 can be applied. Thus, as lk = Zk "
from the Min-Max Principle applied to Sy, then (3.6) follows from (3.4). For
the partmular choice of functlons {@in(®)}, in Sy, it is clear by hypothesis

that both L |@;
clude from (3 6) that the sequence {Ak’ W22, converges to 4,. Q.E.D.

— ;% and Z |@:.» — @:l% tend to zero as #— oo, and we con-
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In place of lim{ irslf Nw-(piﬂN}zo for each 1=<7<<k, we could of course
n—>00 (W€ i,

make the stronger hypothesis in Theorem 3 that lim { ér;f |w —gly}=o0 for
n—>00 wESy,

every g(x) in Hy. In practice, where the eigenfunctions @;(x) are in general
not known a priori, this latter hypothesis is more readily checked, and is in fact
valid for the subspaces considered in §5. The same comment applies to Theorem 5
of §4.

As an immediate consequence of Theorem 3, we have

Corollary 1. If the hypotheses of Theorem 3 are satisfied, then for # suf-
ficiently large, we have

. k
(3.9) Ay n= 2yt Qng}l”@i, v @il
where
(3.9) o,—~>1+ as n-—>oo.

§ 4. Eigenfunction Error Bounds

With the added assumption of (2.7), our next theorem, which again makes
use of results of [1], gives an error bound in the uniform norm for the approximate
eigenfunction @, obtained on a finite dimensional subspace S,; of Hy.

Theorem 4. With the assumptions of (2.4)—(2.7), let ¢, @, ..., @, be the
first & eigenfunctions of (1.1)—(1.2), where it is assumed that the corresponding
eigenvalues A, satisfy 0</,<<A,<< :++ <, let Sy, be any finite dimensional sub-
space of Hy with dim Sy =M =%, and let 4, ,, ..., 4,, and ¢, ..., &, be the
first % approximate eigenvalues and approximate eigenvectors obtained from
applying the Rayleigh-Ritz method for (1.1)—(1.2) to S,,. Then, there exists
a constant C, dependent on % but independent of S, such that

. . L2 3
(41) 19: — @il = Ks s — iy = C {t;l(lj - )‘j)} .
Proof. With the normalizations |g,|, =|¢,l,=1 for 1=<j=#k, we define
(4.2) of=1— oy @)pt 157k,

where the sign of ¢, is chosen so that (p;» $;)p=0. Hence, we can write 0;=sin 0;,

where 0; is the angle between ¢; and ¢, in the Hilbert space H,, determined from
the D-inner product. Thus, from (4.2), we have that

(4.3) |9 —@ilp =4sin?(6,2) =2{1 —V1 -6}, 1=j=n.

Now, the result of Corollary 1 of Theorem 2 of [1], valid also for our problem,
directly gives us that ,

W) =2 RE A D -l 1=k,
Next, if we define ||}, = |3 — Al b for 1=j<k, then
Ry =2y =6l = 1,18, — o = oy + (@, — 0 B, — {3
=20 3 — iy —2%(@) 5 — 0o+ |9 — oy =6, — il
=|; — ol — ;1@ — ol
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so that

(4.5) A= 2= 1% — wil — 410 — @il

Thus, using the expression of (4.3), this becomes

(4.6) 0= |g— il = —2) +24{1 —V1—o}, 1=j=n.

Now, using the hypothesis that A,>1;, we see from (4.4) that o} =< (%E%)
2 1

and it follows from (4.4) by induction that there is a constant M, dependent
on & only, such that

J .
(4.7) FEMY (hi—4), 1=]=k.
i=1

K2

Hence, since [1—]/1—x| = » for all x>0, we see from (4.3) and (4.7) that
I ~ .
(4.8) H@—%H%éM,;l(li—ﬂi), 1=7=k,

and from (4.6) and (4.7), we similarly have

. i i .
49) g~ gl¥=4;—4) +2M 2"‘—21 (Ai—d)= M'_Zl (Ai—2A), 1=7=k,
where again M’ is dependent only on k. Thus, by virtue of our basic assumption
of (2.7), we have

(4.10) |¢; — @illt- = K3l p; — s
and thus, with the inequality of (4.9), we have

R, 1=7=k,

i - .
@11) @ — pilie0u= K¢ — oy = KgM',_ZI (Ai—A), 1=7=k,
which is the desired result. Q.E.D.

If we couple this last result with Theorem 3, we obtain

Theorem 5. With the assumptions of (2.4)—(2.7), let @y, @s, ..., @, be the
first % eigenfunctions of {1.1)—(1.2), where it is assumed that the corresponding
eigenvalues 2, satisfy 0<<2;<<A,<< -+ <J,. Then, given any sequence of (not
necessarily nested) subspaces {S;,}3° , of Hy with dim Sy, =M, =% for all n=1
such that

(4.12) lim { inf | — %HN} —0 forall 1=j<k,
n—>00 {wES M,

then the approximate eigenfunctions {¢; ,}22,, obtained from the Rayleigh-Ritz

method for (1.1)—(1.2) applied to the subspaces Sy, converge uniformly to ¢,

for each 1=k,

§ 5. High-Order Methods

Assuming that we have at our disposal an actual sequence of subspaces,
{Su, 5, of Hy satisfying the hypothesis of Theorems 3 and 5, our interest lies
in finding the asymptotic order of accuracy which will be naturally derived from
(3.6) of Theorem 3 and (4.1) of Theorem 4, i.e., we want an estimate of the rate

5
at which 2} |@; ,— @il converges to zero for a fixed & as n—>oo. Since the
=1
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positive integer % is always supposed to be fixed, it suffices to have a general
estimate for |¢p —@,|y, where @, is any approximation in Sy, for which we may
compute the above quantity.

Because of the rather great generality of the boundary conditions of (2.2)
for » large, we restrict ourselves now for reasons of brevity to the special homo-
geneous boundary conditions of (2.2'), which have been used in [3]. This is not
to say that other boundary conditions cannot be similarly considered. In fact,
boundary conditions of type (2.9) have been dealt with in [4], and, for the eigen-
value problem of (2.14) —(2.15), since only the boundary conditions % (0) = u® (0)
=0 are essential boundary conditions, the rest being suppressible boundary con-
ditions (cf. [5, p. 4]), the results to follow apply equally well to the eigenvalue
problem of (2.14) —(2.15).

As our first example, we consider B{™, the (m-1-—2n)-dimensional subspace
of Hy consisting of all real polynomials of degree m which satisfy the boundary
conditions of (2.2'). The following result is obtained from Theorems 5 and 7 of [3]
and Corollary 1 above, where we make use of the fact that the eigenfunctions
@;(%) of (1.1)—(1.2) are by Theorem 1 necessarily of class C**]0, 1].

Theorem 6. With the assumptions of (2.4)—(2.6"), let ik,m be the k-th ap-
proximate eigenvalue of (1.1)—(2.2'), obtained by applying the Rayleigh-Ritz
method to the subspace S, =B of Hy where m +1=k-2n. If the eigen-
functions {,(%)}52, of (1.1) —(2.2') are of class C'[0, 1], with £=2#, then there
exist constants M; and M, dependent on % and # but independent of m, such that

< 1 tp, L \?
54 W hw S bt My {(m nji=» 1315@”@ e n)}
for all m =M, where o is the modulus of continuity!. If in addition, the eigen-
functions {p; (%)}, are analytic in some open set of the complex plane con-
taining the interval [0, 1], then there exists a constant My with 0= ;<< 1 such that

(52) Ak /‘Lk m?
and
(53) Tim (L, — A" = .

The following result, giving the asymptotic order of accuracy for the ap-
proximate eigenfunctions, is obtained from Theorems 4 and 5.

Theorem 7. With the assumptions of (2.4)—(2.7), let @, ,, be the k-th ap-
proximate eigenfunction of (1.1)—(2.2'), obtained by applying the Rayleigh-Ritz
method to the subspace Sy = F™ of H, where m +1=k+2n. If 0<A<<Ap<

"+ <4 and the eigenfunctions, {p;(x)}32,, are of class C*[0, 1], with £=2# then
there exist constants My and M,, dependent on % and # but independent of m,
such that

54l —@k,mumg&u%—aak,muNgMg(W—;y s maxo(Dg, 1)

1 As usual, o (f, 9)

i
Z
o
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for all m=M,. If, in addition, the eigenfunctions {p,(x)}>, are analytic in some
open set of the complex plane containing the interval [0, 1], then there exists a
constant y, with 0=pu,<1 such that

(5.5) mﬁ;n-"éo (H‘?’k - @k,m“Lw)llm = H3-

We remark, as in [4], that if the eigenfunctions {p;(¥)}$°, are entire functions,
then the constants y; and u, of Theorems 6 and 7 are zero, suggesting very rapid
convergence. This assumption of analyticity is true for the example of §6, and
the numerical results of Table 1 corroborate this rapid convergence.

As our second example, we consider subspaces of L-spline functions intro-
duced in [15]. These subspaces include, as special cases, the cubic spline func-
tions and piecewise cubic Hermite functions considered in [1].

Let L be the m-th order linear differential operator defined by

wm

(5.6) Llu} =2 a;(x) D'u(x), x¢€[0,1],

7=0
for all uc K3'{0, 1], where K7'[0, 1] is defined as the class of all real-valued func-
tions «(x) on [0, 1] such that ucC”='[0,1] and D" *u(x) is absolutely con-
tinuous with D™ (x)¢ L2[0, 1]. We assume that a,(x)c K7'[0, 1], 0=7j=m, and
a4y, (%)Zw>0 for all xe[0,1]. Let 71 0=1x,<<x << *+» <xy<xy, ;=1 denote a
partition of the interval [0, 1], and let 2=z, 2, ..., 2y, Zy41), the incidence
vector, be an (N -+ 2)-vector with positive integer components each less than or
equal to m, ie., 1=2z,=m, j=0,..., N+1. If the formal adjoint, L*, of L is
defined by L*[v(x)] = > (—1)!Di[a;(x) v(x)], we have
i=0

Definition 1. The real-valued function s(x), x€[0, 1], is said to be an L-spline

for @ and # if and only if

(i) L*L[s(x)]=0 forall wxe(x;, x;.4, andeach 7=0,...,N,
(5.7) and
({i) DFs(v;—)=D's(x;+), k=0,1,...,2m—1—z, j=1,...,N.

The class of all L-splines for fixed # and 2z with zy=2zy, ;=m is denoted by
Spi(L, =, 2).

We remark that other choices for the incidence vector components z, and
Zy41 can similarly be considered (cf. [15]), but for purposes of brevity, we shall
consider here only the class Sp;(L, m, ), which corresponds to boundary inter-
polation of Typel in [15]. We do remark however, that the other types of
boundary interpolation (Types II, III, IV) considered in [15] can be especially
useful for the more general boundary conditions of (2.2).

We remark that if m =n, then Sp; (L, =, 2), the subset of elements of
Spr(L, m, z) which satisfy the boundary conditions of (2.2'), is a finite-dimensional
subspace of Hy. Moreover, given any function f(x) in C"~1[0, 1], there exists a
unique Spy (L, m, 2)-interpolate of f(x), i.e., there exists a unique s (%) in Sp;(L, 7,2)
such that

(5.8) DFs(x)=D*j(x), O0=k=z—1, O0=Z(<N-1.
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This interpolation allows us to obtain error bounds for our eigenvalue problem
in the following way. With the notation 7 = Jmax (%41 —%;), we combine The-

orem 9 of [15] and Corollary 1, again makmg use of the fact that the eigen-
functions @;(x) of (1.1)—(1.2) are by Theorem 1 necessarily of class C2*[0, 1],
to obtain

Theorem 8. Let {7}, be a sequence of partitions of [0, 1] such that lim 7;=0,
j—>00

and let {;}?2, be a corresponding sequence of incidence vectors associated with
{m;}52,. With the assumptions of (2.4)—(2.6'), let ﬁk, ; be the A-th approximate
eigenvalue of (1.1)—(2.2'), obtained by applying the Rayleigh-Ritz method to
the subspace Sy, =Sp1 (L, 7;, #;) of Hy. If the eigenfunctions {p,(x)}32, of
(1.1)—(2.2) are of class K4 [0, 1], with £=2m=2n, then there exists a constant
M,, dependent on % and # but independent of 7, and a positive integer 7, such
that

(5.9) R‘k }'k = Xk *}— M ( )2(2m ") fOr 3,11 ?‘ 27‘0.

We remark that, since subspaces of cubic splines and cubic Hermite piece-
wise polynomial functions are special cases of m=2 of Sp;(L, m, 2), the above
result generalizes the result of [1, Corollary 2 of Theorem 1].

From Theorems 4 and 8, we similarly obtain
Theorem 9. Let {7;}? | be a sequence of partitions of [0, 1] such that hm 7T;=0,

and let {z;}$2, be a corresponding sequence of incidence vectors assocmted with
{m;)32,. With the assumptions of (2.4)—(2.7), let ¢, ; be the k-th approximate
eigenfunction of (1.1)—(2.2'), obtained by applying the Rayleigh-Ritz method
to the subspace Sy, =Sp; (L, 7, #,;) of Hy. If 0<lyj<Ay< -+ <A, and the
eigenfunctions {p; ()}, are of class K}, [0, 1], with £=2m = 2%, then there exists
a constant Mg, dependent on £ and » but independent of 7, and a positive in-
teger 7, such that

540)  Ifn;—polie = K, — pilw =M@ forall =i,

We remark again that the case m=2 of cubic splines and cubic Hermite
piecewise polynomial functions of [1, Corollary 2 of Theorem 2] is generalized by
the above result.

§ 6. Numerical Results

Since the numerical results presented in [1] are very extensive for cubic
spline and cubic Hermite piecewise polynomial function subspaces of Hy, we
have decided to give here the complementary results of some numerical experi-
ments for polynomial subspaces P and quintic Hermite subspaces H§ (), the
latter being the special case of Sp,(L, &, #) with L[u]=D3u(x) and z,=3% for
all 0==¢= N1 (cf. (5.6) and Definition 1).

The particular eigenvalue problem

(6.1) W (x) 4 du(x) =0, O<wx<1,
subject to the boundary conditions

(6.2) #(0) = wu(1) =0,
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which is a special case of (2.1) —(2.2'), satisfies the assumptions of (2.4) —(2.7)
and has the known eigenfunctions @, (¥) and eigenvalues A

(6.3) @;(x)=sinjmx, L=pna% [=1,2,....

In this case, the eigenvalues are positive and distinct and the eigenfunctions
®; () are all entire, so that the constants w, and u, of Theorems 6 and 7 for the
polynomial subspaces }3‘”‘) are both zero. In Table 1 below, we give the accuracies
of the approximate eigenvalues },Ai’ w as they compare with 1272, § =1, 2, 3, 4.

Table 1. Polynomial subspaces P{™

m in P{™) dim (P{™) Zlymwnz Zz’mf 47? Eg’m — 92 Lym — 1672
3 2 1.30 - 1071 2.52 —

4 3 1.45-107¢ 2.52 13.3 —

5 4 1.45- 1074 2.31-1072 13.3 42.6

6 5 8.66 1078 2.31-1072 3.47-1071 42.6

7 6 8.66 - 1078 5.56-107° 3.47-107t 2.08

8 7 2.60 10712 5.56- 1075 3.03-1073 2.08

For the quintic Hermite subspaces H 5)3)(71 (), a uniform partition 7 (k) of
mesh size & was used. In Table 2 below, we similarly give the accuracies of the
approximate eigenvalues /T;(h) as they compare with 7%z? j=1, 2, 3, 4. Note
that Theorem 8 in this case gives us that 4, (k) — A, = O(41).

Table 2. Quintic Heymite subspaces HE (7 (1))

A dim (H@) (7 (h))) 7y (h) — a2 %y () — 4m2 Ay (h) — om? Ju(B) — 1672
1/2 7 1.27 - 1077 1.65-1073 3.51-1072 3.83-1071
1/3 10 3.66+107° 1.18- 1075 5.98- 1073 3.59-1072
1/4 13 2.42-10710 9.96 - 1077 1.18-107¢ 1.32-1072
1/5 16 7.41-10™11 9.53 1078 1.62-107% 5.06-107¢
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