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§ 1. Introduction

We shall consider here the numerical approximation of the solution of the
following real nonlinear boundary value problem

(1.1) Llu(x)]=1(xu(x), o<x<1,
with periodic boundary conditions
(1.2) D*u(0)=D'u(t), O0=k=2n—1, D= o,

where the differential operator % is defined by

n

(1.3) L)) =2 (=1 D [p;(x) D'u(x)], nz=1.

=0
The coefficient functions p,(x) are assumed to be of class C7[0, 1] with periodic
boundary behavior:

(1.4) DFp (0)=D"p;(1), O0=k=j—1, O=j=n.

The material presented here is an extension of the results of [6, 7, 18] to
such periodic boundary conditions (1.2), and it is convenient to follow the notations
and assumptions given there. Here, in analogy with [6], let S denote the linear
space of all real-valued functions w (x) defined on [0, 1] such that w (x)€ C*7*[0, 1]
with D* 1w (x) absolutely continuous and D"w(x)¢L?[0, 1], and such that w (x)
is 2# —1 times continuously differentiable in neighborhoods of ¥=0 and x=1
of [0, 1] with
(1.5) D*w(0)=D*w(1), O0=k=2n—1.

Further, we assume that there exist two real constants K> 0 and § such that

(1.6) elueon=sup w (9| <K {J S0 @) +p (o) axf
2<l0,
for all weS.
Next, we introduce the finite quantity (see Lemma 1)

) [;p,( ) (Diw ()] dx

(1.7) A=inf *I=
us e
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Although this fact is not used, it turns out that A is a lower bound for the eigen-
values of the associated eigenvalue problem Z[u(%)]+Au(x)=0, 0< x<1,
subject to the boundary conditions of (1.2).

We finally assume that the function f(x, ) is real, continuous in both variables,
Le., f(x, u)eC%([0, 1] X R), that there exists a constant y such that

(1.8) W=l ooy,

U—uv

for all x¢€[0, 1], and all — oo <#, v << + 00, with % ==v, and for each ¢ >0, there
exists a number M (c) such that
fx, u)—f(x,v)

(1.8) w=kv, Ju|=Zc, |v]=c implies vy =M< o

for all x€ [0, 1].

One of our main goals is to study the effects of applying the classical Rayleigh-
Ritz procedure (cf. [6] and [10]) to a variational formulation [9] of (1.1)—(1.2)
by minimizing over finite dimensional subspaces of S which for periodic problems
are most naturally taken as subspaces of trigonometric polynomials. In so doing,
we extend the results of [6] to periodic problems and obtain new error estimates
which improve upon known results in the literature for the Galerkin Method,
which is equivalent to the Rayleigh-Ritz procedure for the class of problems
under consideration (cf. [3—5, 16, 17]).

Another of our goals is to show that these techniques can, from a numerical
point of view, be efficiently applied on modern high-speed digital computers.
To illustrate these theoretical results, numerical results for particular examples
of (1.1)—(1.2) will be discussed.

§ 2. Rayleigh-Ritz Method

In this section, we discuss the Rayleigh-Ritz method for the problem (1.1) to
(1.2). The proofs of the theorems of this section are exact analogues of the proofs
given in [6] for the application of the Rayleigh-Ritz method to nonlinear two-
point boundary value problems with Dirichlet boundary conditions. We begin
with (cf. [6, Lemma 1])

Lemma 1. With the assumption of (1.6), then

{510 D1 ()7
(2.1) A=inf 710

2 e

1
=g —F> oo

We make the essential hypothesis that (1.1)—(1.2) has a classical solution
@ (x). Then, we have (cf. [6, Theorem 1]).

Theorem 1. With the assumptions of (1.4), (1.6), and (1.8), let (%) be a
classical solution of (1.1)—(1.2). Then ¢@(x) strictly minimizes the following
functional :

1 " ) w ()
(2.2) Flel = J {2010 (D0 (9)*+ 75, ) i} dn

0 j=0

over the space S, and ¢(x) is thus the unique classical solution of (1.1)—(1.2).
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Consider now any finite dimensional subspace S,; of S of dimension M, and
let {w;(%)}?L; be M linearly independent functions from the subspace. The
analogue of Theorem 1, concerning the minimization of the functional F[w] over
the subspace Sy, is given in (cf. [6, Theorem 2])

Theorem 2. With the assumptions of (1.4), (1.6), and (1.8), there exists a
unique function @, (x) in the finite dimensional subspace Sy, of S which minimizes
the functional Flw] over Sy. o

To find this unique element @, (x) = 2 @, w,(x) in S, which minimizes I'[w]

i=1
over S, we must solve the M nonlinear equations
1.5 M X X M
113 8,0 (S D () Dioy(a) + (3 X esey () w2 dx =0,
(23) o Y=o E=1 E=1
1SiEM

for the M unknowns #,, #s, ..., #y, which arise from

M
oF { u; wi}
i=1

3 =0, 1=iZM.
"y

Letting w=(uy, 5, ..., uy)T, the equations of (2.3) can be written in matrix
form as

(2.4) Au+g(u) -4,

where A= (a;,) is a real M xM matrix, and g (u)= (g (m), g5 (w0), ..., g (W)’

is a column vector, both being determined by

05 au=f|Se@DwmDe @), 1=i k=M,

and v

(2.6) gk(u)sz(x, uiw@-(x))wk(x)dx, 1Sk<M.
0 i=1

This nonlinear matrix equation (2.4) can then be efficiently solved for example
by Gauss-Seidel iteration, which is known in this case to be convergent [12, 13].
For more computational details, we refer the reader to [6] and [8].

If we have a sequence {Sy,}52; of not necessarily nested finite dimensional
subspaces of S, we consider the problem of when the associated sequence (W, (%)}921
converges to ¢(x), the unique solution of (1.1)—(1.2), in the uniform norm. If «
is a real constant, define

@) ot ={[ £ Do)+ a ] ]

for all weS. Then, recalling the constant y of (1.8), we have (cf. [6, Lemma 2])

Lemma 2. If «>—/, then ||, and |w|, are equivalent norms on S. More-
over, the inequality of (1.6) is valid for all weS with f§ replaced by any 3" with
y'>—A.
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As a consequence of this lemma, we can write for the particular constant y
of (1.8) that
(2.8) o)== K|w|, forall wecS,

which is an analogue of the original assumption of (1.6). In what is to follow,
we shall regard K and y as fixed constants satisfying (1.8) and (2.8).

The following fundamental result gives us an error estimate (cf. [6, Theorem 37).

Theorem 3. Let ¢ (x) be the (classical) solution of (1.1)—(1.2), subject to the
assumptions of (1.4), (1.6), and (1.8), let S;, be any finite dimensional subspace
of S, and let @y, (x) be the unique function which minimizes F[w] over S,;. Then,
there exists a constant C which is independent of the choice of S,;, such that
the following error bound is valid:

29) tow—pli-S K ol <C int oo — g,
As an immediate consequence of Theorem 3, we have

Theorem 4. Let @(x) be the (classical) solution of (1.1)—(1.2), subject to the
assumptions of (1.4), (1.6), and (1.8), let {S;;,}?2; be any sequence of (not neces-
sarily nested) finite dimensional subspaces of S, and let {@,;,(x)}3>; be the
sequence of functions obtained by minimizing F'[w] respectively over the sub-
space Sy,. If lim { inf ”w—qy”,,}:o, then {@,, (%)}, converges wuniformly
to (p(x) 1—>00 \wES y;

In place of lim{ inf ”w—q;[]y}:o, we could of course make the stronger
i~ 00 WESy,;

hypothesis in Theorem 4 that lim{ inf |w—g “y}:O for every geS. In practice,

i—>00 (wES
where the solution ¢(x) is in general not known a priori, this latter hypothesis
is more readily checked, and is in fact valid for the subspaces considered in
§3 and 4.

§ 3. Trigonometric and Algebraic Polynomial Subspaces
As our first example of subspaces Sy, satisfying the sufficient conditions of
Theorem 4, let N be any nonnegative integer, and let 7% be the collection of
all real trigonometric polynomials w (x) of order NV, i.e.,

N
(3.1) w(x):% + > (a;cos (2] %) + b;sin (277 x)),
j=1

where the coefficients a; and b, are real. It is clear that 7™ is a subspace of S
of dimension 2N 4-1.

We now discuss the error of best least squares approximation by elements
of T™). For any function f(x)eL2[0, 27], let

‘ B ’ 27 . 1
(3-2) Wy ({5 5)=;}1§%{-2—nd/|f(x +7) — /(%) dx}

denote the L%modulus of continuity, where f(x) is periodically extended outside
the interval [0, 2]. We remark that w,(f; ) is a nondecreasing function of 9,
and that ‘lsin%) wy(f; 0)=0 for any f(x)eL?[0, 2x]. The following Jackson-like

result is an easy extension of a result found in ALEXITS [2].
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Theorem 5. For s a positive integer, assume that w(x)cC;7'[0, 27], ie.,
u(x)eC*710, 27] and D'u(0) =D’u(2x) for all 0=j=<s—1, and assume that
D1y (x) is absolutely continuous with D% (x)€ L?[0, 2z]. Then, for each positive
integer N, there exists a trigonometric polynomial 7, (x)¢ T™ such that

: . K wy(D¥u; 1/N) .
(3.3) 1D (10 — T ) |Ls0.0m = —%L forall 0<j<s,
where K is a constant dependent only on s.

Proof. We prove the case for s=1; the cases s >1 follow similarly by inte-

gration by parts. If %o —[» Z a,cos nx -+ b,sin n x) denotes the Fourier series for
n=1
u(x), then 1ntegrat10n by parts gives

2m

p— Du(x)sinnxdx and bnzﬁfDu(x)cosnxdx, n=1,
0

" mn
0

where we have used the hypothesis that # (0)=u(2x). Denoting the Fourier series

for Du (x)€L2[0, 2] by 2, (o, cos nx -+ f, sin nx), the constant term being neces-
#n=1

sarily zero since # (%) is periodic, we see that a,=nb, and §,=—mna,, n=1, and
thus
(3-4) ol 4+ [BalP = m2{la [P+ 0,5, =1,

and the best least squares approximation by trigonometric polynomials of order V
N

for Du(x) is just gy (%)= 2 (o, cosnx - f,sinnx). By PARSEVAL’s relation, we

have n=1
27 0
;¥
3.5) o [(Dum) —ex)rar= > (w2 +]6.]
0 n=N-+1
On the other hand, we have from ALEXITS [2, p, 270] that
1
(5.6) ; a2 + 18,19 = 0} (Du; )

Hence, if we define #y (x) by ?" + Z (a, cosnx -+b,sinn x), we see that Dy (x) =
n=1
gy (%), and combining (3.5) and (3.6) then yields

16 1
1D (4 — ) a0, 0m = V " s (Du; ﬁ>

the special case j=s=1 of (3.3). If we now compare % (x) and Zy (%), it follows
from (3.4) that

2n

[ —tstapar= 3 (o +(n,p = 3 1=FEIRE
0 ne= P
1 16
éﬁz"z:;_i_l!“n’z"i‘lﬂnl = 3N2 Q)g(D% )

which gives the remaining inequality of (3.3) for the case j=0, and s=1. Q.E.D.
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Corollary. With the hypotheses of Theorem 5, for each positive integer N
there exists a trigonometric polynomial £y (x) of order N such that

, . ~ K’ | DS 4|r210,52 ,
(3.3) ”Dj (u —tN)”L"[o,zn] = ““LNJ%‘[O L for all 0=7=<s,
where K’ is a constant dependent only on s.

Proof. By definition, w,(f; §) < ]/7 |#lz210,22) for all 6=0. Q.E.D.

We now apply the result of Theorem 5 and its corollary to the solution ¢ (x)
of (1.1)—(1.2), where we necessarily have that ¢(x)eC3*7*[0, 1], and D" ge
L?[0,1]. The following result follows from the basic inequalities of (2.9) of
Theorem 3.

Theorem 6. Let ¢ (x), the solution of (1.1)—(1.2), subject to the conditions
of (1.4), (1.6), and (1.8), be of class C37*[0, 1] with D°@cZ2[0, 1], where s=2x,
and let Zy (x) be the unique function which minimizes the functional F[»] over 7™,
Then, there exist constants M and M’ depending only on s and y such that

67 liy= phe S Kb — 0l = 50 02 (D03 ) = soocs 1D Pl -

If w(x)eCP0, 27] is analytic in some open set of the complex plane con-
taining the interval [0, 2z], we can of course apply the result of Theorem 5 for
any s=0. But, an even stronger result, indicating exponential convergence, is
possible. As in Theorem 7 of [6], the following result can be established from a
classical result of BERNSTEIN (cf. [11, p. 158]).

Theorem 7. If u(x)cC3’[0, 27] is analytic in some open set of the complex
plane containing the interval [0, 2x], then there exist a constant © with 0= p<<1
and a sequence of trigonometric polynomials {Zy (%)}¥_e With Iy (x)e 7™ such
that for each nonnegative integer ,

(3.8) Jm (D" (4 —1y) [peego, o) Y = forall 0=k=<n.
If u(x) is moreover an entire function, i.e., #(x) can be extended to a function
u(2) which is analytic for all complex z, then for each nonnegative integer 7,
(3.8) Jim (1D* (4 — ) Jpojo,0m) ¥ =0 forall 0=<k=n.

Applying this result to the solution ¢ (%) of (1.1)—(1.2), we have

Theorem 8. Let ¢ (x), the solution of (1.1)—(1.2), subject to the conditions
of (1.4), (1.6), and (1.8), be of class C3°[0, 1] and be analytic in some open set
in the complex plane containing the interval [0, 1], and let 7y (x) be the unique
function which minimizes the functional F[w] over TW. Then, there exists a
constant u with 0= u<C1 such that

5.9 T (lfy — ) = g,
and consequently from Theorem 3,

3.9 A ([fy = gl = .

If ¢ («) is moreover an entire function, the constant # can be chosen to be zero.
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With respect to the solution of the nonlinear matrix problem (2.4) associated
with the subspace 7W) of S, we mention that in special, but nevertheless interest-
ing cases, it is easy to deduce explicitly an orthonormal basis for T™), ie., one
for which the matrix entries @, ; of the matrix 4 of (2.5) satisty @, ;=9 ;. For
example, for n=1, p,(x) =1, po(x) =1 in (1.3), the functions

1/ 2 T2 N
{1 ; (V——"—1 ThtnE cos (2w n %), ]/A1 Tam sin (Znnx))nzl}

form such a basis. This choice of basis makes the numerical solution of the non-
linear matrix problem (2.4) considerably simpler.

As our second example of subspaces S, satisfying the sufficient conditions
of Theorem 4, let N be a positive integer with N=4n —1, and let B be the
collection of all real algebraic polynomials of degree NV which satisfy the periodicity
condition of (1.5). It is clear that the elements of P are polynomials which
can be represented in the form

) o ho (%) 4 byl (%) -+ 4 b1 a1 (%)

10
(3 +x2n(1 _x>2n{a0+alx_{__'“ +aN~4an_.4n}!

where %;(x), 0=7=<2#n —1, is the unique (Hermite) polynomial of degree 4% —1
such that

(3.11) Dih(0)=D"h;(1)=90,;, O0=j=2n—1.

It is clear that B is a subspace of S of dimension N —2n 1.
We now discuss the error in best approximation by elements of PP(N’.

Theorem 9. If #(x)cC’[0,1], {=2#n, and #(x) satisfies the boundary con-
ditions of (1.2), then for each positive integer N=max (¢, 4n —1), there exists
an algebraic polynomial py (x) €™ such that

2n—1
(342) D (w—py)l-= W_Z%ziﬁw (Dt (“ — 2 (D'u(0) hi) 5 7\7“_1—2;)

i=0
for all 0=<7= 2w, where K is a constant dependent only on ¢ and #, and w is the
(usual) modulus of continuity.
Proof. Fixing N=max(¢, 4n—1), the proof is accomplished by applying

2n—1
Theorem 5 of [6] to the function u(x) — 2 (D*u(0)( 4;(x), whose first 27 —1

i=0
derivatives are zero at x=0 and x=1. Q.E.D.

Corollary. With the hypotheses of Theorem 9, then for each positive integer
N=max (¢, 4n —1), there exists an algebraic polynomial py (x)eB™ such that

) K’ Dt(qu?Diu(o))hi> }
(3:13) D7 (0 —pu)le= = (N zmjin forall 0=j=2n,

where K’ is a constant dependent only on ¢ and #.
Proof. By definition, o (f, 6) = sup |/ (x +%) —f(x)] =2|f|... QE.D.
e
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We remark that the result of Theorem 9 provides no estimates such as those
of (3.3) for polynomials py (%) of low degree, i.e., for N<<max(t, 4n —1).

We now apply the result of Theorem 9 and its corollary to the solution ¢ (x)
of (1.1)—(1.2), where we necessarily have that ¢(x)cC?"[0, 1]. The following
result follows from the basic inequalities of (2.9) of Theorem 3.

Theorem 10. Let ¢ (x), the solution of (1.1)—(1.2), subject to the conditions
of (1.4), (1.6), and (1.8), be of class C*[0, 1] where ¢=2#, and let py(x) be the
unique function which minimizes the functional F[w] over P where N =
max (f, 4% —1). Then, there exists constants M and M’ depending only on ¢
and y such that

”151\7 - ‘PUL* =K HZSN - (PHv

M 2n—1 ; .
(3.14) = Woawe @ (Dt ((P - ;) (D w(O))hi); m)
2n—1 )
R t _ P .
= (N—2n)i—2n D (‘P ;) (D' g(0)) h,) "

If u(x) is actually analytic in some open set of the complex plane containing
the interval [0, 1], we can apply the result of Theorem 9 for any ¢=2#. How-
ever, an even stronger result, indicating exponential convergence, is possible.
As in Theorem 7 of [6], which is based on a classical result of BERNSTEIN (cf.
[11, p. 162]), the following can be established.

Theorem 11. Let # (x) be analytic in some open set of the complex plane con-
taining the interval [0, 1]. Then, there exists a constant g with 0=u<C1, and
a sequence of algebraic polynomials {py (¥)}¥—s,—y With py(x)e B such that

(3.15) T (D! — )|V S forall 0=k=n,

Applying this result to the solution ¢(x) of (1.1)—(1.2), we then have

Theorem 12. Let ¢ (%), the solution of (1.1)—(1.2), subject to the conditions
of (1.4), (1.6), and (1.8), be analytic in some open set of the complex plane
containing the interval [0, 1], and py () be the unique function which minimizes
the functional F[w] over BN) where N=4#n —1. Then, there exists a constant y
with 0= u<<1 such that

(3.15) Tm (o — gl = w,
and consequently from Theorem 3,

(.15 Jm [y — ple=)" = pe

§ 4. L-Splines and G-Splines
To give other examples of subspaces S, satisfying the sufficient conditions
of Theorem 4, we consider now subspaces of L-splines, which include the Hermite
and natural spline subspaces as special cases (cf. [15]). For each positive integer m,
let K7'[0, 1] denote the collection of all real-valued functions u(x) defined on
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[a, b] such that u (x)eC™~* [a, b] and such that D"~y (x) is absolutely continuous
with D™u(x)€L?[0, 1]. Assuming m=n, let L be the m-th order differential
operator defined by

(4.1) Llu(x)]= Zo‘“;' () Dlu(x)
j=
for any u(x)cC™ [a, b], where a;(x)€K}'[a, b] for all 0=j=<m, and a,,(*)=w>0
for all x¢[0, 1]. Let @: 0= << -+ <<xy<ayy,=1 denote a partition of
[0,1], let 2={(2, %, ..., zy) denote an incidence vector associated with = where
the components z; are positive integers satisfying 1=<z,<m for all 1<i<N,
and let L*, the formal adjoint of Z, be defined by L*[v (x)]= 2} (—1)' D/ {a,(x) v(x)}.
j=0
Then, the collection of all real-valued functions s (x) such that s (x)cK3™[x;, x,,4]

for each 0=7< N, satisfying

(4.2) L*L[s(x)]=0 for almost all x¢(x,, x;,.4), O=:i=<N,
and

(4.3) DEs(x;—)=DFs(x,+) for 0=k<2m—1—z, 1<i<N,
with

(4.4) DFs(0)=D"*s(1) forall 0=k=2n—1,

will be denoted by Sp, (L, &, ). Because m=mn, then Sp, (L, w, 2) is readily seen
to be a finite-dimensional subspace of S. As a special case, the choice L= L%= D"
is such that each element s(x) of Sp, (L, m, 2) is a piecewise-polynomial function
in [0, 1], i.e,, s(¥) is a polynomial of degree 2m —1 in each interval [x,, x,,,],
0=¢=N. If, in addition, the components z; of the incidence vector #z are all
chosen to be m, we obtain in particular the (smooth) periodic Hermite space
H t‘,’”) (7). Such subspaces were used in our practical computations, to be described
in §5.

Given any real-valued function f(x)cC™~[0,1] such that D*f(0) = D*f(1)
for 0=k=2n—1, and any partition # of [0, 1] and any associated incidence
vector #, there exists a (unique) element (cf. [15, Theorem 3]) §(x)eSp, (L, =, 2)
such that

DES (%) =DFf(x;), 0=k=<z,—1, 1<i<N,

(4:3) D*§(x,)=DFf(x,), O0=k=m—1, ¢=0 and i=N--1.

This corresponds to interpolation of Type I in [15]. Similarly, if / (x) C3"~*[0, 1]
and a;(x)eCp=1[0, 1] for all 0=j=<m, then for any sufficiently fine partition z
of [0,1], ie., for @ = mmax |#%;1, — ;| sufficiently small, and any associated

incidence vector 2, there exists a (unique) element 3(x)eSp, (L, 7, 2) such that
D*s(x)=DFf(x), O0=k=z—1, 1=i<N

(4.6) DFs(x)=D*f(x;), O0=k=z—1, i=0, and
D*s5(0) =D*s(1), z,<k<2m—1,
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for any positive integer z, with 1=z,=m. This corresponds to interpolation of
Type IV in [15]. For brevity, we shall in the following consider only the inter-
polation of (4.5). Note that the classical solution ¢ (%) of (1.1) —(1.2) for 2= m —1
then always possesses a unique interpolate §(x) in Sp(L, #, 2) satisfying (4.5)
for any choice of partition sz and associated incidence vector 2.

It follows from Theorem 9 of [15] that if ¢(x)€K2™[0,1], then, for any
partition s of [0, 1] and any associated incidence vector 2, there exists a constant
M, dependent only on 4 and m, such that

@47 D@ =y =M@ |L*Lg|rp,1 forany 0=j=m,

where @(x) is the classical solution of (1.1)—(1.2), and §(x) is its unique inter-
polation (in the sense of (4.5)) in Sp, (L, , 2). As a direct consequence of this
inequality and the basic inequalities of (2.9) of Theorem 3, we have

Theorem 13. Let ¢ (x), the solution of (1.1)—(1.2), subject to the conditions
of (1.4), (1.6), and (1.8), be of class K2 [0, 1], and let § (x) be the unique function
which minimizes the functional F{w] over Spp(L, 7, 2). Then, there exists a
constant M depending only on m and y such that

(4.8) 1§ = lon=K[$ — ol =M @)*" " |L*L |2
As a direct consequence of the inequality of (4.8), we have the

Corollary. Let ¢(x), the solution of (1.1)—(1.2), subject to the conditions of
(1.4), (1.6), and (1.8), be of class K3™[0, 1], let {=,}5>, be any sequence of parti-
tions of [0, 1] with lim 7;=0, and let {;}, be any sequence of associated

incidence vectors. If 3;(x) is the unique function which minimizes the functional
Flw] over Sp,(L, m;, 2;), then {5;(x)}{2, converges uniformly to ¢(x).

In the special case that L[u(x)]=D"u(x) for x€[0, 1], the previous results
may be further generalized. As before, let m: 0=y %,<< --- < xpy,,=1 denote
a partition of [0, 1], and let E'= (¢, ;) denote an N X incidence matrix, 1 =i =N,
0=7=<m —1, having entries of 0’s or 1’s, with at least one nonzero entry in each
row of E. Further, let ¢ denote the collection of (7, ) such that ¢; ,=1. Then,
from the results of [1, 14], and [15], let Sp,(m, =, E) denote the collection of
all real-valued functions s(x), called periodic g-splines of ovder m for m and E,
defined on [0, 1] such that

s(x) is a polynomial of degree at most 2 —1 in each subinterval (x;, x;,,),
0=¢=<N,
(4.9) s(x)eC™[0,1] and if e; =0, then D*”~/~'s(x) is continuous at x,,
ie., (4, ) ¢e implies that D" 7= 1g(x,—) = D" 1= 5(x,+), and
D*s(0)=D*s(1) forall 0<k=2n—1.
Given any real-valued function f(x)eC™71[0, 1] such that D*f(0)=D*f(1) for

0=k=2n—1, any partition x of [0, 1] and any incidence matrix E, there exists
a (unique) element (cf. [15, Theorem 15]) § (x)€Sp, (m, =, E) such that

Dis(x)=Dif(x,) forall (i )ee,

(4.10) b Y . .
D*S(x)=D"f(x;), O0=Zk=m—1, ¢=0 and 7=N-1.
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This corresponds to interpolation of Typel in [15]. As before, other types of
interpolation are possible, and we refer the reader to [15].

Let {m,;}{2, and {E (N | be a sequence of partitions of [0, 1] and an associated
sequence of incidence matrices such that if sm;: 0= xfl<<af?< ... <al) =1,
then we assume as in [1] and [15] that there exists a positive constant ¢ such
that for each & with 0=A=N,;+1 there exists an integer j=7 (k) such that

e} =1 and
7 0

(4.11) |7 — x| <c7, forall i=1, all 0ZEZN, 1.

It then follows from Theorem 21 of [15] that if ¢ (x)cK3™[0, 1], then there exists
a constant M, dependent only on 7 and m, such that

(4.12) D7 (@ — )| < M(m)*" 7| D*" s forany 0=j=<m,

where @(x) is the classical solution of (1.1)—(1.2), and §,(x) is its unique inter-
polation (in the sense of (4.10)) in Sp,(m, 7;, E;). As a direct consequence of
this inequality and the basic inequalities of (2.9) of Theorem 3, we have

Theorem 14. Let ¢ (%), the solution of (1.1)—(1.2), subject to the conditions
of (1.4), (1.6), and (1.8), be of class K3” [0, 1], and let §,(x) be the unique function
which minimizes the functional Flw] over Sp,(m, m;, E;), where the partitions
{m;}321 and associated incidence matrices {E®}2, satlsfy the hypothesis of (4.11).
Then, there exists a constant M, depending only on m and y, such that

@13) |3 — ¢lie S K|35 — ¢, = M@ |D*" ¢|ps forall iz=1.

if 11(1 )addmon 1_1)1210 7;=0, then the sequence {§;(x)}32; converges uniformly
S

§ 5. Numerical Results

In this section, we discuss the numerical results we have obtained for some
concrete examples by using particular subspaces described in §§3—4 in the
Rayleigh-Ritz procedure. Let us however first summarize the results of §§3—4
by comparing the asymptotic error estimates for the subspaces 7% and Sp, (L, x, )
in terms of the total number of parameters associated with each of the subspaces.

Let @(x), the solution of (1.1) —(1.2), subject to the conditions of (1.4), (1.6),
and (1.8), be of class C371[0, 1] with D® e L2(0, 1), where s=2n. If £y () is the
unique function which minimizes F [w] over the subspace 7%, then (cf. Theorem 6)

1
54 fiv—gle=0{GTi=) s Now, dy=2N+1,

where dy is the dimension of TW), Next, consider a sequence of (smooth) periodic
Hermite subspaces {H} i) (,)}52, where m is fixed. As previously noted, Hg") (7;)
corresponds to the per10d1c L-spline subspace Sp, (D™, 7;, 2%) where each com-
ponent of the associated incidence vector 21, 219, satisfies z{!=m. Such sub-
spaces were used in the actual numerical computations to be described. We
assume that the partitions 7r;: 0=x{ << #{! < ... < «{) ;=1 satisfy the regularity
conditions that

_ K . .
(5.2) ”ém forall 24=1, and ,-I_LTONi:”i'OO'
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If ¢, (x) is the unique function which minimizes the functional F[w] over H g”) (723),
then (cf. Theorem 13)

<53) Hﬁz_‘P”Lw = (9{ (d,-—%%—:Z%)“"‘“”}' dizm(M—!—Z) —2mn, 1> 00,

where d; is the dimension of H{" (). Thus, in the special case that s=2m, we
observe, surprisingly enough, that these theoretical error estimates are asymp-
totically the same. B

We now consider the numerical solution of particular examples of (1.1) —(1.2).
As our first example, consider the linear differential equation

D2y (%) = u(x) -+ sin (27 x) {(—1 — 47%) (x3—§-x2+%)+6x—-§}
(5.4)
-+ 47 cos (27 x) {sz—%x—%%}, 0<<x<<1,

subject to the boundary conditions of
(5.5) w(0)=u(1), Du(0)=Du(1).

For this example, we have #,(x) =1, p,(x)=0 in (1.3), and thus (1.4) is satis-
fied. By virtue of SOBOLEV’s inequality in one dimension [19, p. 174], we have
that there exists a positive constant K such that

(5.6) “w“l’zz{of{(Dw(t))2+(w(t))z}dt}%gKuw[]Lm for all w(x)€S.

Thus, we see that the inequality of (1.6) is satisfied for the choice f=-1. Next,

we see that the quantity A of (1.7) is necessarily zero for this example, and as

f(x, u)=wu+g(x), then f,=-+1, showing that we can choose y=-1. Thus, the

inequality of (1.8) is satisfied. The unique solution ¢ () of (5.4) —(5.5) is given by
4

(5.7) w(x)=<x3—?x2+—§>sin(2nx), 0=x=1.

In this case, ¢(x)cC;[0,1]~C?[0,1], and Theorem 6 is applicable with s=2
and »# =1. ;

The numerical results of minimizing the associated functional Flw] over the
trigonometric subspaces 7W) are summarized in Table 5.1. For specific details
about the efficient numerical minimization of F[w] over various subspaces, we
refer the reader to [6] and [8].

For purposes of comparison, numerical results were also obtained for mini-
mizing the functional F[w] over the (smooth) periodic cubic Hermite subspaces

Table 5.1. Tvigonometric subspaces TW) Table 5.2. Smooth periodic Heymite
subspaces H;;,z) (n(h))

Nin T®) dim TW) iy —@lre A dim H®) (k) [li, — |l
4 9 0.63 - 10~* T 10 7.48 - 10~4
6 13 3.98 - 104 ¥ 14 2.21 10~
8 17 2.17 - 10~ b 20 6.42 - 1075

10 21 1.36-10~% i 32 110+ 10~%

12 25 9.35-107° + 50 1.97 - 10~8
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HP (7 (k)), where a uniform partition 7 (k) of [0, 1] with mesh-size & was used.
The results are summarized in Table 5.2. For this case, Theorem 13 is applicable
with m=2 and n=1.

As our second example, consider the nonlinear differential equation

D2u(x) = u (%) + (u(%))? + &™) [472 cos? (27 x)

.8 .
(-8) — 4a?sin (27 x) — 2@ ], o< x <1,

subject to the boundary conditions of
(5.9) w(0)=u(1), Du(0)=Du(1).

As in the previous example, we have p, (x) =1, p,(%) =0 in (1.3), and thus (1.4)
is again satisfied. From the inequality of (5.6), we again have that the inequality
of (1.6) is satisfied for the choice f=-1, and A of (1.7) is again zero. For this
example, f(x, u)=wu-+u*+g(x), so that f,(x, u)=1+3 u?>=-+1, and again the
inequality of (1.8) is satisfied for the choice y=-1. The unique solution of
(5.8)—(5.9) is given by

(5.10) p(x)= ¥, 0= x< 1.

Thus, for this case ¢ (x)€CP[0, 1] and @ (x) can be extended to an entire function
(cf. §3). Thus, Theorem 8 is applicable with u=0, and we have

(5.11) Jim ([px — ¢l =0-

The numerical results of minimizing the associated functional F[w] over the
trigonometric subspaces T™W) are summarized in Table 5.3.

Table 5.3. Trigonometvic subspaces )

Nin TW) dim TW) ity — @llze
3 7 7.32-107®
4 9 6.04 - 107
5 1 6.22- 1075
6 13 5.49- 1078
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