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0. Introduction. In the past few years, the subject of spline
functions has undergone rapid development. It is the purpose
of this paper to sketch some of these developments, as well
as to present some new results. In §l, a historical survey is
given of the evolution of splines from their introduction by
Schoenberg in 1946. The survey is necessarily brief and does
not attempt to give an exhaustive catalogue of all results ob-
tained about splines. A very general kind of spline function,
called an ILg-spline, is developed in §2, and error estimates
are obtained in §3 for approximation by Lg-splines. The new
results of the paper begin in §3 where the error estimates are
shown to hold for a much wider class of approximating splines
than had previously been established. The applications are
to be found in §§4 and 5. Solutions of nonlinear boundary
value problems are approximated in §4 by variational tech-
niques using the improved results of §3, and in §5, similar
techniques are employed to approximate the eigenvalues and
eigenfunctions of eigenvalue problems.

1. Historical survey. The class of polynomial spline functions
of degree n and global continuity class Cn‘l, as introduced
by Schoenberg [ 42], has admitted generalizations and exten-
sions in many different directions. At the very outset, one
must distinguish between two different types of approximation
for which splines are utilized, viz., interpolation and best
approximation, the latter usually taken in the uniform norm.

It is perhaps a startling fact that, for a class of splines known
as natural spline functions, the spline of interpolation coin-
cides with the spline of best approximation in an appropriate
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Hilbert space norm. This property, fully described by de Boor
and Lynch [10], has become the starting point for many gener-
alizations of interpolating splines.

The purpose of this section is to sketch a historical
survey of the development of the subject of interpolating spline
functions, where interpolation will be understood in a quite
broad sense.

The fundamental result on the existence of splines
interpolating given values at points not necessarily coincident
with the knots or juncture points of the spline was obtained by
Schoenberg and Whitney in [ 45]. Indeed, given a set of
poiats x) <x, <-:-- <xy, aninteger n>1, and abscissae
tp <tp <--- <tpyny, we then have

Theorem 1. 1. For every choice of {yi}]f+n+l, there

exis}:s a unique spline function s{x) pieced together at
{Xl}f by polynomials of degree n in the intervals (-%,x;),
(x1,%,),...,(x),®) in such a way that

-1
(1l.1) se¢ ct (-0, ) and s(ti) =Y 1<i< ntktl

if and only if

t, <x, <t t, <x, <t ---,tk<X

< .
1 1 nt+2’ 2 2 n+3’ k 1:k+n+l

Theorem 1.1 was used by de Boor [9] to prove the now
celebrated result on the existence of a unique natural spline
function of odd degree 2m-1 interpolating given data at
k >m points coinciding with the knots. The term natural
refers to the fact that the spline reduces to a polynomial of
degree m -1 in the intervals (-%,x1), (%), *). Since nat-
ural interpolating ( polynomial) splines are treated in consid-
erable detail elsewhere in this volume, we will move on now
to the notion of generalized spline functions, first treated by
Greville in [ 26].

m , .
Let L = Z a,(x) DJ, =4 , where the a,(x) €
, j dx ]
. j=0 m .. )
C)a,b] and ay(x) > ¢ >0, and let L*f =JZ_:O (-1)7D( ajf)
denote the formal adjoint of L. Let a< %) <vee < Xy <b
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GENERALIZATIONS AND APPLICATIONS

be any partition of (a,b) with k>m . Then we may define
the generalized I-spline interpolating given values ry at
the x; as the unique solution, s, of the problem

-~

i * = i <x < <i<n-
(i) L"Ls(x) =0 if X, <X <X ) 1<i<n-l,
(i) s(x) =r,, 12iZn,
(1. 2) 22
(i) se ¢ “fa, b], and
(iv) Ls(x) =0 if a<x<xl or if xk<x<b,
.

where we assume that the null space of L is spanned by a
Chebyshev system {ui}in, i.e., no linear combination of the
ui(x) has more than m -1 zeros, except the identically zero
function. We formalize this result in

Theorem 1. 2. There exists a unique solution s of
(1.2) foreach r =(r},...,r) € EK provided k>m and the
null space of L is spanned by a Chebyshev system.

The terminology of "generalized spline' was introduced
by Greville in [ 26] where he proved Theorem 1. 2 and also
showed that the unique solution s of (1. 2) minimizes
fb( Lf) 2d:x: over the class of functions f such that f ¢
Wm, 2[a, b] and f(x;) =r;, 1 <i <k, where wh, 2[a b]
denotes the Sobolev class of functions f such that DM7lf
is absolutely continuous on [a, b], with DM fe L%[a, b].

It is interesting that the converse result is true. In fact, we
have

Theorem 1. 3. The unique solution s of (l.2)
uniquely minimizes the integral

(1.3) f:(Lf)Z

over all fe W™ Z[a, b] such that f(x)) =r;, 1<i<k.
In particular, equality is taken on in

b, .2 b, . 2 2. .
JOULn “ax > [ALs) “ax, e W' Ta,b], f(x)) =1, 1< i<k
if and only if f =s .
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Somewhat earlier, Schoenberg [43] had introduced
trigonometric splines of degree m as the class of periodic
functions f in C*M[0,2n] with £(0) =(2m), pieced togetherat the
knots 0 =x1<x, <:++<xp4) =27 by null solutions of the operator

Mm% = DX (D4 % - (DAm%)?
i.e., by linear combinations of 1, cox rx, sinrx, x, x cox rx,
X sm rx where 1 <r<m. He showed that if the values {y. }
are prescribed w11:h k. > 2m+l, and knots {xl}]f are prescrljbed
with x) =0 and xp < 2Tr, then there exists a unique solution
s of the problem

(i) Mzs(x) =0 if xi<x <xi 1<i<k,
(1. 4) ¢ (ii) S(Xi) =Y I <ic<k,

(iii) se ™o, 2n].

He also showed that s minimizes

(L 5) foz"(Mf)zdx

over the class of periodic f in the Sobolev class
w2mHl, 210 2n] satisfying s(x;) =v;, 1<i<k. We sum-
marize these results in

Theorem 1. 4. If k > 2m+l, then (1. 4) possesses a
unique solution s which umquely minimizes (1. 5) over the
class of periodic fe w2m+tl [0,2m] such that f(x;) =y,
1<i<k.

The g-splines were first introduced by Ahlberg and
Nilson [1] to generalize the interpolation conditions satisfied
by the natural interpolating splines. Their work was later
refined by Schoenberg in [44]. Indeed, let m >1 be given
and let {x, }l be a collection of Hermlte Blrkhoff type linear
functlonals i.e., to each A there corresponds a pair
(ji’xi)’ Oiji <m and a ‘<—Xi. < b such that

Ji
)\if =D f(xi).
The set {xi} will be called the specified knots. Under the
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assumption that any fuhction u with DTy =0 satisfying
Aju =0 for 1<1i<k, must be identically zero, Ahlberg and
NllSOl’l [1] showed that t}l(1ere exists a unique solutlon s to
the problem, given {yl}l 5
r
2
(i) D“Ms(x) =0 if x is not a knot,

(i) Ns=vy,,

i
(L 6) o
(iii) D s(x) =0 if x < first knot, x > last knot,
(iv) [Dzm_]“ls] =0 if x is a knot and the j-th
L *  derivative is not specified at X,
where {D‘Zm_l‘ls]X = Dzm—j_ls(x—k) - Dzm_J_ls(x-) if x

is an interior point of [a,b] while [D2m-j-l slg =
D2m-j-lg(at) and [DZMI7lg], = -p2Milg(pe) .

A corresponding minimization property is valid. These
results are summarized in

Theorem 1.5. If DMu=0 and Mu =0 foralll<i
<k, implies that u 1is identically zero, then (l.6) has a
unique solution s which uniquely minimizes

b, m,_ 2 2
fa(D f) dx,fe_\Nm’ [a,Db], Kif=yi’ l=i< k.
Polynomial splines have been generalized in other
directions. For differential operators L satisfying Pdlya's
"property W' ( see [34}), there exist positive functions

{wilf~ 1 of class cm- [a b] such that the null space of L
may be spanned by functions {u; }O "1 of the form

uylt) =w, (1)

wlt) = woCh) [Tw(g)de

w0 =w (0 [Tw (&) [ e e e
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We say that a function is a u-polynomial if it is a linear com-
bination of the u;(t), 0<i<m-L

Functions q)r( t,x) may be defined by replacing the .
lower limit a in the definition of the {ui} by x if x<t; O
or(t,x) =0 if x>1t.

Karlin and Ziegler [ 34] defined a '"Chebyshevian -
spline function' p(t) of order m on [a,b] possessing the
knots a <x; <''* <xp <b with associated multiplicities
B Fse vy P 1 <p; <m, as a function p satisfying

(i) p 1s a u-polynomial in each of the intervals

[a,xl), [X]_yxz) Jeoe e [xk7 b] ;
(L.7) m—w; ~1
(ii) p is of continuity class C Bi™ at X,
1<i<k.
They showed that p has the representation
k M m-1
t) = a,, At x,)+ bu(t) .
o0 = L 321 Py B L B (D)
The work of Karlin, Schumaker, and Ziegler ( see [33] and
[34]) gave rise to an extended result for inter]?(ollation by 3
Chebyshevian spline functions at nodes {ti T]_n:-l]‘_ + which
interlace knots {Xj}lf in the manner

(1. 8) ti<xi<ti+m+l’ 1<i<k,
where the {ti} and {x.} are indexed now according to multi-
plicity. Their work shows that unique interpolation by a
Chebyshevian spline function is possible if and only if (1. 8)
is satisfied, which extends the results of Schoenberg and
Whitney [45] . We summarize these results in

Theorem 1. 6. For each choice of {yi}]ermH, there
exists a unique Chebyshevian spline function interpolating
the values {yi}]f'*'m"'l at points {ti}]i"'m"’l with knots {xi}lf
if and only if (1. 8) is satisfied. Here it is understood that
the {ti}]f”m+1 and the {xi}]f are indexed according to
multiplicity.
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Karlin and Ziegler [ 34] also obtained a generalization
of de Boor's earlier result concerning natural interpolating
splines. Specifically, they obtained an existence and unique-
ness result for natural Chebyshevian spline functions inter-
polating Hermite data, i.e., consecutive derivatives at points
coincident with the knots.

Schultz and Varga in [ 46] extended simultaneously the
results of Karlin and Ziegler [ 34] and Greville [ 26] to L-
splines with four basic types of Hermite interpolation at the
end points, including the case of periodic splines.

Using theorems on the zeros of solutions of differential equa-
tions, they obtained the existence of a unique Hermite-inter-
polating L-spline for all sufficiently fine meshes. They then
obtained sharp L*® and L% error bounds for the interpolation
of smooth functions by L-splines and the g-splines described
earlier, as will be described in detail in §3.

Several authors have taken an abstract approach to
interpolation by splines and have worked in a Hilbert space
framework. Perhaps the first to do this were de Boor and
Lynch in [10], in which they exploited the properties of
Hilbert spaces with reproducing kernels. Their work clearly
showed that the spline of best approximation in such spaces
is precisely the natural interpolating spline.

Anselone and Laurent [ 3] considered a very general
situation suggested by the minimization property satisfied by
splines. If X and Y are Hilbert spaces, T is a bounded
linear operator mapping X into Y and X = span{k }k where
the k are the representors of linearly 1ndependent cont1n~
uous, lmear functionals on X , then Anselone and Laurent
proved the following, where n( T) 1is the null space of T:

Theorem 1. 7. If T is a bounded linear mapping of
X onto Y, n(T) is finite-dimensional, and n(T) N XKL =(0),
then the minimization problem

mm H Tf” where
feK
(L9) sz{fex:(f,ki) =r., 1<i<k}

109



J. W. JEROME AND R. S. VARGA

has a unique solution s characterized by

(1.10) Ts e (TK) ™

None of the authors previously mentioned obtained
results that distinguish clearly between the properties of
existence and uniqueness of interpolating splines. Hypo -
theses guaranteeing uniqueness are assumed a priori, and
then existence is shown to follow. The first to recognize that
these are not equivalent properties and that, indeed, existence
can hold without uniqueness was Golomb in [ 25]. His insight
was later used as the starting point for a general development
of splines by Jerome and Schumaker [31], which is described
in §2 of this paper.

2. On Lg-splines. In this section, we will simultaneously
generalize results on L-splines and g-splines by Ahlberg
and Nilson [1], Schoenberg [44], and Schultz and Varga [ 46]
to obtain splines associated with a differential operator L
which interpolate very general conditions expressed in the
form of linear functionals. These results, due to Jerome and
Schumaker [ 31], have appeared elsewhere in more complete
form.

Let 1 be a linear differential operator of the form

n
j d

(2.1 L=), a(x)D) , D= -,

j=0 o
where ap(x) #0 on [a,b] and aj(x)e C’[a,b], 0 <j<n,
and as in §1, let Wn’z[a, b] denote the Sobolev space of real-
valued functions f(x) defined on [a,b] Sl}llch that DP(x)
is absolutely continuous on [a,b] with D feL2[a,b]. It
is well known that W™ 2[ a, b] is a real Hilbert space under
the inner product

n
_ (b - - 2
(2.2) (L9 =/ {jzo Dif(x)- Dig(x) Jdx, £, ge W™ “[a, b].
Now let A = {)\.}]f , be a set of continuous linear
functionals linearly indépendent over W zLa, b], and sup-

pose that r =(r|,1,,...,1.) € Ek, where E™ is real Euclidean
k-space.
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Definition 2.1. A function s e W™ Z[a, b] is called
an Lg-spline interpolating r with respect to A , provided
it solves the following minimization problem:

||LSH = inf HLfH 5 s where
(230 Vlasl FUD e )

U(r) = {feWn’Z[a,b]:)\jf ::rj, 1<j<k}.

The assumption that the {xj}’f are linearly indepen-
dent over W1, 2[a, b] insures that” U(r) is not empty for
each r e E~ . Also, the differential operator L is_easily
seen to define a bounded linear operator from W™ 2[ a, b] onto
Lz[a, b]. Its null space n=ng, is of dimension n, and is
spanned by the functions {u;(x) }l in C™[a,b]. We now
formulate a fundamental result on the existence and unique-
ness of Lg-splines in

Theorem 2.1. There exists an s(x) € wh Z[a, b]
satisfying (2.3). A function s(x) e U(r) solves (2.3) if
and only if :

(2. 4) fab Ls- Lg dx =0 for every ge U(0) .

Moreover, any two solutions of (2. 3), corresponding to a
prescribed re¢ EK , differ by a function in n, and ( 2. 3)
possesses a unique solution if and only if n 1 U(0) =(0) .

We remark that this result is an essential improvement
of the result of Anselone and Laurent [ 3] in that it clearly
distinguishes the questions of existence and uniqueness for
interpolating splines. Existence alwaysholds, and uniqueness
holds if and only if n fl U(0) =(0). This differs sharply
from [ 3] in which the assumption n 1 U(0) =(0) is made in
order to obtain both existence and unigueness.

Proof. Note that U(r) is a simple translate of U( O),_

U(r) =X, + U(0)
for an arbitrary Xy € U(r). The facts that U(0) is closed

and h is finite-dimensional imply that U(0) + n is closed.
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Since L is a bounded linear operator from W™ 2[a, b] onto
LZ{ a, b], it follows from Lemma 2.1 of [25] that LU(0) and
thus LU(r) is closedin 12[a, b], and hence the minimiza~-
tion problem ( 2. 3) possesses a solution. Viewing (2.3) as a -
a projection problem in LZ, the orthogonality relation ( 2. 4)
is immediate. ’ .
Conversely, if (2.4) holds for some s ¢ U(r), then <.
it follows easily that s is a solution of { 2.3). Indeed, ‘

2
fZ(Lf) 24x = ff(Ls)zd.x + Zfab(Ls)-(Lf—Ls)dx+ f;(Lf—Ls) dx

=f§(Ls)2dx + ff(U—LS)de

for every fe U(r), and thus f( Ls) deg f( L) yzdx for all

fe U(r). Clearly, (2.4) implies thatany two solutions of (2. 3)

differ by a functionin n, and hence (2. 3) possesses a unique

solution ifand only if n N U(0) =(0), which completes the proof.
As immediate corollaries, we have

Corollary 2.1. The class Sp(L,A) of Lg-splines s
such that s satisfies (2.3) for some re E* isa linear
space of dimension k + dim{n N U( 0)} in W Z[a, b] and .
n < Sp(L,A).

Corollary 2.2. L{Sp(L,A)} and L{U(0)} form an
orthogonal decomposition of L%, In particular, for every
fewh [ a, b], we have

(2.5) f;(Lf) % = f;(LS)de + f;(Lf—LS)de

where s interpolates {x]-f}k, with respect to A .

We remark that relation (2. 5) is known in the literature
as the first integral relation(cf.[ 2, p. 193]). Also, it can be
easily demonstrated that a basis for Sp(L,A) may be chosen
to consist of the so-called cardinal splines {sj(x ) }l , l.e.
splines sj(x) such that )\isj = 6”, together with a basis for
n N U(0). '

We wish now to derive analytical characterizations for
members of Sp(L,A) when the {)‘j}l are chosen to be Hermite-
Birkhoff-type linear functionals. This specializes the results
of Jerome and Schumaker [ 31], where the characterizations
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are carried out for more general linear functionals of so-called
extended Hermite-Birkhoff-type. We will also characterize
Sp(L,A) when periodic conditions are added and will obtain
generalizations of the well-known periodic splines. We now
formalize the notion of an Hermite-Birkhoff interpolation pro-
blem, described earlier in §1 .

Definition 2. 2. We say that A = {xj}‘f generates an
Hermite-Birkhoff ( or H-B) interpolation problem if to each
ANEA, there corresponds a pair (xj,j;) such that \f =

it
D lf(xi) where a <xj <b and 0 <jj; <n-l.
The points {xi are called the knots of s . The for-
mal adjoint L* of thé differential operator L is given by
n
L(x) = ), (-)'D(a (x) (%)) .
j=0

We have the following important characterization
theorem for Sp(L,A) in the case of an H-B interpolation
problem.

Theorem 2. 2. Suppose A generates an H-B inter-
polation prozblem. Then s(x) € Sp(L,A) if and only if
s(x) e W™ “[a,b] and

/( i) L*Ls(x) =0, xe(ab) - {xi}
(if) Ls(x) =0 if a <x <min {xi} or
(2.6) max {xi}<x <b
_ . : j
(iii) [OJ.LS]X— 0 if x¢ {Xi} and (D )x ¢ A,
0<j<n-l.
g S B

Here, (Dj)X denotes the evaluation of the j-th deriv-
ative of a function at x , and the operators O. are those that
arise naturally in the integration by parts formula:

n-1
[3 ok J B
2.7 - g = - . .
( ) fa (vIiu-ulL¥v) dx jZ/O D u(x) OJv(x) 4a
and are defined by
ngol -
_ _ i
OJ.V = R (-1) D (ai+j+l(x) v(x)).
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The bracket notation [ f], is defined by

[f]X =f(x+) -Hx-) if a<x<b, .
while [f]5 =f(a+) and [f]y =- f(b-) .

Proof (of Theorem 2.2). For any s{x) e Sp( L,A), e
let T be any open subinterval of (a, b) such that JIl {Xi}
is_ empty. If Ccn(]) denotes the set of all functions in
CZn( J) which vanish outside a compact interval contained in
], then every ¢¢ C%n( J) is also in U(0), and by ( 2.4) and
(2.7), |

(2.8) 0 = fabLs-Lgodx :fI Ls- Lo dx :fIsL*an dx.

It follows from ( 2. 8), by the argument used in Gelfond and
Shilov [ 24] to prove that every distribution solution is a
classical solution for operators L considered here, that the
restriction of s to J is in CZn( 7) and satisfies L*Ls(x) =
0 forall xe . This proves (2. 6)(1).

To prove ( 2. 6)(ii), suppose § =min(x;) and a <x
<§¢ . If Ls(x)#0 then, by the continuity of Ls in a neigh- ,
borhood of x , it follows that [”(Ls) a4y > féb( Is) 2 dx .
Now, define a new function S(x) e W™ %[a, b]” by: -

- s(y) if £<y<b
s(y) =
u(y) if a<y<g

where u e n is determined by the n conditions Dju(g) =
Dls(£), 0<j<n-l. Clearly,

ff(Lg) dx =fgb(L'§) 2 4x =f§b(Ls)2d_x <fab(Ls)2dx.

Since \.§ =\.;s for j =1,2,...,k, this contradicts the fact
that s ¢ Sp(IL,A). A similar proof holds if max{x;}<x <b.

To prove (2. 6)( iii), let x ¢ {Xi} be an interior point
of [a, b] and suppose that the evaluation of the j-th deriva-
tive at x is notin A where 0 < j <n-l. With j held fixed,
let J=(x -e, x+e) be an interval such that 7N {Xj_} =X
and choose ge Cg(J]) such that D'g(x) = &;, 0 <i<n-L
Then, g € U(0) and, by (2.4), (2.6)(1), and (2.7},
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0= [P Ls 1o ax =[5 tstgax+ [ Ls Lo ax

a
; = x X+e
) == g(y)o.Ls(y)i_—Z g(y)OLs y)i
i=0 1 X=¢ {20
- T
. = i;O (x)[OLs], =[OLs]_,
since g( l)(x) = §;.. The proof in the case x =a or x =b

) o 1}
is similar.

Conversely, suppose s ¢ WL 2 and satlsﬁ%s (2.6).
We will show that s € Sp(L,A) by showing that f Ls- Lgdx=
0 for all ge U(0). Indeed, if ge U(0) and £ = mln{x }
and 71 = max{xi}, then by ( 2. 6) (ii) ,

J?Ls- ILg dx = f‘; Ls- Lg dx
and by (2.6)(1i) and (2.7), we conclude that

SO Ls 19 ax = Z} Z Dlg(x,) [O)Ls],
j =0 i

and, fer each xj, the inner sum is zero by ( 2. 6)(iii) and the
fact that ge U(0). This completes the proof of Theorem 2. 2.
A number of corollaries follow immediately from
Theorem 2. 2.
n

Corollary 2.3. If L =D, then({2.6)(iii) becomes
—ia 2n—-i-
DZn ) ls(x-%) = p“* 1s;(x—)

if x € (a,b) and the j-th derivative evaluated at x is not
. in A;if x =a or x =b, then

2n-j-1 2n-j-1

D s(at) =0, D s{(b-) =0,

respectively.

Corcllary 2. 4. Suppose s € Sp(L,A) where A de-
fines an H-B interpolation problem and let X € {X Y. v
denotes the order of the highest derivative spec1fled at x,
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then s is locally of class C2R~27V apout x .

Let Wg» “[a,b] denote the closed subspace of
Wh 2] a, b] con51st1ng of those periodic functions f on [a, b]
satisfying DJf(a+) = DIf(b-), j =0,1,...,n-1. WS ?[a, b]
is the null space of the set {p }n of continuous linear func-
tionals on W™ “[a, b] defined by

bt = Dlf(a+) - Df( b-).

Definition 2, 3. Sp (L,A) denotes the class of solu-
tions s of (2.3) where U(r) is replaced by U( r)ﬂWn 2[a,b]
and {\; }l are linearly independent over Wn 2[a b]. The
elements of Spp( L,A) are called periodic splme functions.

It is easy to see that Theorem 2.1 carries over to the
class Spp(L A). U(0) is replaced by U(0) N Wn [a, b]
and the uniqueness characterization becomes in thls case:

s(x) 1is unique if and only if nfl W;l’ Z[a, b]NU(0) =(.0).

We have as a final corollary to Theorem 2. 2,

Corollary 2.5. Let A generate an H-B interpola-
tlon froblem Then s e Sp,(L,A) if and only if s ¢
and s satisfies (2. 6) where (2. 6)(1iii) is modi-
fled 1n the following sense: a is identified with b and, if
ae {x;} andif Dls(at) ¢ A, then

[OjLS]a = OjLs(a+) - OJ.LS( b-) .

We remark in closing this section that the first inte-
gral relation ( 2. 5) is also valid for fe Wi 2 in terms of
the periodic Lg-spline s interpolating f. Finally, iffe
wh, 2[ a,b] and sfe Sp(L,A) interpolates f then, for any
s € Sp(L,A), we have by (2.5)

2

(2.9) fb(Lf—Ls)de=fb(Ls ~Ls) Pt fb( Lf—Lsf) dx -

A corresponding property holds for f ¢ W [a, b]. We re-
mark that if fe W2 2[a b] and s is chosen to be equal
to sy, then the left side of (2.9) has the alternate expression
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b 2 b \
(2.10) JOULE - Ls) "ax = [C(£ - 5) ¢ L¥LEax

which is known in the literature as the second integral rela-
tion (cf.[2, p. 205]).

3. Error Estimates. In this section, we will obtain new
error estimates for the approximation of smooth functions by
Lg-splines or periodic Lg-splines interpolating H-B-type
data. We will obtain six distinct approximation theorems
while considering L* and L2 convergence of Lg-splines
interpolating W% 2 and W2™ 2 functions ( see Schultz and
Varga [ 46] where these results were obtained for Hermite
L-splines and g-splines). For the special case of piecewise
Hermite interpolation, convergence results of Birkhoff, Schultz
and Varga [ 8] will be stated for functions in the class W, P
where n<m <2n and 1<p <.

Definition 3.1. Let A = {)\}}1{ define an H-B prob-
lem, and let {x,} be the corresponding knots. The subset
A consisting of'all x ¢ {x,} such that there exists \ ¢ f\;}
satisfying Af =f(x) will be called the partition of [a, b].
induced by A . B

If A is not empty, we define A as the maximum
length of the subintervals into which [a, b] is decomposed
by the points of A, and we define A as the minimum such
length. Next, if A is notempty and x e A, let i{x) be
defined as the maximum positive integer such that there exists
a Mg € A for which

k
xkf =D {{x)

for each 0 <k <i(x)-l. In other words, i(x) is the number
of consecutive derivative point functionals associated with
the point x € A . With this notation, we then define y(A) by

y(a)= ), i(x)
A

Xe

if A is not empty, and we set y(A) =0 if A is empty.
We now state
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Theorem 3.1. Let fe W™ 2[a,b], let A generate an
H-B problem, and assume that y(A) >n. If se Sp(L, A)
interpolates f, then for A sufficiently small,

ID-gl, @Yy,
L [a,b] L[ a, b]
(3.1)
n-j-(1/2) | ]|
L [a b]

for all 0 <j <n, where Mj is independent of A and f.

sM;A)

Proof. The argument here is an extension of that used
in Schultz and Varga [46]. Let A = {go < gl<---<§N}, and
let s(x) be any Sp(L,A)-interpolate of f(x). Note that
s(x) need not be uniquely determined. Since f - s
e ch [a b] and y(A) >n, we can apply a generalized
Rolle's Theorem, i.e., setting g —g for 0 <i <N, there

exist points NG {gg”}ol in [a,b] such that

(3.2) Djf(g(j’)—Djs(g(j));o, 0< L <Ny, 0 <j<n-l,

where N =Ny > N; > Np > +++ > Np_] 20, where the points
of ald) satisfy

a<g(”<g(” ”<g(NJ') <b
. ]

and /_\.(JH) is related to A(J) by

(1) (j+]) (J)

£, <¢, <g,
It follows immediately that 1&?}_1 - g(fj) l <{ j+l)£
la - «ig”l <(j +1)A and |b - é(Nj_) | <(j +1)A for any
0 <j <n-l. Now, for each such j f let ;€ [a, b] be such
that

for all O_<_1§NJ. and 0 <j<n-2.

(3.3) D(sx) - stxl = D -9 0<j<n-L

00 )

L [a,b]
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()

Since A

= ixlgm —é(ij)l §(j+l)£, there is a point

g}(j) such that |, - £{))] <(j+DA. By (3.2) and (3.3),

X
Ipe- s)H =lf(Jj It E(t) - s(tpat], 0 <j <n-l,

(3.4) 1T, ] gk

<) A [ D9 L 0<j<n-L.
°{a, b]

Arguing inductively, we conclude that for 0 <j <n-l,

(3.5 D~ 2 <At G I g gy
LT a, b] o L '[a, b]

Applying the Schwarz inequality to the integral of (3.4) for
j =n -1, we obtain

(3.6 ID"Ne-s)l . < nE ID%i-9)] .
L"[a, b] L3, b]

By (3.5) and (3. 6),

(3.7) | D)(g-9) < (&)~ 2)) on (-9,
L [a b] \/E L[a b]

H

0<j<n-l.

Now in order to put the right-hand side of ( 3. 7) into the form
of (3.1) we write,

a () D(£(x) - s(x)) = L[Hx) - s(x)]

Z a (x)DNf(x) - s(x))
j=0

and since ]an(x) | >w>0 on [a,b], we have by the tri-
angle inequality
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(3.8 [Di-9)| < Hus-9 |
1’la,b] L°[a, b]
+Z la,l IDe-s) , 3.
LTa, »] 1°[a, b]
But, since HDj(f—s) I, <o-aVEDhe-nl
L [a,b] L [a’b]

(3.7) and (3. 8) yield

sl (b- Va2, (/2
1= =Y a ] {b-a) _mt z,n-i-(/2)y
“ L a, b] Vo jt
xIpe-ol ,  <zlut-9l, .
L[ a, b] L [a, b]

Clearly, if A is sufficiently small, the coefficient ¢ =c¢(n, L)
of |D™(f-s)l| is greater than 1/2, and hence

(3.9 Ip%t-9l , <Zlui-9]l
L[a,b] L[ayb]

for all such A. Inequalities (3. 7) and (3.9) then imply the
1
first inequality of ( 3.1) with M = (-—) _nn—T' . The last in-

equality of (3.1) follows from the flrst integral relation (2. 3).
This completes the proof.

If we are interested in Lz—type rather than Lw—type
error bounds, the result of Theorem 3.1 can be improved in

Theorem 3.2. Let f e W' Z[a, b], let A generate an
H-B problem, and assume that y(A) >n. If se¢ Sp(L,A)
interpolates f, then for A sufficiently small,

j 1 n-

D=9l , <M @ s - 9]

L[a, b] L [a b]
3.10

( ) (1), -

<M (&)l

L a,b]
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for all 0 <j <n, where Mg 1) is independent of f and A .

Proof. For any 0 <j<n-l1 we have from (3. 2)
that DJ(f - s) vanishes at €y (1) for o < £ <N. . Hence,
applying the Rayleigh-Ritz 1nequa11ty(cf [27 p. 184]), we
have for 0 < f <N,

(1) (1)
€ €
(3.11) f(“ Dhs(t) - s(t) dt<[’uil‘)’é] [ s s(1)) Yo
g 3) g(J)

(zi)l - €§J)| <(j+1)A. Summing both sides of (3. 11)

with respect to £, we have for 0 <j <n-1,

g(])
(3.12) f() o5t - s(t))}dt<[—JﬂL‘] o™= 5%

since \ g

[, H]

Setting j =n -1 in this inequality we have from (3. 9),
gln 1)

B8 Ry - 5,

L'[a, b]

for all A suff1c1ently small. Next, (3.1) gives us that

(3)
€0
fa {D)(£(t) - s(t)) }at < lg(” al ID)(£ - 9] ®

(3.13) f( O sty - s(e))2ar <_—%

L [a b]
(3.14)

< M(a) S TR 2
L {a,b]
for all 0 <j <n-l since lg(” —a] < (J+1)A as well as a
similar inequality

(3.15) f( ){DJ £(t) —s(t))} dt<1\/1"(A)Zn ZJ“L(f- )H

E‘N. L [a b]
J
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Setting j =n -1 in (3.14) and (3.15)and summing the
left-hand sides of (3.13), (3.14), and (3.15), we obtain,
upon taking sqguare roots, o

(3.16) "=l ,  <MrAluE-9l,
Lla, b] L[a,b]

for all A sufficiently small. Now, arguing by induction on
v =n -j andusing (3.12), (3.14), and (3.15) we can
easily establish (3.10). This completes the proof.

‘we remark that Theorems 3.1 and 3. 2 are also valid if
fe Wg’ Z[a, b] and s e Spp(L,A), so long as the other hypo-
theses are satisfied.

Now, suppose f ¢ wen, 2[ a, b]. As we know from
(2.10), the second integral relation is

(3.17) f;(u—Ls)zdx=f§(f—s)L*Lidx.

‘We are now ready to state

Theorem 3.3. Let fe w2 2[a, b], let A generate

an H-B problem, and assume that y(A) >n. If s e Sp(L,A)
interpolates £, then for A sufficiently small,

e Il eMP@P Ty
L [a, b] ) L [a; b]
forall 0<j<n-l.
Proof. Schwarz's inequality applied to (3. 17) vyields
lue-9)l®,  <le-sl,  llz"wl
L[a,b] L[a,b] L a,b]

‘Applying (3.10) with j =0 to the right side of this inequality
and dividing through by “ L(f - s)H 2 , we obtain
L[a,Db]

(3.19) lui-9l , gMgl)(A)nllL*LfII ,
L7[a,b] L[ a, b]

It is clear that (3.1) and (3.19) then imply (3.18) and the
proof is concluded.
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If we are again interested in Lz—type error bounds the
result of Theorem 3.3 can be improved in

Theorem 3.4. Let f, A, s, and A satisfy the hypo-
theses of Theorem 3. 3. Then,
j 3
(.20 IDla-s)l ,  <mi?
L'{a,b]

SR P71
1 a, b]

forall 0 <j<n.
Proof. This follows directly from (3. 10) and ( 3.19).

If we extend the usual definition of the L®-norm on
[a, b] by defining

I Dte-5) = max  {|Dle-s) }

0 - - -
L"[a,b] 0<k< N-1 1 N
for n <j < 2n-1, then an analogous extension of the results
of [46] yields

Theorem 3.5. Let f e W™ 2[a, b], let {Ai}olo gen-

erate a sequence of H-B problems, with y(Ai) >n for all
i>1, let s;e Sp(L,Aj) interpolate f, and let A; tend to
zero in such a way that Aj/A; <o forall i>1. Then,
there exists an i such that for all i>i,,

Zn‘j-(l/Z)HL"‘H”
2

j (4)
(3.2) [[D(E-spll , < M7(A)
L'[a, b]

L[a,b]

for all 0 <j <2n-lL

An L2 estimate for higher order derivatives is also
available and has been obtained by Perrin [ 37]. We state
this as

Theorem 3. 6. Let the hypotheses of Theorem 3.5 be
satisfied. Then there exists i, such that for all i 2 iy,

j
(3.22)  loE-spl

1°[ a, b] 2

<M ()P
) ' L [a,Db]

for all 0 <j < 2n-l.
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Frror estimates also can be derived for different
assumptions upon f. For example, in the often-cited paper
of Birkhoff and de Boor [ 5], convergence of cubic spline inter-
polates to functions f in C4[a, b] is shown to be of the
order (Bi) 4 for nearly uniform meshes A;, with convergence
of the j-th derivatives of order (Ai)4"3, for 0<j<3.
Certain limited generalizations of this result have been made
but we will not pursue them here. (See for example Birkhoff
and de Boor [ 5], and Sharma and Meir [47])

We turn now to the topic of piecewise Hermite inter-
polation, which will conclude this section.

Let W™ 'a,b] for n>1 and 1 <r < denote the
set of functions f such that Dl g absolutely continuous
on [a,b], and D™ e 1f[a, b], and let m >1 be such that
m <n < 2m. Itis clear that, given an arbitrary partition

Ar @ Exy <X < SXg =D
of [a,b] and fe W™ '[a, b], there exists a unigue function
fm which is a piecewise polynomial of degree 2m - 1 on each
subinterval [xj,xi41] of [a,b] satisfying

D’fm(xi) =DJf(xi), i=0,1,...,N+l, 0<j<m-l.
. . (m)
The class of all such £ is designated by Ha (a,b). The
following theorem is taken from Birkhoff, Schultz, and Varga

[8].

Theorem 3.7. Let A be any partition of [a,b], let
fe WhI[a, b], where n>1 and 1<r<o . Let m satisfy
m <n < 2m, and let £~ Dbe the unique H(Am)[a, b] interpo-
lant of f. Then

(3.23) Ioce-£ )l q
L[ a, b]
- n-j~(1/r)+(1 n
<c ()2 H @) png
J,m,n,r,q Lr[a b]
2
forany g>r and any 0 <j <m-l, andalso for j =m if
n>m or g=r, and
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(3.24) IDe-5 )l
1%, 0]

~n-j, _(r-q)/(rq) _m
i j:m’nsr;q(A) (b a) “D f“];r[a b]

forany 1< g<r, andany 0<j<m.

Several remarks are now in order. First, based on the
results of Schultz and Varga [ 46] and Birkhoff, Schultz, and
Varga [ 8], we can assert that the exponents of A in Theorems
3.1-3.7 cannot be improved for the function spaces considered
in these theorems. Second, the results of Theorems 3.1-3. 6
constitute a generalization of the error bounds given by
Schultz and Varga [46], because the error bounds of [ 46]
were derived for Hermite-Birkhoff problems for which the
Sp{ L, A) ~interpolates were always unique. But, the proois
of this section show moreover that the error bounds of
Theorems 3.1 and 3. 2 are in fact valid for the more general
case in which A = {)\-}]f consists of at least point functionals
for which vy (A)>n, e remaining functionals of A being
arbitrary, provided that A = {)\}lf is a linearly independent
set. Moreover, the error bound]s in Theorems 3.1-3. 6 are
valid for extended Hermite-Birkhoff problems of Jerome and
Schumaker [ 31].

4. Applications of Lg-splines to nonlinear differential equa-
tions. As a particular application of the theory of Lg-splines
given in the previous sections, we consider the approximate
solution of the following two-point nonlinear boundary value
problem:

(4.1) M[u(x)] + f(x,u{x)) =0, a<x<b,
where
(4.1) Muwx)]= ) (~1)]D3(gi (x) D'u(x)),
0<i,j<n 2
n>1, Dfa% ,

subject to the homogeneous boundary conditions of

125



J. W. JEROME AND R. S. VARGA

(4.2) D'u(a) =Du(b) =0, 0<j<n-l.

For the coefficient functions oy j(‘x) of (4.1'), we
assume that

/( i)  the coefficient functions o j(x), 0<i, j<n

are bounded, real valued, and measurable in x
in [a,Db], a

?

(4.3)
(ii) there exists a positive constant c such that

f:{ E oj j(x) Diw(x) Djw(x)}dxz cll w“f1
0<i,j<n

L for all w(x) ¢ W ?[a,b],

where Wjb Z[a b] denotes the linear subspace of wh Z[a b]
of all real-valued functions w(x) defined on [a b] which
satisfy (4.2). As is known (cf. (2.2)), WS’ [a,b] is a
Hilbert space with a norm defined by

fal?= [P0} (Dt e
i=0
It follows from (4. 3) (ii) that
f;{ ) o 30D W) D wx)}dx
0<i,j<n

i

(4.4) A = inf
b 2
weW ’ [a, b] fa (w(x))
w=#O

is positive. With respect to the function f{x,u) of (4.1),
we assume that

(( i)  f(x,u) is a real—valued function on [a,b]X R
such that f(x,u(x)) eL 2[a,b] for any u(x)
e Wb [a b],

(ii) there exists a real constant y such that

f(XLu& __5(}{’ v) > y>-A for almostall x € [a, D]

and all - <u,v <+ with u#v,

4.5 -
( ) (iii) for each positive real number ¢, there exists a

positive constant M(c¢) such that
(%, u) f(x, v)

— <M(c) for almost all xela,b],
andall -0 <u,v <o with u#v and |u|<c

L vl <c.
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Consider now the quasi-bilinear form

(4.6) a(u,v) = f;b{ Z o J.(X)Diu(x)' Djv(x)
0<i,j<n 7’

+ H(x,u(x)) - v(x) Yax

for any u,ve Wg 2[a,b]. This is obtained formally by multi-
plying the left side of (4.1) by v(x), and then integrating by
parts. Following Aubm [4], Browder [12], and Céa [13], an
element u(x) ¢ WO [a b] is called a generalized solution
of (4.1)~(4.2) in W% 2[a,b] if

n, 2

(4.7) a(u,v) =0 for all v(x) ¢ W0

[a, b] .

Slmllarly, if Bk is any finite-dimensional subspace of
[a b], then uy ¢ BX is called a Galerkin approximation
in Bk of the solution u(x) of (4.1)-(4.2) if

k

(4.8) a(u, ,v) =0 forall ve B

k}

We now state a result which is proved using results
of Browder [12], Minty [ 35], and Zarantonello [54] on
monotone operators ( cf. Ciarlet, Schultz and Varga [18] and
Varga [49]).

Theorem 4.1. With the assumptions of (4. 3) and
(4.5), the two-point nonlinear boundary value problem of
(4.1)-(4.2) has a unigue generalized solution (cf. (4. 7)),
u(x), in W “[a,b]. Moreover if B is any finite-dimen-
sional subspace of W8 [a, b], then there exists a unigue
Galerkin approximation (cf. (4.8)), uk(x) , and there exist
positive constants K; and Kp , independent of the choice of
BK , such that

(4.9) | DYu ~wl <k Jlu ~ull <k inf{lw -ul ;
k Loo[a, b] 1" 'k n 2 k n
W, € Bk}

k
forall 0 <i<n-l.
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We remark that the first inequality in (4.9) is a
consequence of the Sobolev imbedding theorem in one dimen-
sion (cf. [36, p. 72] and [53, p. 174]).

Consider now the algebraic problem of determining the
Galerkin approximation from (4. 8). If {wi(x) }il\fl is a basis
for the finite-dimensional subspace BX of W§» 2[a, b], we
can express the unique Galerkin approximation uk(x) in B

as uk(x) = Z ciwi(x). Using (4. 6), then (4. 8) takes the

matrix form

(4.10) Ac + g(c)

where A —(ozk g isan MXM real matrix, and c¢ and g(c)
are column vectors with M components, where

_ (b i s
(4.11) a!,k = fa{ Z O'i’j(X)D wk(x) Dwﬂ(x) }dx,
0<i,j<n
L<kt <M,
and

il

M

(4. 11") gﬁ(c) ,fff(x,kzd ckwk(x) ). wﬂ(x)dx, l1<f <M.
From Theorem 4.1, the nonlinear matrix problem of (4. 10)
admits a unique solution ¢, from which the Galerkin approxi-
mation ug(x) can be constructed.

To give a concrete illustration of the foregoing mate-
rial in this section, suppose we consider the numerical ap-
proximation of the two-point boundary value problem

(4.12) DZu(x) eu(x), 0<x <1,
subject to
(4.13) u(0) =u(l) =0.

This corresponds to the case in (4.1') where o], x) =1,
and where o; .(x) =0 forall 0 <1i,j <1 with 0 < i) <2
Thus, to Verliy that (4. 3) is satlsfled in this case, we need
only show that there exists a positive constant c¢ such that
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fol(Dw(x))de ZCHWHZ for all w(x)e Wé’ Z{O,l] .

1
Using the Rayleigh-Ritz l1’nequality (cf. [27, p. 184]), we
have for any w (x) € Wy» “[0,1] that

(w2+1) fé( DW(X))de = wzfé(DW(X))ZdX + fOl(Dw(x))zdx

> w2 [ Dwix)) e + v [(w(x)) P = 2wl 2
i.e., ¢ can be chosen to be TTZ( l+'rr2) —l. Use of the 2
Rayleigh-Ritz inequality again shows that A of (4.4) is =,
and as f(x,u) =e"“ in this case, it also follows that the
assumptions of (4. 5) are fulfilled with y =0 . Thus, Theorem
4.1 is applicable,

Continuing with the particular example of {4.12) ~(4.13),
consider a uniform mesh A: 0=xp<x;<---<xpy) =1 on [0,1]
where x; =1ih, 0 <i < N+l, and where h = I/{N+l). Let A
= {Xj}}\{ be the class of continuous linear functionals over

W&’ Z[a, b], defined by
Xj(f) =f(Xj) ’ 1<j<N.

These functionals are obviously linearly independent, and in
this case, with L =D, the Lg-spline space Sp(D,A) of
W(l)’z[o, 1] is well-defined. To show the dependence on the
partition A of [0,1], we now write Sp(D,A) for Sp(D,A).
A convenient computational basis {ti(x) }%\f for Sp(D,A) is
defined by

.~ X‘Xi
e N <
L= KSESX0
X"Xi
(4. 14) ti(x): L+ n , xi_lgxgxi,
° XL p iy

With this choice of basis for Sp(D,A), the NX N matrix A
of (4.10) takes the familiar tridiagonal form
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2 -1 O
-1 2 -1
wm e TN
| R
and the components of the vector g{c¢) of (4.11') in this
case are given by

N
X041 121 ¢itix)
(4.16) glc) =) e tx)dx, 1<f<N.

£-1
From Theorem 4. 1, we know that there is a unique Galerkin

solution uN(x) = Zk:l ¢k t(x) of the matrix problem (4.10).
Since up(ih) = ¢y, itis interesting to note that if gy(c) of
(4.16) is approximated by the trapezoidal rule on the intervals
[Xl -1, %y I and [xy, X[.H], L.e.,
c u_(£Lh)
. J/ N
gjl( c) = he = he s
then the associated nonlinear matrix problem is precisely the
one which arises from the usual three-point central~difference
approximations of (4.12) -(4.13). TFor further computational
details, we refer to Herbold [ 28] and Herbold, Schultz, and
Varga [ 29].
To show how the error bound of (4. 9) can be utilized
in this particular case, the solution u{x) of (4.12)~(4.13)
is given explicitly (cf. [15]) by

(4.17) u(x) = -1n2+2 In {csec[ o(x —%‘)/2]}, c=1.3360557,

which shows that u(x)e C*[0,1], and, in particular, u(x)
is a classical solution of (4.12) -(4.13). Hence, if Up(x)
is the unique Sp( D, A) -interpolation of u(x), then from
Theorem 3. 4, we know that there exist positive constants C)
and Cj, , independent of h , such that
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N 2
Ju - a 2oy < O
(4.18) ’
ID(u =)l < C.h,
N LZ[O’” 2
and consequently,
(4.18") hu =% [l <cn,

where C' is independent of h . Thus, by choosing wk(x)
=lp(x) in (4.9), we obtain

(4.19) lu - ull <K u_ -ul, <cmn,
A A L

where C" 1is independent of h . In other words, the con-
vergence of uN(x) to u{x) as h tends to zero is assured.
We further remark that the analysis above is valid also for
nonuniform partitions A of [0,1]. The only change is that
h is replaced by A in (4.19).

The argument above connecting the error bounds of
(4.9) with interpolation errors for Lg-spline interpolation
can be easily extended to the general case. Specifically,
for the boundary value problem (4.1)-(4.2), finite-dimen~
sional subspaces BXK of Wg’ Z[a, b] of the following form
can be considered. Let A:a =Xg <xp <0 <Xy = b be
any partition of [a,b], and let z =(z}, z,, ..., zy) be
any vector with positive mteger components z; where
l<zj<m. Let A = {KJ } now be the class of continuous
linear functionals over ~W{ “[a, b], defined by

N0 =DM, 0<k<zol, 1<jn

Again, these functionals are linearly independent, and the
Lg-spline space Sp(L,A) of WO [a,b] is expressed as
Sp(L, A, z), to show the dependence on A and z .

We now apply the Lz—interpolation results of Theorems
3.2 and 3.4 of §3. As in the example above, this gives rise
to interpolation errors in the norm H || N’ and combining with
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the error bounds of (4. 9) of Theorem 4.1 gives

Theorem 4. 2. With the assumptions of (4. 3) and (4. 5),
let u(x% be the unique generalized solution of (4. 1) (4. 2)
in W§’“[a,b]. For any partition A of [a,b], and any
incidence vector z, let G be the unique Galerkin approxi-
mation of u(x) in Sp(L,A,z), where the order of L satis-
fies m >n . Then, there exist positive constants X; and
K5, independent of A and z , such that if u(x)e Wb 2[ a, b]
with t>m , then

D (G- | <k G- ul <k, 8™ 7| 1y :
© 1 n 2 2
L [a,b] L [a, b]
(4. 20)
0 <i<n-l.
Similarly, if u(x) ¢ Wb 2[a,b] with t > 2m, there exist
positive constants K; and Kb, independent of A and z,
such that

(.21 | Di<ﬁ-u>ll <k 8 -ul <k BP et

[ b] L[a b]

for 0 <i<n-l.

Because the error bounds of Theorems 3.2 and 3. 4
hold for more general Lg-spline subspaces of W™ 2[a, b],
the results of Theorem 4. 2 then improve the recent results of
Varga [49].

Returning to the example of (4.12) -(4.13), we know
that its solution u(x) is of class C*[0,1], so that the
error bound of (4. 21) is always applicable. Consider then
any Lg-spline space of the form Sp( D2 A,z), where z is
any incidence vector with positive mteger components satis-
fymgl<z <2, 1<i<N. If Zl~22=~~-—zN-=l then
Sp( D2 A, Z) con51sts of natural cublc splines, while if
Z] =Zp =+ =2N =2, then Sp(D A,%Z) consists of
piecewise cubic polynomlals of plass C [a, b], which is also
known as the smooth cubic Hermite space 1 2)(A) (cf. [15]
and [18]). For Sp(DZ A, z), the error bound for the boundary
value problem of (4.12) -(4.13) from (4. 21) is
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(4.22) |d-ul <k la-ull, <k (&) | L¥1ull .
e PO 1%, b]

Numerical results for (4. 12) -( 4. 13) for the subspaces

Sp( DZ, A,Z) and Sp(D“, A4, 2) are given respectively in
Tables I and II (cf. [15], [28], and [49]). In all cases,

A = A(h) was chosen to be a uniform partition of [0,1] with
mesh size h .

h dim lu-a, Il
L [o,1]
-5
1/3 6 3.13 - 10
-5
1/4 8 1.03 - 10
-6
1/5 10 4.40 - 10
-6
1/6 12 2.17 - 10
-6
1/7 14 1.19 - 10
-7
1/8 16 7.15 - 10

Table I - Sp(DZ, A(h),Z), Smooth Cubic Hermite

The error bounds of (4. 21) of Theorem 4. 2 can be
improved if

(i) the generalized solution u(x) of (4.1)-(4.2) is
smoother, say of class wam, 2[a, b] where m =n+ g
and ¢ is a nonnegative integer, and

(ii) appropriate Lg-spline subspaces of WS—: 2[a, b] are
selected.

Specifically, suppose that we can express the differential
operator M of (4.1) as

(4.23) M[v(x)] =£4* [v(x)] + Z (—1)ij(Zr‘, (x) DiV(X))
0<i, j<k ]
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h dim Hu-ahﬂ
L [o,1]
-6
1/4 5 5.70 - 10
-6
1/5 6 2.39 - 10
1/6 7 1.19 - 1076
-7
1/7 8 6.44 - 10
-7
1/8 9 3.43 - 10
-7
1/9 10 2.50 - 10

Table 11-Sp( D%,A(h), %), Natural Cubic Splines

where & 4(x) ¢ Cl[a,b] forall 0 <i,j <k, where 0 <k
<n and ’

n .
(4. 24) t[v(x)]= ,ZO By(x) Dv(x)
J:

where we assume that Bj(x)e Cj[a, b] forall 0<j<n,
and that

ﬁn(x) > w>0 forall xe[a,Db]

for some positive constant. In this case, we select the
finite-dimensional subspaces H_(£,A,z) of W{ 2[a,b],
which are defined as follows. The construction for this is
similar to the recent work of Hulme [30].

Given the positive integers m and n with m =n + q,
g>0, let A:a =xXg <xp <o <xXpN3] = b be any partition
of [a,b], and let z =(zg,2},..., zy41) be any associated
incidence vector with integer components satisfying 1 5Zi
<m+q forall 0 <i<N+l. With L=2-D“Y consider the
Lg-spline space Sp(L,A,z). Then, let Sp( L,A,z) be
defined as the subspace of Sp(L, A, z) of elements s(x)
which satisfy the particular boundary behavior
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Dls(a) =D£s(b) =0 forall 0<2 <qg-l if g>1

(4.25) and for all 2q <! <n-l+2q .
Then, we define H ({,A,z) as the setof all real-valued
functions w(x) defined on [a,b] such that
(4.26) w(x) = D2 s(x), a <x <b, where s(x)c ép( L,A,z).
Because of the boundary conditions of (4.25) for 0 <12 < g-l
if g >1, there is a one to one correspondence between ele-
ments of Hq(ll, A,z) and Sp(L,A,z). Next, because of the
boundary conditions of (4. 25) for 2q <{ < n-l+2q, it follows
from (4. 26) that each element w(x) of H (JZ A,z) satisfies
the boundary conditions of (4. 2). Because each element s(x)
of Sp(L,A,z) is necessarily of class Wit 2[5 b], it
follows that each w(x) of H (£,A,z) is of class W 72[a,b],
and from this, we deduce that 'H (JZ A, z) is a finite-dimen-
sional subspace of Wq? [a b]. " To give examples, let
£ =D", sothat L = DMt | 1f we choose the components of
the incidence vector z to satisly z; =m+ g forall 0 <
< N+l, then each element s(x) of Sp(L,A,z) is a piecewise
polynomlal of degree 2m + 2q - 1, of continuity class
cnt2g- [a b]. Thus, each element w(x) of Hg(l,A, z)is
a pleceW1se polynomlal of degree 2m -1, of contmulty class
ch- [a b]. These subspaces of WO 2[a b] have been
called the nonsmooth Hermite spaces H(A;n;2m)(cf. [15, p.
413]). Similarly, if we choose zj =1, 1<i <N, then
H (D A,z) can be verified to be the natural spline subspace
of plecew1se polynomials of degree 2m -1, of continuity class

[a b]. We remark that the unusual mterpolatlon prop-
erty of splines at the knots x; is not in general valid for the
spaces H (Dn A, z).
¥\/lth these finite-dimensional subspaces Hq(ll A, Z)
of W [a, b], we state the following improved fcrm of
Theorem 4. 2, which generalizes results of Perrin, Price, and
Varga [ 38], and Varga [49].

Theorem 4. 3. With the assumptions of (4.3), (4.5),
and (4. 23), assume that u( x) , the unique generallzzedzsolu—
tion of (4.1)-{4.2) in WO [a b], is of class W [a, b]

135



J. W. JEROME AND R. S. VARGA

where m =n+ g, gq>0. Forany partition A:ra =x,5 <x;
<eer <xpyp =b of [a b] and any associated incidence
vector z =(z 221 BN ) w1thl<z <m + g for
1<i<N, let u(x) denote the unique Galerkm approximation
of u(x) in H (JZ A, z). Then, there exist positive constants
K; and Kjp, mdependent of A and z, such that
2m-max(s, i)

(.21 DG -uwll, <K (4) , 0<i<n

L% a, b]
where §=max{2k-n;0} , and
2m-max( 6, i) -1/2

b

(e.28) IDG-wl . <K,(8)
L [a,b]
0<i<n-l.

We remark that similar improved results can be proved
for suitable subspaces, such as natural cubic and quintic
splines, which improve the error bound in the uniform norm by
increasing the exponent of A in (4.28) by 1/2 (cf.[38, 491).

To give an example of the previous result, consider
the numerical approximation of the solution of

(4. 29) D4u(x) +u(x) +g(x) =0, 0 <x <1,

with boundary conditions

(4.30) u(0) =Du(0) =u(l) =Du(l) =0,
where
4 3
6x~ - 5% + 144, 0<x<1/2
(4.31) g(x) =
—945(2x~l)1/2 -(2x-1) 92 5, +6x4+144

1/2<x<1,

which has been considered by Perrin, Price, and Varga [ 38].
For this example, the quantity A of (4.4) is bounded below
by mt , and as f(x,u) is linear in u, we see that the
assumption of (4.5) is fulfilled, the inequalities of (4. 5)(ii)
being satisfied with v =1. It is also clear that the assump-
tions of (4. 3) are fulfilled in this example. We remark that
the unique solution u(x) of (4.29)-(4.30) is of class
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c4[0,1], but not of class C°[0,1] .

For approximations of the solution u(x) of (4. 29-
(4.30), the Galerkin approximation ﬁh(x) of u{x) was
determined for the particular cubic Hermite subspace
Sp( DZ,A(h),z) of Wg? “[0,1], where A(h) denotes a uni-
form partition of [0,1] with mesh size h =1/(N+l), and the
components of the incidence vector z satisfy zy =zp =°°°*
=2Zy = 2 . The numerical results are given in Table III. For
purposes of comparison, the solution u(x) of (4.29)-(4.30)
was also approximated by finite differences on a uniform mesh.
Here, a standard five-point central-difference approximation
to (4. 29) was used, and its discrete solution is denoted by
wi, 0 <i<N+l. The numerical results are given in Table IV.
In Tables III and IV, the computed exponent of A =h, gener-
ated from

2 L[ 0,1] \

/In(h,/h)

is also given. Note the erratic behavior of the computed
exponents in Table IV.

Thus far, we have considered here only nonlinear
boundary value problems in one dimension with linear homo-
geneous boundary conditions {¢f. (4.2)). The extension to
nonlinear boundary conditions in one dimension has been
treated in Ciarlet, Schultz, and Varga [16] where numerical
results are also described. The extension to nonlinear bound-
ary value problems in higher dimension can also be made, and
and this is theoretically considered in Ciarlet, Schultz, and
Varga [ 18], where the theory of monotone operators is used in
conjunction with results from interpolation theory of Birkhoff,
Schultz, and Varga [ 8] for piecewise Hermite polynomials.
Also, numerical results based on Galerkin's methods for
piecewise bicubic Hermite and spline functions in two dimen-
sions for nonlinear second-order differential equations for
rectangular domains are given in Herbold [ 28]. These exten-
sions are basically in the spirit of the Galerkin method des-
cribed here for one-dimensional problems, and will not be
described further.
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dim

G -l

B

L
-3
6.84 - 10 8.53 - ———
-3
2.92 - 10 4.53 2. 84
-4
12 7.93 - 10 1.72 2.88
-4
16 2.97 - 10 8. 26 - 2.91
-4
20 1.35 10 4,58 - 2.94
32 2.43 - 107 1.27 - 2.95

2
Table III - Spo( D ,A(h),z), Cubic Hermite

10

16

19

30

39

.25 -

.10 -

.81+

.18 -

.91 -

.53

~-2.30

1.88

2. 60

1.58

1.06

Table IV - Finite Differences
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5. Applications of Lg-splines to eigenvalue problems. As
a second distinct application of Lg-splines, we consider
next the eigenvalue problem

(5.1) glulx)] = amfu(x)], 0<x<l,
where
n 0] > v
slux)] = ) (—1>3D’(‘pj<x>D]u(xn,
j=0

(5.1") ¢

nutx)] = Y (17D (a(x)Dut),
§=0

subject to the 2n linearly independent homogeneous boundary
conditions of

ep k-1 k-1
(5.2) Ul = ) {m D w(0) 40 D u(l)l,
J k =1 s jk
1<j<2n,
or, as a special case,
(5.2Y Du(0) =Du(l) =0, 0<j<n-l.

We assume that 0 <r <n, and that the coefficient functions
p]-(x) and qp(x) are real-valued functions of class CJ[0,1],
0 <j<n, and class ck[o,1], 0 <k <r, respectively, and
in addition, we require that

(5.3) pn(x) and qr(x) do not vanish on [0,1].

Letting § denote the set of real-valued functions in CZH[O, 1]
which satisfy (5.2), we assume that
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(elul,m) =(u,elvD ,
L[0,1] L[o,1]
forall u,ve g,
(5.4)
(m[ul,v) , =(u,nlvl) ,
Lfo,1] L[o,1]
. for all u,ve 8§,

and that there exist positive constants K and d such that

(5.5) (glul,u) 2 > K(mlu],u) > zdlu,u)
1[0, 1] L°[o,1] L7[o,1]

for all ue § .

Defining the following inner products on § ,
(u,v)DE(m[u],v) 2 for all u,ve §
1L°[0,1]
(5.6)
(u,v)NE(g[u],v) > forall u,ve s ,
L7[o,1]

denote by Hp and Hy the Hilbert space completions of #§
with respect to the norms || . “D and H . ”N , respectively.
It is then well known (cf. [19, 20, 21]) that solving the
eigenvalue problems (5.1) -(5.2) is equivalent to finding the
extreme values and critical points of the Rayleigh guotient:
2
(e
5.7 Rlw| & —=— w(x) € H
(5.7) [w] e (x) e Hy
D
With the above assumptions, it is well known (cf. [11, 32])
that the eigenvalue problem of (5.1) -(5. 2) has countably
many eigenvalues {)\.}?ozl which are real, have no finite
limit point, and can be arranged as
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(5.8) 0< N, <\

l S---S)\

-<—>\ i....

2 k k+l

Moreover, there is a corresponding sequence of eigenfunc-
tions MKM}ﬁoof(ih%ia with ¢j(x) € §, for which
sles] =N m[<pj]. These eigenfunctions are orthonormal in
the sense that

(5.9) ((pi’(Pj)D:éi,j forall i,j=1,2,...,
and the sequence {o.(x) };ozl is complete in Hpy .

Now, let” Spj “be any finite-dimensional subspace
of Hy , of dimension M, and let {wi(x) }I\éll be M linearly
independent functions from the subspace. T]hus, any function
w(x) in Sp; can be written as

M
{5.10) w(x) = Z uiwi(x) .
i=l

Instead of looking for the extremal points of the
Rayleigh quotient R[w] over the whole space Hy, the
Rayleigh-Ritz procedure consists in looking for the extremal
points of R[w] over the subspace Sp; . Equivalently, we
now can view R[w] as a Rayleigh quotient of a symmetric
matrix defined over M-dimensional Fuclidean space. More
precisely, let

M
Rlu] =@[ul,u2,...,uM] =Rl w =Z=ll uiwi]
M
2
ltg;.ugNﬂlN

glul
glu]

Y 2
l Zj‘ﬁwinp
i=l

To find the stationary values of f[u], we write

] of | u
(5.12) -é%—l - ~%%_lj
i i

which yields the matrix eigenvalue problem,
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(5.13) AU =B U,

where the M X M matrices AM = (a(-fvi-)) and By = (ﬁ(M))

have their entries given by
(M

(5.14) ai,j)z(wi’wj)N LBy = wyw) p 1SLI <M

It is clear, from the assumptions made in (5. 4)-(5. 5), that
the matrices Ap; and By are real, symmetric, and positive
definite. Thus, the matrix elgenvalue problem (5.13) has M
positive eigenvalues 0 < Xl < )\2 o0 < XM and M corre-
sponding linearly mdependent elgenvectors ul, uz, ceey ﬁl\/[ .
To each eigenvector {, , 1<k <M, we associate the func-
tion

M A
(5.15) P (x) = Z RACE

where uk i is the i-th component of the vector uk , and
henceforth we will call )‘k an approximate eigenvalue and
gok(x) an approximate eigenfunction for (5.1) -(5.2) .

To obtain error bounds for the approximate eigenvalues
)\1( , we make use of the following known result of Ciarlet,
Schultz, and Varga [17] which extends results of Birkhoff,
de Boor, Swartz, and Wendroff [ 7].

Theorem 5.1. With the assumptions of (5. 4) -(5.5),
let {(pl(x) }E—l be the first k eigenfunctions of (5.1)~(5.2),
orthonormalized in the sense that

(5.16) (90.797.) =6ij7 lﬁlylﬁk
’

Let {qol(x)} -] be any "globally approximating set of func-
tions'' to {(pl(x)} -1 in HN , in the sense that

(5.17) i;lllai—goi 12 <1

Then, the functions {'{o'i (x) }]i<:l are linearly independent,
and if we define
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(5.18) e (x) =6 (x) ~elx), 1<i<k,
then

L “e

~ i=1 )
(5.19) in)\ J > for all 1<j<Kk,
1 - Z “e

where j

1 e, @
(5. 20) N = max = , 1<j<k,

J
c,, C e ey C, 2
P20 ) o,
i=1

is the j-th approximate eigenvalue for the finite-dimensional
subspace of Hy spanned by {.(x) }iJ=

Similarly, to obtain error bounds for the approximate
eigenfunctions @ (x), we again make use of a result of
Ciarlet, Schultz, and Varga [17], which extends results of
Birkhoff, de Boor, Swartz, and Wendroff [ 7].

Theorem 5.2. With the assumptions of (5.4) -(5. 5),
let <p1(x) , 92(x), ..., ¢k(x) be the first k eigenfunctions
of (5.1)~(5. 2), where it is assumed that the corresponding
eigenvalues \; satisfy 0< N\ <Ap <... <A . If Spm is
any finite- dlmensmnal subspace of HN with dim Sy,
=M >k, let 7\1, )\2, ..., A\ and gol(x), goZ(X), e Pp(x)
be the first k approximate eigenvalues and approximate
eigenfunctions obtained by applying the Rayleigh-Ritz method
for (5.1)-(5.2) to Sp;. Then, there exists a constant C,
dependent on k but independent of Spp s such that

(5.21) 1%y = o Il < c{Z(x -M}/
ja1 )
If, in addition, there exists a p051tive constant K such that

(5.22) ||w|| o <K HWHN for all w{x) ¢ H

M
1.%[0,1] N
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then

k
(5.23) 15, -0l . <xlg-qll sxkc{) & -n}2
1”[0, 1] j=1 0
To give a concrete illustration of the foregoing mate-
rial in this section, suppose we consider the numerical ap-
proximation of the eigenvalues and eigenfunctions of the fol-
lowing second-order eigenvalue problem

(5.24) —~D2u(x) =a(x) , 0<x< 1,

with boundary conditions

(5.25) u(0) =u(l) =0,

which is a special case of second-order eigenvalue problems
considered by Birkhoff, de Boor, Swartz, and Wendroff [27], and

and Wendroff [ 51]. For this particular problem, §=-D
and m =1, and consequently,

(gu,v) , =(u, £v) > =f$Du(x)'Dv(x)dx for all
L0,1] L0, 1] Lves,
and
(nu,v) =(u,mv) , =folu(x)-v(x)dx for all
L7[0,1] L[0,1]
u,ved.

With the boundary conditions of (5. 25), we have from the
Rayleigh-Ritz inequality (cf. [27, p. 184]) that

(su,u) , ]=fol(Du(x))2dxz 7 [ () P
%[0, 1

2
=m (mu,u) 2
L[o,1]

2
Thus, the inequalities of (5. 5) are valid for K =+ and
d =1. For this example, the space HN can be shown to be
topologically equivalent to the Sobolev space W%)’ 2 [0,1].
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Thus, by virtue of the Sobolev imbedding theorem in one
dimension (cf. [53, p. 174]), we have that

HuHN for all u(x) € H

o [

hal <
L [0,1]

so that the inequality of (5.22) is valid with K =1/2. Since
the eigenvalues of (5. 24) -( 5. 25) are A, = (km) 2 , k>1,
and are thus distinct, all the assumptions of Theorems 5.1
and 5. 2 are fulfilled.

Continuing with the particular example of (5. 24) -
(5.25), consider a uniform mesh A: 0 =x5 <x] <xp <---*
<xpyy4p =1 on [0,1] where x; =ih, 0<i< N+, and where
h =1/(N+l). Choosing the particular Lg-spline space
Sp(D,A,z) of Wy Z[O, 1] of continuous piecewise linear
functions with knots at the x; which vanish at x =0 and
x =1, we use the basis {ti(x) }li\Ll for Sp(D,a,z) defined
in (4.14). For this choice of basis, the matrix eigenvalue
problem of (5.13) is then Ax = \Bx, where the NX N matrix
A is explicitly given by (4.15), and the NX N matrix B is

N ’

given by . -
4 1 O
1 4 )

(5.26) B = % \\\l .
O 1 4 B

Since the matrices A and B in this case are both NX N
real symmetric and positive definite tridiagonal matrices, the
eigenvalues of Ax = ABx can be accurately computed by
Givens!' method (cf. [52, p. 340]). :

To show how the error bounds of Théeorems 5.1 and 5.2
can be applied in this case, we know that the eigenfunctions
qoj(x) are explicitly given by sin(jmx), j>1, and are hence of
of class C*[0,1]. Conseguently, fixing k >1, we know
that there exist positive constants K; and K; dependent on
k , but independent of h , such that if ¢;(x) is the
Sp( D,A, z) —interpolation of ¢j(x) for 1<1i<k, then
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1%[0,1]"

and

D03, - o)l <K.,h, 1<i<k.
i i LZ[O,I] 2

Thus, as [[5; - oill =1 & - o; | and [[g; - ¢l
b © 10,11 PN

= || D( 251 =) I 2 in this case, we have that
Lo,1]
K ~ 2 2 1

5.2 - < h < <
(5.27) | i;l(goi o) Il 5 < kK, 1 for h s
In other words, for h sufficiently small, the Sp(D,a,z)-
interpolates g~01(X) of ¢i(x), 1<1i<k, are globally approx-
imating, and from (5.19) of Theorem 5.1, we obtain the
result of Wendroff [ 51]:

2.2
, Ky B 2
(5.28) xjgijng+ 5 g‘)\j+M1h ,
2
(17
1<j<k,

for all h sufficiently small, where M; is independent of h .
With this inequality, it also follows from (5. 23) of Theorem
5.2 that
~ 1~
(5.29) 19, - ol <=le -l . <Mh,
JJLDO[O,I]ZJJN 2

1<j<k

2

for all h sufficiently small, where M, is independent of h .
The argument above connecting the error bounds of
(5.19) and (5. 23) with interpolation errors for Lg-spline
interpolation can be easily extended to the general case. For
simplicity, we restrict our attention to the particular boundary
conditions of (5.2'). If L is a differential operator ( cf.
(2.1)) oforder m >n, and {Aj}jc’il is any sequence of

°
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partitions of [0,1] where A: 0 =xgj)<x§j) <o <X§\Tj-)+l =1
J
such that lim A =0, let {ZJ}J -1 be any sequence of assoc-
i—> 00

), 40 L4

iated incidénce vectors, where zj =(z zZy; )
and 1 <z§3)<r forall 14 <NJ and all ]>l Then, the
Lg-spline space Sp(L,Aj,zj) of functions which satisfy the
boundary conditions of ( 5. 2'), is a finite-dimensional sub-
space of the space Hy forall j>1. Applying the Rayleigh-
thz method to the subspace Sp(L, Aj, 2 ) gives )‘k and
(pk (x) as approxnnzatlons to A\, and <pk(X) R respéctively,
wé now apply the L“-interpolation results of Theorems 3. 2
and 3.4 of §3, just as in the example above. Combining this
with the error bounds of (5.19) of Theorem 5.1 and { 5. 23) of
Theorem 5. 2 results in

Theorem 5.3. With the assumptions of (5.4) -(5.5),
let {A, } %1 be a sequence of partitions of [0,1], with

llmooBJ = O let {z 1P j= be a corresponding sequence of
J%

incidence vectors assomated with {A } j=1 , and let )\k

and (p (x) be the k-th approx1mate elgenvalue and the
k-th approx1mate eigenfunction of (5.1) ~( 5. 2'), obtained by
applying the Rayleigh~Ritz method to the subspace

Sp( L, Ay,z5) of Hy . If the el genfunctlons {ga (x) }y=1 of
(5. l) -(5. 2') are of class W% “[0,1], with t>2m > 2n,
there exists a positive constant Kl, 1ndependent of j, and
a positive integer jo such that

2( 2m-n)

5. <X < A.
(5.30) A, <X <\ +K1(AJ)

.
k,j ="k for all iz,

Moreover, if the first k eigenvalues are simple, i.e.,
0 <N <Ap<eee <)\, and the inequality of (5. 22) is valid,
there exists a positive constant K,, independentof j, and
a positive integer j, such that
1y 5= ol v <KlG - o lly <xE
(5.31) L la,b]
for all j 23y -

We remark that since subspaces of cubic splines and
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cubic Hermite piecewise polynomial functions correspond to
particular special choices of Sp( D“, A, z), the result of
Theorem 5. 3 generalizes the results of Birkhoff, de Boor,
Swartz and Wendroff [ 7], which correspond to the case
m =2 and n =1 of Theorem 5. 3, as well as the results of
Wendroff [ 51], which correspond to the case m =n =1 of
Theorem 5. 3.

Explicit calculations of eigenvalues by Birkhoff and
de Boor [ 6], show the exponent of A in (5.10) is best
possible. The analogue of this for the inequality of (5. 11) is
similarly true for the eigenfunction approximation in the norm
- N - However, in the norm I [ ®[0,1] ° the exponent

of A in (5. 11) is not in general best possible, and can in
fact be improved using particular ILg-spline techniques.
Specifically, it has been shown by Pierce and Varga [39] for
particular cases that the exponent of AJ- in (5.11) can be
increased to 2m.

There are extensive numerical results (cf. [ 7 ]) for
cubic splines and cubic Hermite subspaces as applied to the
Mathieu equation. However, we shall now give complemen —
tary numerical results here for a simpler eigenvalue problem
of (5.24)~(5.25) (cf. [17, 28]). If the quintic Hermite sub
space H(O3)(A(h)) = Sp( D3,A(h) ,2), where z; =3 | 1<1i
<N, and where A(h) denotes a uniform partition of [0, 1]
is applied to the particular eigenvalue problem of (5. 24) -
(5.25), then the results of Theorem 5.3 are valid with m =3
and n =1, i.e., the exponent of Aj in (5.30) is 10.

The numerical results are given in Table V.

We finally remark that computational results for
second-order eigenvalue problems using Rayleigh-Ritz methods
for subspaces other than Lg-splines are also given in Ciarlet,
Schultz, and Varga [17] and Farrington, Gregory, and Taub
[ 22] . Theoretical results for approximate eigenvalues by
finite—difference methods, which are not in general Rayleigh-
Ritz methods can be found in Gary [ 23], and Weinberger[50].

i
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