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Error Bounds for Spline Interpolation

RICHARD S. VARGA

§1. Introduction. The object of this paper is to consider various
forms of error bounds for spline interpolationin one space var—
iable, along with some applications and extensions. Briefly,
the material in §2 concerns the derivation of error bounds for
spline interpolation for collections of bounded linear functionals
on the Sobolev space W%[O, 1] satisfying Property R, in a sense
to be made precise in §2. Some special cases will be given to
illustrate the results.

In §3, it is shown how the use of the theory of interpola-
tion spaces leads to error bounds for the more general Besov
spaces. In §4, application of the error bounds is made to the
study of convergence of discrete variational Green's function to
the continuous Green's function defined from two-point boundary
value problems. Finally, in §5, Hermite spline functions are
considered for the numerical approximation of ordinary differen-
tial equations, and improved error bounds are derived.

§2. Property ® Collections. Consider any ordinary differential
operator L of order n of the form

n . .
(2.1) Llu] = ), a.(x) Du(x), D=5~ n>l
j=0 ax

for u e Cn'[o,l], where we assume that a; ¢ C’[0,1] for all
0 <j<n, andthat ay(x) >w>0 on [0,I]. In general, let
WZT0,1], m a positive integer and 1 <p <+ », denote the
Sobolev space of all real-valued functions f defined on [0,1]
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such that D™ 'f is absolutely continuous with D™ fe Lolo,1]
It is well known that Wrg[o, 1] is a Banach space. Fixingp:
in this section, let A = {\;}{-] be a set of k linearly inde-
pendent bounded linear functionals on Wrzl[o, 1] . For any

r= (r), I, ..., ) inreal Euclidean space RK, the minimi-
zation problem,
inf{ |l g |l ] :qg e K;_L}, where

LZ[O,I
(2.2)

K;LE {g GWIZI{O’l]: N (9) =1, forall 1<i<k},

k
possesses a unique solution s(x) in Ki’ if n(L) Nk = {0}
(cf. Anselone and Laurent [2] and Jerome and Schumaker [14
here K% denotes those g e W%[O,l] for which )\i(g) =0,
1<i<k, and n(L) denotes the null-space of L . Moreove
the collection of all s(x) which solve the minimization prob
for some r ¢RKX is a finite-dimensional subspace of W%[O,l
and is denoted by Sp(L,A) . Given any fe W5[0,1], the
unique element s in Sp(L, A) which solves the minimizatic
problem of (2.2) with A;(s) =X;(f) forall 1<i<n, will
be called the Sp(L, A)-interpolate of f.

In most applications, the elements X\; of A are usual
chosen to be point evaluations of the function or its derivativ
through order n-1, i.e., )‘i(f) = DJlf(xi) where 0<j, <n-
and x; € [0,1] . Satisfactory error bounds for f-s, where
is the Sp(L, A)-interpolate of f, have been obtained for su
A (cf. Ahlberg, Nilson, and Walsh [1], and Jerome and Varg
[15]). But, as the derivations of the error estimates are bas
either on Rolle's Theorem or Rayleigh-Ritz inequalities, thes:
known error bounds can be extended to more general A . Thi
brings us to

co
Definition 1. Consider the collection {Ai}ir-l where each
Ai = {7\j i}'il is a set of ki linearly independent bounded
b =
linear functionals on Wn[o,l], 1<i<o ., If Ki(i) denot
those g ¢ W5[0,1] for which Ny y(g) =0 forall 1<j<k,
b
assume that n(L) N Kl’(i) = {0} "for each i>1. Forany

fe W%[O,l] , let s,(x) denote the unique Sp(L,A;)-interp
late of f. Then, t/\i}g?:l satisfies Property ® with respect
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ERROR BOUNDS FOR SPLINE INTERPOLATION

to W3[0,1] if, for each f e W} 5[0,1], there exist distinct
pomts f; (i) W1th O__<_§ (i) < {5,2(1) <... < §mi(i) <1 with
my > i, such that

(2.3) f(gj(i)) = si(gj(i)) for all l_<_j§mi for all i>1,

and, defining &0(1) =0 and & +1(1)-l there exists for
each i>1 a quantlty Z mdependent of f, such that

sup |§ ) - &l < Al for all i>1, and
0<j<m, J
(2.4) lim Zi =0

i—>
With this definition, we then prove

o0
Theorem 2.1. Let {A'}i“l be a collection satisfying Property
~heorem <. |. ili=

2

R with respect to W%[O, 1] . Then, for any fixed f ¢ Wg[o,l]

there exist constants K and K', independent of i, anda
positive integer io, such that

<k(3)" V1)

j
(2.5) ID’(£-s)ll | 10,1] L,[0,1] for all
ijfn_l’ i_>.i0 9
and
' n-j
(2.6) “D (f-s, ”L [o,1] = <K (A) ”Lf”LZ[O,l] for all

0<j<n, i>i

Similarly, if f e W;n[o,l] and for each i, the second inte-
gral relation is valid, i.e
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(2.7) fl[L(f—si)]de=fz(f—si)L* Lidx, i>1,
0 0
then
j = 2n-j-1/2y %
(2.8) Ip <f-si)lle[O,1] <K(R) I Lf“Lz[O,l] ,

Of_jfn’l’ iZio ’

and

(2.9 D) (s- si)ll <K' (Zi)zn"leL*Lf I

L,[0,1] = 1,0,1]

0<j<n, ixi

Proof. Since lim Zi = 0, it follows that there exists an in-
1— 00

teger i, such that for i>1}, s, interpolates f in the sens
of (2.3) in at least n+1 distinct points of [0,1] . Using
Rolle's theorem, the proof of Theorem 6 of [22] can be direct
applied, giving

ni (Zi)n”j—l/2

(2.10) |l Dj(f-—si>ll ID” (-5

<
Loo[o’l]— \/nj! LZ[O,

0<j<n-l, i>1

Again because lim Ki = 0, there also exists an integer i,
i~ 0

such that

<HlL(f-s)l

n
(2.11) lp (f—si>”L2[0,1]~— i"1,10,1]

for all i>:
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ERROR BOUNDS FOR SPLINE INTERPOLATION

where H is a positive constant (cf. [22]). Next, for each
i>1, the Sp(L, Ai)—interpolate s, of f satisfies
1

f Lsi . L(f—si) dx (cf. [ 2 ]), which yields the first integral
0

relation:

(2.12) |12 = ln(t-s )H + s, 12 i>1.

L [o 1] - L [o 1] L, [0,1]°

Hence, we have from (2.12) that ||L(f-s )]l < llvel

L [ 0,1]— LZ[O,l]
for all i >1. Thus, combining (2.10) and (2 11) gives the
desired result of (2. 5) for i > max(i,, i) . Similarly, the
proof of (2.6) follows that of [22 Theorem 7], and uses
Rayleigh-Ritz inequalities instead of Rolle's theorem. The in-
equalities of (2.7) and (2.8) are established as in the manner
of Theorems 8 and 9 of [22].

As an application of the above result, suppose that L= D"
and for each i>n, define A, = {?xj i}i=1 by means of the

3

functionals
(2.13) No(H = f(t)dt, i<j<i

Clearly, the functionals {7\]- 1}; =] are linearly independent

bounded linear functionals on Wn[o 1] forall i >n . Next,
n(DN) consists of all polynomials of degree at most n-1, and
KL(i) consists of all function g e WZ[O 1] such that

i/
(2.14) f g(t)dt =0, 1<j<i.
(3-1)/1

For each i >n, itis readily verified that h(Dn) n K'L(l) ={0} ,
and thus, for each i>n, there exists a unique Sp(D", A, -
interpolate s;, of fe WS 2[0,1]. For i >n, itis clear that
if £(x)% s, (x) in [Ji*l -H then f(x) - si(x) must change
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signs at least once in [-Ll.‘-l-, -Ji-]; otherwise N, '(f—si) #0 .
: oy

Hence, there exist a point §j (i) in (J =1 ]1'_) such that

f(gj(i)) = si(gj(i)) for each 1<j <i, 1_>_ n . While these

points gj (i) in general depend on f, it does follow that

2 ——
sup &, . (i) - & () <= =&,
0<j<itl j*l J ! 1

for each f ¢ Wn[O 1], and hence lim Zl =0, Consequent
i—>00

{A } as defined by (2.13) satisfies property R, and the
error bounds of Theorem 1 are applicable.

Of course, the usual Lg-splines as considered in [14]
and [15], as well as the L-splines of [22], are formulated ir

terms of functionals )\ i which are point evaluations of fun

tions or their derlvatlves through order n-1. Hence {Ai}?:
for either Lg-splines or L-splines will automatically satisfy
property R, if the partitions m, of [0,1] defined by these

point functionals, are such that lim w, =0 . In this sense,
i—>co
Theorem 2.1 generalizes the previously known error bounds fc

Lg-splines and L-splines.

§3. Besov Spaces. Once one has the error bounds as in The
2.1, one can extend their usefulness via results from the the
of interpolation spaces. The purpose of this section is to br
show in a specialized way how this can be done. More deta
results of this nature, as well as considerations of errors of
interpolation and best approximation in higher dimensional s
tings, are to be found in Hedstrom and Varga [12].

Let X5 and X; be two Banach spaces with norms H
and ” ”1, respectively, which are contained in a linear
Hausdorff space X, such that the identity mapping of X, ,
i=0,1, in X is continuous. If Xy +X;={f ¢ Xef=1fy+f
where f, = 0,1}, then it 1s known (cf. Butzer and
Berens t6 p 165]) that Xp + X and X, Nl X, are Banach
spaces under the norms
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ERROR BOUNDS FOR SPLINE INTERPOLATION

i

lelly g = maxchel , Nl }
0 1

||fHXOJer =inf (Il + el £=2 48 witn £, e X, 10,1} .
It is understood that the above infimum is taken over all such
decompositions, f = fo + f; with f; ¢ X;, i=0,1. Moreover,

it follows that

. X CX CX +X CX i =
(3.1) Oﬂx1 ; ot , 1=0,1,

1

where the inclusion A C B is understood here, and in the rest
of this section, to mean that the identity mapping from A into
B is continuous. A Banach space X C X is an intermediate
space of X5 and Xl if it satisfies the inclusion

(3.2) XOﬂXlCXCXO+X1CI

Peetre (cf. [6] and [21]) has given a real-variable
method for constructing intermediate spaces of Xp and X1
which we now describe. For each positive t and each
fe (X,+X)), define

3

K(t,f) =inf{llg |+ ellgll: £=¢ +6 with £ ex, 1=0,1} .

Then, for any ® with 0 <0 <1 and any extended real number g
with 1<qg <+ o, let (XO, Xl)e q be the set of all elements

fe (XO + X;) for which the folléwing norm is finite:

o 1/a
[f (t‘eK(t,f))q%E] , 1<q<+w
0

s

£l

X . X) -
(0’ 1)e,q

sup t 0 K(t,f) , g=+0

~ t>0

It is known [6, p. 168] that (X, Xl)e,q is an intermediate
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space of X; and X;, and thus satisfies the inclusions of
(3.2). In particular, (X, X)e q= X.

If Yo and Y; aretwo Banach spaces continuously con.
tained (with respect to the identity mapping) in the linear
Hausdorff space 1, let T denote any linear transformation
from (Xg + Xl) to (YO +Y;) for which

el <m ll£ll, foranll fex, i=o,1 ,
1 1 1 1

i.e., T is a bounded linear transformation from X; to Y,
with norm at most M;, i=0,1. Then, the following is knov
(cf. [6, p. 180]).

Theorem 3.1. For 0<6 <1, 1<g<+o, T is a bounded
linear transformation from the intermediate space (XO, Xl)e

whose norm M= sup ||lT£ll (Y .Y) satisfies )4
f (X..X) 0’"1'0,q
0’18, q
1-
(3.3) MfMOe-M?

With the previous notation, then the Besov space g2 4
is defined as the intermediate space (cf. [3]) P

m o, g
(3.4) (Lp[o,l], Wp[o’l])e,q = Bp’ [0,1] where 0<¢=8m <

here, 1<p,q <+ . Itis further known (cf. [6]) for 0<6 <

1 1-6
3.5 L 0,1}, L [0,1 =L [0,1] where = =— 4~
(3.5) (po[’]’ pl[’])e,q p[’] PP, P
and if o #0), 0<6 <1, 1<q,, q <+%, and 1<p<oo, t

0’1,q

7929
(3.6) (87 °[0,1], B

1 g, d
0,1 =B’ = +
[ s ])e,q o where o eo~o [
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0- i
and for integer o, either of the spaces B l[O, 1] in (3.6)
can be replaced by W [O 17 .

We now apply these results to error bounds of Theorem 2. 1.
Choosing Xg =X =X =W3[0,1], and Yy =Ly,[0,1] =y, Y =
L,[0,1], let the linear mapping T on W?3[0,1] be defined by
(3.7) Tf=DJ(f-si)

s

for some fixed j, 0 <j <n-l, where s; is the Sp(L,A;)-
interpolate of f . Because of previous assumptions on the dif-
ferential operator L of (2.1), we can write (2.5) and (2.6) of

the previous section as

<KEIV2 )
W?[O,l]

Izl _10,1]

3

and

A n-j
el g <5 @I

Now, using the result of (3.3) with those of (3.5) for Dy =+
p; = 2, we obtain

11
_+—
2

RN (R3]

(3.8) D) (£~ 5 N
WL, 1]

<K(A) )

L[o 1]

0<j<n-1, 2<qg<+m

Similarly, if the error bounds of (2.8) and (2.9), depending
on the second integral relation, are valid, then interpolation
similarly gives

2n-j-= L
)
<K(&) Well ,
W, [o,1]
2 3

0<j<n-l, 2<g<+ow

(3.9) D=l 0,115
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Next, from (3.6), we have that (Wrzl[o,l], W%n[o,l] )e L=
3

Bg’ T_[O, 1], where n <o = 2n-6n<2n. Thus, interpolating
the results of (3.8) and (3.9) gives us

Theorem 3.2 . Assuming the error bounds (2.5)-(2.9) of
Theorem 2.1, let fe BS27[0,1] where n<o¢ <2n and 1<

T <400, and let its Sp(L,A,)-interpolate be s, . Then, ther
exists a constant K, indepéndent of i, such that

1D (t- o)l AT
(3.10) D’ (£-5) <K(A)) f ,
Lyl0 1] ! B’ "[0,1]

0<j<n-l, 2<q<+w.

The importance of the error bounds of (3.10) lies in the
fact that we now have new error bounds for functions f whicl
are elements of W5[0,1], but not of W%”[o,l] . In additio
since the exponent of A; in (3.10) doesn't depend on T, anc

i
since

(3.11) BI;’I[O,I]C Wrzn[o,l] - B;“’”[o,l] ,

we also have error bounds for spaces intermediate to W;[O, 1
which can be larger than intermediate Sobolev spaces. To il-
lustrate this, suppose n = 2 in the above discussion. Then,
w3lo,11C W3l0,1] € W5[o,1], and W3[0,1] € B3»*[0,1] C
W5[0,1] . This means that the errop bound of (3.10), with

exponent of Zi equal to 3 -] -«-2-+ L is valid not only for

3 3,00 . o
WZ[O,I] , but for B>’ [0,1] as well. Further results, simi
to Theorem 3.2, can be found in [12].

§4. Discrete Variational Green's Functions. As an applicati
of the splines introduced in §2, we consider the boundary val
problem

(4.1) L Lux)] = f(x), 0<x<1,
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subject to the boundary conditions of
(4.2) D' u(0) =D u(l) =0, 0<j<n-1,

where L is the n-th order differential operator of (2.1), and
L is its formal adjoint, i.e.,

n , .
(4.3) vl ) () Dia ) v}
i=0

With the assumptions on L of §2, it is well known that there
exists a Green's function G(x,£) associated with the boundary
value problem (4.1)-(4.2), defined on [0,1]X [0,1], such that

G(x,£) = G(£,x) in the closed unit square,
2n-2 .
(4.4) G(x,§&) ¢ C in the closed unit square,

G(x,£) Cerl in the subsets 0<x<§<1 and
0<£<x<1l of [0,1]X[0,1]

Moreover, for any 0<§£ <1, let G,(x) denote the function
defined on [0,1] by Gg(x) =G(x,£) . Then, it is also well
known that

(0 p*a, e 1, f0,1] and sunllD®™ e I,

0<£<1} = ¢ <+

©0) =D G, (1) =0 forall 0 <k <n-I

.5 i) DG .

3

n

_IG (x)=-(—'~1-2—— and
: 2g)”

_ 2

i11) im D™, (x) - 1im D"
g a

n

x> &+ x> £~

(x) =0 forall x# & in [0,1] .

iv) L 1G
\ €
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, 0
Now, given any f € C"[0,1], it is classic that the unic
solution ¢ of (4.1)-(4.2) can be expressed in terms of the
Green's function G(x,§) by

1
(4.6) b(x) = fG(x,g) £(£)dt

In addition, if W [0 1] denotes the subspace of W, [o 1]
which satisfies the boundary conditions (4 2), then q> can b
characterized as the unique function in W2 O[0 1] which
minimizes the functional

1

n .
(4.7) FIvl = [{)) p, (0 (D v() P+ 26w (t) bat, veW) |
0 j=0 ’ )

Using the Ritz-Galerkin approach, the minimization of F ove
some finite-dimensional subspace SM of Wn [O 1] produc
a unique ¢M in SM which can, in analogy w’1th (4. 6), be
described by

1
(4.8) o x) = [eMix, £)e(e)at
0

Appropriately, the function GM(X, £) defined on [0,1]X[0,1
is called the discrete variational Green's function (cf. Ciarle
[7]) for the problem (4.1) - (4.2) and the subspace sM

Our purpose in this section is to show how the error bot
for spline interpolation can be applied to the problem of estim
the error in G(x,§) - (x, €), when sM s a special spli
subspace of W [O l] .

To make matters precise, we consider the special case
L-splines of Schultz and Varga [22]. If m:0 =x,<x <x,<
<xpn41 =1 is a partition of [0,1], and Z = (zo, I oes ENt
is an incidence vector with positive integer components satis:
ing 1<2z;<n for all 0 <1i < N+l, then the spline space
Sp (L, , Z), a subspace of WZIO 1], 1is simply the particul
case of Sp(L,A) treated in §2 where the elements N of A are
all of the form
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N ) = D]f(xi) forall 0<j<z -1, 0<i<N+l.
5
Choosing Z =n for convenience, the second integral
relation needed in 4(-5 7) is valid, as are the other assumptions
of Theorem 2.1, and thus, we may use the error bounds of {2.5)-
(2.9), with A= max 1X. -x.| . We further denote by

0 < i < N i+l 1
Sp (L,m, Z) the subspace of Sp(L, wm, Z) which satisfies the
boundary conditions of (4.2). The follOng is a special case
of Ciarlet and Varga [8].

Theorem 4.1. Let GM (x,&) Dbe the discrete variational Green's
function associated with the L-spline subspace SpO(L m, Z) .
Then, there exist positive constants K and K', 1ndependentof
A, such that for all 0< § <1,

(4.8) [ID*(cM Ge -Gl o, l]<1<;(A)2n"k'3/Z for all 0 <k <n-]
and
(4.9) lIp¥(a g -G )HL 1o, <K (5)°" %L gor a1l 0<k<n

In addition, if GM (x,&) is the discrete variational Green's
function agsociated with the Hermite L-spline subspace

SpO(L T, Z) where Z = (n,n, ,), then there exist positive
constants K", 1ndependent of A such that for all 0<£<1,

1

(4.10) ¥ <k ()% for a1l 0<k<n-1.

: - Gg)“

L lo,11=

Proof. 1In [8], it is shown that Gl\g/l(x) the discrete variational
Green's function associated with Sp (L,m, Z), 1is in fact the
Spo(]'_. ™, Z)-interpolate of G, (x) for each 0<g<1. Since

Dzn'ng ¢ 1,[0,1] by (4.51), then Gg ¢ WZn- 1[o,1]
Wzn 1[0 1] © an ~1,%0 [O,l], using (3.11). Hence, the error

379



RICHARD S. VARGA

bounds of (4. 8) and (4. 9) follow as special cases of (3.10)
with g=%o or g=2, ¢ =2n-1, and T = +% ., Slmllarly, the
assumption of Hermlte L—-splme subspaces Sp (L, m, Z) allow
one, as in Birkhoff, Schultz, and Varga [4], to 1ncrease the
exponent of A in (4 8) by 1/2 which gives (4.10).

We further remark that other results, such as the posi-
tivity of the discrete variational Green's function G™ (x,§) ,
are also considered in [ 8].

§5. Improved Error Bounds for Ordinary Differential Equations
Applications of spline functions have not been made only to
two-point boundary value problems and elliptic partial differe:
tial equations. Indeed, spline functions of maximum smooth-
ness were first considered in the numerical solution of ordinar
differential equations by Loscalzo and Talbot [18] and [19],
and many interesting connections with standard numerical in-
tegration techniques have been proved. For example, the
trapezoidal rule and the Milne-Simpson predictor-corrector
method fall out as special cases of such spline functions app!
cations. Unfortunately, higher-order smooth spline approxi-
mations turn out to be unstable, and consequently, the practi
cal use of smooth spline functions to the numerical integration
of ordinary differential equations is restricted to cases for wh
the resulting method turns out to be classical. For details of
the above remarks, we recommend the article by F. R. Loscal:
[16] in Theory and Applications of Spline Functions, edited by
T.N.E. Greville.

The main reason why the above-mentioned applications
spline functions to the numerical integration of ordinary differ
ential equations lead to unstable methods is because the resu
ing numerical approximations are, in a certain sense, t00 smc
Loscalzo and Schoenberg [16] and [20] have shown that the u.
of Hermite-splines of lower-order smoothness, to be describe
below, avoids completely the problem of instability. In [16]
and [17], error bounds for the approximate Hermite spline solt
tions were obtained, but, as we shall show below in Theorem
5.1, the error bounds derived were not in all cases best possi
In keeping with the title of this paper, the basic purpose in tt

section is to obtain improved error bounds for such Hermite-s;
applications.
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Although applicable to systems of ordinary differential
equations, we consider, for simplicity, the initial value problem

(5.1) Dy(x) = f(x, y(x)), v(0) =y, ,
where Yo is specified. We assume that f is continuous on
[0,b] X R, subject to the usual Lipschitz condition

(5.2) lf(x,z) - f(x,¢)l <Llz-¢| forall  xe[o0,b],
forall z,{ e R

b
where L >0 . This assures existence and uniqueness of a
solution y(x) of (5.1). For a positive integer n, let
h=b/n, andlet x;=jh, 0<j<n, bethe associated knots
in [0,b].

To explain the Hermite spline method, consider the 2g+2
numbers
(5.3) D t(0), D t(h), 0<j<gq

H

where t(x) e Cq[O,h] . Itis clear that, by means of Hermite
interpolation, there is a unique polynomial s(x) of degree at

most 2q+ 1, written s € “Zq-!-l’ such that
(5.4) D’ t(0) = D’ s(0), Dt(h) = D’s(h), 0<j<q.
If, however, we insist that s e m, i.e., s is of degree at

most 29, then the following 2q+% nd divided difference of
s(x) must necessarily vanish (cf. [17, Lemma 3. 17):

a+l g+l
g ( ) 2q+1 N T

(5.5) H_(s305h) = (-1) (2 TR s(0,0,..,0,h,h, 0B

This divided difference can also be expressed as the sum

k+1 k

q
(5.6) H_(s;05m) =~} G {Dt(0) + (-1 D e(m},

k=0 K19
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where

i

1 gl(2g-k)!
(5.7) Ck,q K1 (a0t (21 0<k <q
Later, we shall show how (5.6) and (5.7) connect the Hermite
Splme method with Padé approximations.

The algorithm for determining the Hermite spline function
p(x) which approximates the solution y(x) of (5.1) can be
described as follows. Given the functions

(5.8) g, (xulx) =D, fxulx), 1<i<aq

2q+
where it is assumed for simplicity that f ¢ C°% 1([O,b] X R) ,

and u(x) is any element in C9[0,b], define py(x) in [0,1
as the polynomial of degree at most 2g such that

k
(D p,(0) =g, (0,p(0)), 1<k<q,

(5.9 { DSp/(h) =g (n,p(h), 1<ks<a,

p,(0) = Y, Hq(pl;O;h) =0

Using (5.6), it follows from (5.9) that p(h) necessarily satis
fies

+%{g1(0, vg) + 9, (b, plfh))}

pl(h) =¥,

(5.10)
a g+l
+...+C_ h {gq(o,yo) + (1) gq(h, p, (h))}

and the method of successive substitutions suggests itself for
the determination of p,(h) . By means of the contraction map-
ping theorem, it can bé shown (cf. [17]) that there is an h0>(
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such that for all 0 < hfho, there is a unique solution pl(h)
of (5.10).
Now, having found pl(x) in [O,h], determine similarly

p, (x) €Ty in [h, 2h] such that

k
(D' p,(n) =g, (b, p(n), 1<k<a,

k
(5.11) D pZ(Zh)=gk(h, pZ(Zh)), 1<k <q,

L pz(h) =pl(h); Hq{pz;O;h) =0

In this way, the Hermite spline function p(x), with p(x) =
p;j(h) in [(j-1)h, jh], 1<j <[b/h], is a polynomial of
degree at most 2g on each subinterval, and, by construction,
p(x) € CY0,b] . We remark that the solution of (5.10), (5.11),
etc., produces only the numbers p(jh), 1 <j < [b/h], and
thus, the Hermite spline method can be viewed simultaneously
as a single-stepmethod (cf. [13, p. 209]). Once p(h), say,
is determined, the values D" p(h), 1<k <gq, are obtained
by evaluating gk(h, p(h)) from (5.9), and p(x) in [0,h]
can then be found by Hermite interpolation.

To appraise the errors in the Hermite spline method, the
results of Loscalzo [17], utilizing the previous hypotheses,
give us that for all 0 <h <h;, there exists a constant Ky,
independent of h, such that

k k. 2 .
(5.12) [D* y(jn) - D" p(jn)l <k ™%, 0<k <q, 0<j<[b/n],

where y(x), of class CZq’FZ[O,b], is the solution of (5.1),
and p(x) 1is its Hermite spline approximation. Next, let
w(x) Dbe the Hermite-interpolation of y(x), i.e.,

(5.13) D w(jh) =D" y(jn), 0<k<aq, 0< j<[b/n],

and w(x) e on each subinterval [ (j-1)h, jh], 1<j<[b/h]

2g+l
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Because vy € Czq+2[0,b], the interpolation error for w({x)
satisfies (cf. [4, Theorem 2])

k 2g+2-k

where KZ is independent of h . Because of (5.13), it follow
that

(5.15) [Dkw(jh)-ka(jh)l <K h?‘q, 0<k<g, 0<j<[b/h] .

1
To complete the picture, we now state a known result, a minor
extension of a result of Swartz [23, Lemma 2] (Swartz's in-

equalities) :

Lemma. If there exists a constant K, independent of h, anc
an integer o« such that

(5.16) max{}Dk;(O)l, ID% s ()|} <kn® % forall 0<k<q,

where s e , then there exists a K', independent of h
2q+l N 4 3
such that
k a-k
. <K'
(5.17) |Ip ﬂuwwﬂﬂ‘K R, 0<k<g

To apply this Lemma, we see from (5.15) that w(x) -
p(x), an element of m, on each subinterval [ (j-1)h, jh]
satisfies the 1nequa11t1eg of (5.16) with « = 2q . Hence,
applying (5.17) on each subinterval [ (j-1)h, jh] of [O,b]
gives

k . 2g-k |
(5.18) |ID (W‘p)HLw[o,b]fK W™, 0<k<aq,

where K' is independent of h . Then, applying the triangle
inequality to (5.14) and (5.18) gives us
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. 2g+1
Theorem 5.1. Assuming f(x,y) ¢ C ([0,b] XR), let
y(x) be the unique solution of (5.1) in [0,b]. Then, there
exist constants K >0 and 0 <hy <b such that forall 0<h
Z<hg, the Hermite spline approximation p(x) of y(x), defined
in (5.9), satisfies

k 2q-k
(5.19) ID (y—p)HLoo[O’b]th , 0<k<g

We remark that the special case k =0 of (5.19) was
obtained earlier by Loscalzo [17], but his error bounds for the
~higher derivatives of p(x) were weaker than those of(5.19).

To conclude our discussion of the Hermite spline method
for ordinary differential equations, we first remark that Loscalzo
[17] showed that the Hermite spline method (of order q) is
A-stable in the sense of Dahlquist for any g, [9], [10] for
any q, 1i.e., if this method is applied to the particular ordin-
ary differential equation
(5.20) Dy(x) =hy(x), vy(0) =1, Rex <0

b

then its approximation p(x) satisfies

(5.21) lim p(nh) =0 forany h>0
n-* co

It is easy to verify from (5.6) that the Hermite spline method
of order g applied to (5.20) gives p{(nt+l)h) = Ln p(nh) ,
where p(0) =1, and

-1

k. k k

g g
(5.22) t. =), C_ M n|l ), (-1)* c,
k=0

k
A h
k=0 DK k

b

However, from the definition of Cq,k in (5.7), it turns out
that ¢p is just the g-th diagonal "Pade rational approximation
of eM (et [24, p. 269]). Consequently, since ReX <0 ,
then If;hl <1 (cf. [5]). In this regard, it has been more
generally shown in the thesis by Ehle [11] that the diagonal
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and the first two subdiagonals of the Padé table of the expo-

nential function give rise to such A-stable approximations of

(5.20), but the connection between Padé approximations and

Hermite spline methods for ordinary differential equations ap-
pears to be new.
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