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ACCURATE NUMERICAL METHODS FOR NONLINEAR
BOUNDARY VALUE PROBLEMS*

RICHARD S. VARGAY

1. Introduction. The use of variational or projectional methods to approxi-
mate solutions of nonlinear boundary value problems has received a great deal
of attention lately, cf. [3], [9], [10], [23], [25], [26] and [39]. Of course, the idea of
using the Ritz—Galerkin method to approximate these solutions is not new. What
is new, however, is that effective error bounds for such approximations have been
developed (cf. equation (2.5)) at roughly the same time that spline and Hermite
piecewise-polynomial functions have independently grown into vogue. These
spline and Hermite functions are particularly attractive for high-speed computers,
since the proper choice of basis functions for these subspaces gives associated
coefficient matrices which are sparse (cf. [12]). The net result is that the combination
of using spline and Hermite functions in a Ritz—Galerkin setting with the new
error bounds offers a highly effective tool for approximating the solutions of such
nonlinear boundary value problems.

The purpose of this paper is to show how this combination does in fact lead
to very accurate numerical approximations of solutions of nonlinear boundary
value problems. Since most of the extensive numerical computations using spline
and Hermite functions have been for one-dimensional problems, we shall confine
our discussion and numerical results to such problems.

In § 2, we give a theoretical background for the special results to follow. Then,
in § 3, we look specifically at two-point nonlinear boundary value problems, and
§ 4 contains sample numerical results of particular experiments. Because the
techniques developed also apply quite easily to one-dimensional eigenvalue
problems, we study such eigenvalue problems in § 5, and give related numerical
results.

2. Theoretical background. The theoretical basis for the material presented
here is contained in [14]. Let B be a reflexive Banach space over the real field, and
let B* be the dual of B. We denote respectively by || - | and | - ||* the norms in B and
in B*, and (-,-) denotes the usual pairing between B and B¥, i.e.,, if v* € B* and
u € B, then the value of the functional v* at u is (v*, u).

Let T be a (possibly nonlinear) mapping from B into B* satisfying the following
two hypotheses:

(H,) Tis strongly monotone [9], [26], [39], i.e., there exists a continuous and
strictly increasing function ¢(r) on [0, +o0) with ¢(0) = O and lim,_, , , ¢(r) = + 0
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such that
(2.1) (Tu — To,u — v)| = c(|jlu — vll)- |lu —v|| forall u,veB.

(H,) T is finitely continuous, i.e., T is continuous from finite-dimensional
subspaces of B into B* with the weak-star topology of B*. In other words, given
any finite-dimensional subspace B* of B and any sequence {u,}., of elements of
B* which converges to an element u € B¥, the sequence {(7i,, v)j,~ converges to
(Tu, v) for any v e B.

We consider the following problem, called Problem P: Determine u € B such
that

(2.2) Tu =0,
or equivalently, determine u € B such that
(2.3) (Tu,v) = 0 forall veB.

Similarly, given a finite-dimensional subspace B* of B, we consider the follow-
ing approximate problem, called Problem P, : determine u, € B* such that

(2.4) (Tuy,v) = 0 forall veB:.

We now state the following result, due to Browder [9].

LemMMA 2.1. Let Tsatisfy (H,) and (H,). Then Problem P has a unique solution u.
Similarly, given any finite-dimensional subspace B¥ of B, the corresponding Problem
P, has a unique solution u,.

To have an estimate between the solution u of Problem P and the solution u,
of Problem P, , we need additional hypotheses on the mapping T'(cf. Theorem 2.1).
These in turn will allow us to obtain sufficient conditions guaranteeing the con-
vergence of the u,’s to the solution u (cf. Corollary 2.1). We begin with the following
theorem.

THEOREM 2.1. Let Tsatisfy (H,), (H,) and

(H,) Tis bounded, i.e., Tmaps bounded subsets of B into bounded subsets of B*
(with respect to the strong topology of B¥). Then, given any finite-dimensional
subspace B* of B, there exists a constant K, independent of B¥, such that

(2.5) c(lug — ul))- lug — ull £ Kinf {||lw — ul|;we B*}.

Similarly, let Tsatisfy (H,),
(H}) condition (H,) holds with c(r) = ar, o > 0, i.e.,

(2.6) |(Tu — To,u — v)| = a«l|lu — v|))* forall u,veB,

and

(H4) T is Lipschitz continuous with respect to the strong topology of B* for
bounded arguments (a special case of hypothesis (H;)), i.e., given M > 0, there exists
a constant C(M), depending only upon M, such that

2.7) ITu — To|* < C(M)|ju — v|| forall u,veB with |ull,|v] =M.

Then, given any finite-dimensional subspace B* of B, there exists a constant K,
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independent of B, such that
(2.8) lue — ull = K'inf {|w — u] ; we B*}.

Proof. We begin by showing that (H,) implies that the same a priori bound
holds for both the solution u and the “approximate’ solutions u,. We have, by
using (2.1) and (2.4),

c(lueDlluell = (T = TO, u)l = [(TO, wy)| < [|T0)*[Ju ],

and thus c(|ju,|) £ M, with M, = || T0|/*. Clearly, the same bound is valid for u.
Let w be now an arbitrary element of B¥ Then by (2.3) and (2.4), we have
(T, — Tu, w, — w) = 0 since {u, — w} € B* = B. Thus from (2.1),
cllwe — ul)lwye — ull < (T, — Tia, uy — )| = [(Tig, — Tu, w — u)|

= [T — Tul*lw — ul.

(2.9)

If T'is bounded, then | Tu, — Tu|/* is bounded independently of B* and the conclu-
sion of (2.5) follows, since w is arbitrary. Similarly, if T'satisfies (H}) and (H3), the
conclusion of (2.8) follows with K = C(M )/, by (2.9).

As an immediate consequence, we have the following corollary.

COROLLARY 2.1. Let {B*}{_ | be a sequence of finite-dimensional subspaces of B
with the property that

(2.10) lim {inf{|lw — ul|;weB*}} =0,
k—+ o

where u is the unique solution of Problem P. If T satisfies (H,), (H,), (H;) (including
as a special case (H}), (H), (Hj)), then

2.11) im {Ju — ull} =0,
k= + 0
where u,, k = 1,2, - -+, are the unique solutions of Problem P,.

We now introduce some standard notation for the following sections. For m
a positive integer, the Sobolev space W™?[a, b] consists of all real-valued functions
f(x)defined on [a, b) such that f and its distributional derivatives D/f with0 < j <m
all belong to L*[a, b]. The Sobolev space W™2[a, b] is a Hilbert space with respect
to the inner product

(2.12) (u,v),, = fb { .m Diu(x).Diu(x)} dx, u,ve W™a,b],

J

and we denote the norm associated with this inner product by || - ||,,. The space
W:2[a, b] is then the closure in the norm | - ||,, of all infinitely differentiable
functions with compact support in [a, b]. Finally,

(213) W litan = sup ()

denotes the uniform norm of any real-valued function w(x) defined on [a, b].
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3. Two-point boundary value problems. As a particular application of the
theory given in § 2, consider the approximate solution of the following two-point
nonlinear boundary value problem:

(3.1) M[u(x)] + f(x,u(x)) =0, a<x<b,
where o .
Mu()] = ), (=1YD(o; x)D'u(x)), nzl,
(3.1) o b d
=
subject to the homogeneous boundary conditions of
(3.2) D’u(a) = Diu(b) = 0, 0<j<n—1.

the coefficient functions ; (x), 0 < i,j = n, are bounded, real-valued and

(3.32) measurable in x in [a, b];
and
there exists a positive constant ¢ such that
b
(3.3b) J { Y ai,j(x)Diw(x)-Djw(x)}dx > cllw||?
a 0<i,j<n

for all w(x) e W§[a, b].
It follows from (3.3b) that

J {O<Z< ai,j(x)Diw(x)-wa(x)}dx

(3.4) A= inf >
f w(x) dx

weWp 2[a,b]
wz0

is positive. With respect to the function f(x, u) of (3.1), we assume that:

f(x, u) is a real-valued function on [a, b] x R such that f(x, ue(x)) € L*[a, b]

(3-52) for any uy(x)e W§?[a, b,

there exists a real constant 7 such that

(3.5b) M§y>_/\

u—1v
for almost all x € [a, b]and all —o0 < u,v < +o00 withu # v;
for each positive real number ¢, there exists a positive constant M(c) such
that
foe) = f00) _
(3.5¢) u—0v

for almost all x € [, b] and all —o0 < u, v < +o0 withu # v and |yl = ¢,
] = ¢
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With these assumptions, the following result is a slight extension of [14,
Theorem 7.1] to the nonself-adjoint case.

THEOREM 3.1. With the assumptions (3.3a, b) and (3.5a, b, ¢), the two-point non-
linear boundary value problem of (3.1}+(3.2) has a unique generalized solution
u(x) in W%2[a, b]. Moreover, if B* is any finite-dimensional subspace of W%?[a, b],
then the approximate problem P, (cf. (2.4)) has a unique solution u,(x), and there exist
positive constants K, and K, , independent of the choice of B, such that

3.6) D — Wlwap = Killug — ull, £ Ky inf {|lwy — ull,; w, € B}

forall0 £i<n— 1.
Proof. For any u,ve W%?[a, b], we formally define the “quasi-bilinear” form
from (3.1):

(3.7) a(u,v) = Jb { Y. 0i(x)Du(x)- Div(x) + f(x,u(x))-v(x)} dx.

0sijsn

From the assumptions (3.3a, b) and (3.5a, b, ¢), it is easily seen that for any fixed
ue W§?la, b], there exists a constant K = K, depending only on u, such that

(3.8) la(u, v)] < K,|v|, forall veWn2[a,b].

Consequently, a(u, v) is for each ue W#%?[a, b] a continuous linear functional in
ve W%2[a, b], and we can thus write

(3.9) a(u,v) = (Tu,v), forall u,veW&?[a,b],

where T defines a mapping of W%?[a, b] into W¥?[a, b]. That T so defined is
bounded and finitely continuous also follows easily.
To show that T'is strongly monotone, we have from (3.7) and (3.9) that

(Tu — To,u — v), = alu,u — v) — a(v,u — v)

fb { Y, 0., D'u—v) - Diu—v)

i

+ (f(X,u) - f(xsv))(u _ 0)2} dx.
u—muv

Using hypotheses (3.3b) and (3.5b) and the positivity of A, it then follows that

A 4+ min (y, 0)

Tu — To,u — >
(Tu D, u v),,_c( A

(3.10)

)l]u——u”ﬁ for all u,ve W%?[a,b],

and hence, T'is strongly monotone.
We now show that T'is Lipschitz continuous for bounded arguments. For
any u, v, we W%2[a,b], we have, using Schwarz’s inequality and hypothesis
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(3.5¢), that
(Tu — To,w),| = la(u,w) — a(v, w)|

jb { Y 0. Diu — v)- Dw

i

+ (’—f(x’u) — f(x,v))(u — v)-w} dx
u—v

< (v + MO)llu — vll, - Wl
where we have assumed that t =) i<, 0i)l Loy, and that Jul, =c

v, < ¢ Thus,

Tu — Ti
3.11)  |Tu— Toll,= sup I(Tu = Tv, w)

= (v + M(o))u — vll,»
weWn:2[a,b] HWHn

which establishes that T is Lipschitz continuous for bounded arguments. Finally,
as a consequence of the Sobolev imbedding theorem in one dimension (cf. [38,
p. 174]), we know that there exists a positive constant K ; such that

ID'W | ogasy < Killwl, forall weWg[a,b], all 0<i=n-—1.

The remainder of Theorem 3.1 then follows immediately from Theorem 2.1.

Our objective now is to specialize the general finite-dimensional subspaces
of W%%[a, b] to subspaces of L-splines, which were considered in [2] and [34].
To explain briefly the nature of L-splines, let L be any rth order linear differential
operator of the form
(3.12) Llvx)] = Y ¢fx)Du(x), r=1, veCla,b],

=0

where we assume that the coefficient function ¢(x) is in Cila,b]forall0 < j <,
and that, in addition, there exists a positive constant o such that

(3.13) c(x)2w>0 forall xela,b].
Next, let Ata = xq < X; < --+ < Xy;; = b denote any partition of the interval
[a,b],and let z = (zy, z,, - - -, Zy), the incidence vector associated with A, be any

vector with positive integer components z; satisfying 1 < z; S rforall1 i< N.
Then, Sp (L, A, z) is defined [34] as the collection of all real-valued functions s(x),
called L-splines, defined on [a, b], such that

L*L[s(x)] =0 for xe(x;,x;+,) foreachi, 0
Dfs(x;—) = D*s(x;+) forall 0<k=<2r—1-z, 1

IIA
lIA

i<N,
(3.14)
<N,

lIA
IIA

1

where L* denotes the formal adjoint of L, ie., for any v(x)€ C'a, b], L*[v(x)]
= Y7o (—1)Diajx)u(x)). As an important special case, if Lu(x)] = D'u(x),
and 2, = 2, = --- = 2y = 1, then the elements of Sp (D", A, 2) are then simply
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the natural spline functions [32] and Sp (D", A,2) becomes Sp™ (A) in the notation
of [36]. Similarly, when L[u(x)] = D'u(x)and z, = z, = --- = Zy = r,the elements
of Sp(D", A, 2) are then simply the Hermite piecewise-polynomial functions, and
Sp (D", A, z) becomes H"(A) in the notation of [12] and [36].

Given a function f(x)e C"~'[a, b], where r is the order of the differential
operator L of (3.12), there are various ways in which one might interpolate f in
Sp (L, A, z). Asa particular case, it is shown in [34] that there exists a unique element
s(x)e Sp (L, A, z) such that

Dks(xi):Dkf(xi)a Oékézi_la 1§1§N3

(3.15)
D*s(x;) = D*f(x;), 0<k<r—1 for i=0 and i=N + 1.

This element s(x) is called the Sp (L, A, z)-interpolate of f(x) of Type 1. For example,
if f(x)eC'a,b], if Llu(x)] = D*u(x), and if 2, = 2, = --- = Zy = 1, then the
piecewise-cubic function s(x) € Sp (D?, A, 2) which satisfies (3.15) with r = 2, is just
the natural cubic spline interpolation (of Type I) of f(x). It is clear that, given the
parameters o, 0 < k < z; — 1,0 < i £ N + 1 (where we define for convenience
Zo = Zy4+1 = I), there exists a unique function s(x) in Sp (L, A, z) such that

Dis(x)=of¥, 0=k=z-1, 0Zi<N+1,

and we denote by Sp’ (L, A, z) the finite-dimensional subspace of Sp (L, A, z) of
all such functions.

We now give some error bounds for interpolation in Sp’ (L, A, z). For any
partition Ata = xo < Xy < -+ < Xy4; = bof[a,b],letA = max, ;< (X;+1 — Xy,
andletz = (z,, - - -, zy) be any associated incidence vector. Based on an extension
of results of [12, Theorems 7 and 9], it was shown in [28] that if f(x)e W"2[a, b],
then there exists a positive constant M such that for any partition A of [a, b] and
any associated incidence vector z,

(3.16) ”Dj(f - S)HLZ[a,b] = M(Z)r——jHLf“Lz[a,b]a 0Zj=r,

where s(x) is the unique Sp’(L, A, z)-interpolate of f(x). Similarly, if f(x)
€ W?"2[a, b], there exists a positive constant M’ such that for any partition A
and any associated incidence vector z,

(3.17) IDI(f = $)l Lotapy = MBI L*LS | Lapa 10 O=j=r.

With these error bounds for interpolation in Sp’ (L, A, z), we can apply the
results of Theorem 3.1 as follows. For r = n, let Spj (L, A, z) denote the subspace
of Sp” (L, A, z) of elements which satisfy the homogeneous boundary conditions
of (3.2). Then, it follows by construction that Sp) (L, A, z) is a finite-dimensional
subspace of W#?[a, b]. Applying Theorem 3.1 with B* = Sp} (L, A, z) gives us the
following theorem (cf. [14, Theorems 7.2]).

THEOREM 3.2. With the assumptions (3.3a,b) and (3.5a,b,¢), let u(x) be the
unique generalized solution of (3.1)~(3.2) in W¥la,b] and for any partition A of
la,b], and any associated incidence vector z, let §i be the unique solution of ap-
proximate problem P, for the subspace B¥ = Sp{ (L, A, z), where the order r of L
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satisfies r = n. Then there exist positive constants K, and K, independent of A
and z, such that if u(x)e W"*[a, b] witht = r, then

(3.18) HDi(ﬁ - “)HLw[a,b] < Kyt — ull, = KZ(A)r_nHLu”LZ[a,b]

for all 0 < i < n— L. Similarly, if u(x)e W*"?[a,b] with t Z r, then there exist
positive constants K  and K, independent of A and z, such that

(3.19) D@ — )]l ooy < Kol = ully £ K5 " L*Lutll 2o,

forall0 £i<n— 1
The error bounds of (3.19) of Theorem 3.2 can be improved (cf. [11] and [31])
if
(i) the generalized solution u(x) of (3.1)~(3.2) is smoother, say of class W2™2[a, b],
where m = n + ¢ and g is a nonnegative integer, and
(ii) appropriate L-spline subspaces are selected.
Specifically, suppose that we can express the differential operator M of (3.1)
as
(3.20) Mp(x)] = Fllux)] + Y, (= 1YDI§; (x)Dv(x)),

0=i,jsk

where ¢; (x) € Cila,b) for all 0 < i,j < k, where 0 < k = n, and
(3.21) [v(x)] = Y. Bix)Dv(x),
j=0

where we assume that f(x) e C’la,b] for all 0 < j < n, and that
Bux) = w >0 forall xela,b]

for some positive constant w. In this case, we select the finite-dimensional sub-
spaces H (I, A, z) of W2[a, b], which are described in detail in [30] of this volume
(see also [22] and [28]). The improved error bounds are then given by the following
theorem (cf. [28, Theorem 5]).

THEOREM 3.3. With the assumptions (3.3a, b), (3.5a, b, ¢) and (3.20), assume that
u(x), the unique generalized solution of (3.1)+(3.2) in Wi[a, b], is of class w2m2[q, b],
where m = n + g, ¢ = 0, and for any partition Ata = xo < Xy < -+ < Xy of
[a,b] and any associated incidence vector z = (2o, Zy,+, Zys1) With zg = Zy1
=m+qand1 < z;<m+ qfor1 <i=< N, let 6i(x) be the unique solution of the
approximate problem P, for the subspace B¥ = H (I, A, z). Then there exist positive
constants K | and K, independent of A and z, such that

(3.22) |DY(é — Wl opan = Kl(ﬁ)zm—max(é’i)y O0si=sn

where § = max {2k — n; 0}, and
(3.23) 1D — )] oy < KoB)" 0012 0 <i<n— L.
To check the assumption in Theorem 3.3 that the generalized solution u(x)

of (3.1)<(3.2) is of class W?™?[a, b], m Z n, one can use known regularity theorems
(cf.[27,Chap. 4]). For example, if the coefficient function g;, j(x)of(3.1) is more than
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just bounded and measurable (cf. (3.3a)), say of class Cila,b] forall 0 £ i,j = n,
then the solution u(x) is in W2™?[a, b].

Improved error bounds in the uniform norm can be similarly obtained with
somewhat stronger hypotheses (cf. [28, Theorem 5]).

THEOREM 3.4. With the assumptions of Theorem 3.3, let & be a collection of
subspaces H (I, A, z) of W™2[a, b] such that i(x), the unique H (I, A, z)-interpolate
of u(x), in the sense that

(3.24) DUii(x;) = Dlu(x;), 0=j<z—1-2q,
for z; = 1 + 24, satisfies for some positive constant K,
(3.25) 1D — W)l oay < KB forall 0<i<n—1,
all H(l,A,z)e 7.
If u(x)is in C*™[a, b], then there exists a positive constant K 5 such that

(3.26) ID (@ = ) opay S K@) 7™, 0<si=s=n—1,

and all H (I, A,z) e #.

Other finite-dimensional subspaces of W?[a, b] can of course be used in the
Ritz-Galerkin approximation of the solution of (3.1)«(3.2). Thus, g-splines are
sometimes useful in this regard (cf. [1], [33] and [34]).

However, because the use of polynomial subspaces of W%2[a,b] in Ritz—
Galerkin methods is classic, and because the associated theory is particularly well
suited to the numerical result of the next section, we now summarize the application
of the classical results of D. Jackson and S. Bernstein on polynomial approximation
to the problem (3.1)~(3.2). Details can be found in [12].

Let P{Y be the collection of all real polynomials py(x) of degree at most N
which satisfy the boundary conditions of (3.2), where N > 2n — 1. Then, P{" is a
finite-dimensional subspace of W%?[a, b], having dimension N + 1 — 2n. Thus,
using the inequalities of (3.6) of Theorem 3.1 in conjunction with the results of D.
Jackson (cf. [24, p. 66]) and S. Bernstein (cf. [24, p. 76]) directly gives us the following
theorem (cf. [12]).

THEOREM 3.5. With the assumptions (3.3a,b) and (3.5a,b,c), let u(x) be the
unique generalized solution of (3.1)~(3.2) in W{la, b], and let py(x) be the unique
solution of the approximate problem P, for the subspace B* = PV, If u(x) e W'[a, b]
witht = n and N = max (1, 2n — 1), then there exist positive constants K and K,
independent of N, such that

o . K 1
(327)  |D'(py — Wl pepany = Killby — ulln = (N — Zn)t_,,w(DtU; )

N —n
for all 0 £ i < n — 1. Moreover, if u(x) can be extended to an analytic function in

some domain which contains the real interval [a, b], then there exists a constant u
with 0 < u < 1 such that

(328)  limsup (ID(py — )]l pepap)¥ S u forall 0Si<n—L
N— oo

The constant u of (3.28) can be given a precise geometrical interpretation when
the interval [a, b] is such that a = — 1 and b = + 1. Let &, be the largest ellipse in
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the complex plane with foci at z = —1 and z = +1 such that u(z) is analytic in
&,. If A and B are respectively the semimajor and semiminor axes of &,, then
Bernstein has shown (cf. [24, p. 75]) that

1
A+ B

In particular, if u(z) is an entire function, then p = 0.

(3.29) U=

4. Numerical results. To show how the error estimates of the previous section

compare with actual numerical results, we consider the particular special case of
(3.1)-(3.2) (cf. [12], [21]):

4.1) —D%u(x) + " =0, 0<x<l,
subject to
4.2) u(0) = u(1) = 0.

For this problem, o, (x) =1 and 0;(x)=0,0=i+,j<2 in (3.1, and the
assumptions (3.3a, b) and (3.5a, b, ¢) are all valid. Specifically, using the Rayleigh—
Ritz inequality [19, p. 184], (3.3b) is valid with ¢ = 7%/(1 + n?), and A of (3.4) is
2. Choosing any uy(x) in W3[0, 1] shows that (3.5a) is satisfied, and y can be
chosen to be zero in (3.5b). Similarly, (3.5¢) is easily seen to be valid.

A classical solution of (4.1)-4.2) is known, viz.,

(4.3) u(x) = —log2 + 2log {csec [c(x — 1/2)/2]}, ¢ = 1.3360557,

which can be extended to a function which is analytic in the region in the complex
domain defined by an ellipse with foci at z = 0 and z = 1, and semi-axes 4.7 and
4.6. In this case, p of (3.29) is approximately 0.107.

To give an application of Theorem 3.4, we choose [ = D in (3.21) with all
6, /x) = 0, and k = 0, and we choose m = 2, s0 that n = g = 1. Using a uniform
partition A(h) of [0, 1], ie., A(h):0 = xo(h) < x;(h) < -+ < xy4,(h) = 1, where
x{(h) = j/(N + 1), the choice of the incidence vectorz = (3,2,2, - -+, 2, 3)T is such
that the finite-dimensional subspace H (D, A(h), z) of W §-2[0, 1], described in § 3,
is in fact the Hermite space HE(A(h)) of piecewise cubic polynomials. For this
subspace, it is known (see [4], [7] and [35]) that the inequality of (3.25) is valid for
any collection %, and thus the inequality of (3.26) is valid, i.e., in this case,

(4.4) 1) = ]l Logo, 1y < Ka(A(h)*.

Table 1 below gives the associated numerical resuits for this case.

TABLE 1

N dim H@(A(h) lla(h) = ullLogo,1y o

1 4 5.10-1073 —
2 6 1.21-1073 3.54
3 8 4.24-107° 3.65
5 12 9.58- 1077 3.65
7 16 3.10-1077 393
9 20 1.28-1077 3.96
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More accurate numerical results were obtained for the polynomial subspaces
P and these are given below in Table 2. In this case, as previously remarked,
the semimajor and semiminor axes are respectively 4.7 and 4.6, so that u = 0.107.
This means from Theorem 3.4 that for N large, we expect ||Py 41 — ullwp0,1; O be
roughly 0.107 times ||py — | =[0,17, Which is already the case numerically from
Table 2 for N quite small.

TABLE 2
N dim P" 1Py = wlliego.n
3 2 423-107%
s 4 312-107¢
7 6 5.03-1078

5. Eigenvalue problems. We next consider the eigenvalue problem

(5.1) Llulx)] = A u(x)], 0<x<l,
where

L) = Y (— YD Dul),
(5.1) e

AU = Y, (= 1YDAq D),

subject to the homogeneous boundary conditions of
(5.2) D/u(0) = Diu(1) = 0, 0Zjsn—1

We assume that 0 < r < n, and that the coefficient functions p,(x) and g,(x) are
real-valued functions of class C’[0,1], 0 <j < n, and class C¥[0,1], 0 < k < r,
respectively, and in addition, we require that

(5.3) pax) and g¢,x) donotvanishon [0,1]

Letting & denote the set of real-valued functions in C2"[0, 1] which satisfy (5.2),
we assume that

5.4 (Zlul,v)o = (u, fﬁv])o forall u,ve9,
(Mu],v)g = (u, #[v])y forall u,ve2,
and that there exist positive constants K and d such that
(5.5) (L[u],u)g = K(M[u],u)o = du,u), forall ueZ.
Defining the following inner products on 2,

(u,v)p = (M[ul,v), forall u,ve?,

(5.6)
(u,v)y = (L[ul,v), forall u,ve?,
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denote by Hj and H  the Hilbert space completions of & with respect to the norms
|- lIlpand | - ||y, respectively. It is then well known [15], [16], [17] that solving the
ecigenvalue problems (5.1)(5.2) is equivalent to finding the extreme values and
critical points of the Rayleigh quotient :

Iwll%
Iwlip’

With the above assumptions, it is well known [8] that the eigenvalue problem of
(5.1)~(5.2) has countably many eigenvalues {A;};2; which are real, have no finite
limit point, and can be arranged as

(5.8) O<ASAhs  Sh=SAh S

(5.7) R[w] = w(x)e Hy.

Moreover, there is a corresponding sequence of eigenfunctions {@(x)} 7~ o of (5.1)-
(5.2) with @(x) € 2, for which #[¢@;] = A4 [¢;]. These eigenfunctions are ortho-
normal in the sense that

(59) ((pis (pj)D = 51’,]’ for all la] = 172, T

and the sequence {@(x)} 7~ is complete in Hp.

Employing the Rayleigh-Ritz method, i.e., finding the extremal values of
R[w] of (5.7) over particular finite-dimensional subspace of H y, the following results
have been proved (cf. [13]). These results extend the results of Birkhoff, de Boor,
Swartz and Wendroff [6] for cubic spline functions, which correspond to the special
case m = 2 and n = 1 of (5.10) and (5.11). We now state these results.

THEOREM 5.1. With the assumptions of (5.4)~(5.6), let {A;}7~ | be a sequence of
partitions of [0,1], let {z;};>, be a corresponding sequence of incidence vectors
associated with {A;} %, ,and let 2, jand {, (x) be the kth approximate eigenvalue and
the kth approximate eigenfunction of (5.1)~(5.2), obtained by applying the Rayleigh—
Ritz method to the subspace Spo (L, A;,z;) of Hy. If the eigenfunctions {(p,-(x)}{-‘: "
of (5.1)-(5.2) are of class W"2[0, 1], witht = 2m = 2n, there exists a positive constant
K, ,independent of j, and a positive integer j, such that

(5.10) M S My S A+ Ky@)PCm forall j = jo.

Moreover, if the first eigenvalues are simple, ie., 0 <y <Ay <--- </,
there exist a positive constant K ,, independent of j, and a positive integer j, such
that

(5.11) H(ﬁk,j — Ol Lopapy = K”@k,j — @lly = KZ(Zj)ngn forall jZj.

Explicit calculations of eigenvalues by Birkhoff and de Boor [5], show the
exponent of A in (5.10) is best possible. The analogue of this for the inequality of
(5.11) is similarly true for the eigenfunction approximation in the norm || - | .
However, in the norm | « || (0,11, the exponent of A in (5.11) is not in general best
possible, and can in fact be improved using particular [-spline techniques. Specific-
ally, it is shown in [29] for particular cases that the exponent of A;in (5.11) can be
increased to 2m.



NONLINEAR BOUNDARY VALUE PROBLEMS 111

The choice of the polynomial subspace P& of Hy, where m + 1 = 2n + k,
similarly gives from the Rayleigh—-Ritz a kth eigenvalue approximation /le,m to A
and a kth eigenfunction approximation ¢, ,(x) to @,(x). For such subspaces, we
again state the following result of [13].

THEOREM 5.2. With the assumptions of (5.4)~(5.6), assume that the eigenfunctions
{@dx) = of (5.1)(5.2) are of class C'[0, 1], with t = 2n. Then, there exist constants
M, and M, such that

~ 1 1 2
(5]2) /’{k § lk,m § A‘k + Ml{“*‘-ﬁljmax w(Dt¢l,r):|}
—n

(m — n) 1sisk
for allm = M,. Moreover, if 0 < A; < A, < -+ < Jy, there exist constants M,
and M 4 such that

H@k,m - (pk”Lw[O,l] = Kl]@k,m — Oilln

1 1
< B .
S e R 1|

Jor allm = M. If the eigenfunctions {@/(x)}i_ | can be extended to analytic func-
tions in some domain in the complex plane which contains the interval [0, 1], then
there exist two constants py and p, with 0 < p, < 1 and 0 < pu, < 1, such that

(5.13)

(5.14) lim sup (L — )™ = py,
and
(5.15) lil;?ﬁsuP(”@k,m - (PkHLw[o,u)l/m = Uy.

There are extensive numerical results in [6] for cubic splines and cubic Hermite
subspaces as applied to the Mathieu equation. However, we shall now give com-
plementary numerical results here for a simpler eigenvalue problem (cf. [13], [20]),
namely,

(5.16) —D?u(x) = Ju(x), 0<x<1,
subject to the boundary conditions of
(5.17) u(0) = u(1) = 0.

TABLE 3.

Quintic Hermite subspaces HY(A(h))

h dim H$Y(A(h)) Jythy = o° Jy(h) — 4n? A3y — 972 Aa(h) — 1672
12 7 1.27-1077 1.65-1073 3.51-1072 3.83-10°!
13 10 3.66-107° 1.18-107° 5.98-1073 3.59-10772
1/4 13 242-10710 9.96- 1077 1.18-10°% 1.32-1072

1/5 16 7.41-107 1! 9.53-10°8 1.62-107° 5.06-107%




112 RICHARD S. VARGA

If the quintic Hermite subspace H§(A(h)) is applied to (5.16)«(5.17), then the
inequality of (5.10) of Theorem 5.1 is valid with m = 3,n = 1, i.e., the exponent of
A; in (5.10) is 10. The numerical results are given in Table 3. On the other hand,
since the eigenfunctions of (5.16)(5.17) are entire functions, i.e., analytic in the entire
complex plane, then (5.14) of Theorem 5.2 is valid with u; = 0. The exceedingly
rapid convergence of the approximate eigenvalues in this case for the polynomial
subspaces PJ" is given in Table 4.

TABLE 4.
Polynomial subspaces P§"

m dim P§" R Sy — 4n? Ty — on? Jam — 1672
4 3 1.45-107* 2.52 133 —

6 5 8.66- 1078 231-1077 347-107! 42.6

8 7 26010712 5.56-1073 3.03-1073 2.08

For further numerical results for Rayleigh-Ritz methods applied to piecewise-
polynomial subspaces, see also [6], [18] and [37].
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