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The response of a thermal reactor to a ramp change of reactivity is studied.
When a single group of delayed neutrons is assumed, the differential equations
for the time dependence of the thermal neutron flux takes the form of a linear
homogeneous differential equation of the second order with linear coefficients.
linearly independent solutions of the differential equation are found in the
form of contour integrals. Moreover, expansions of these contour integrals into
usable asymptotic developments are determined. Application of the mathe-
matical results obtained is made to the problem of control rod calibration
during a xenon transient.

INTRODUCTION

The response of a reactor to step changes in reactivity is discussed in almost
every text on reactor technology (7, 2). Usually this problem gives rise to a
linear homogeneous ordinary differential equation with constant coeflicients,
and no special mathematical difficulties are encountered in its solution. How-
ever, when a ramp change of reactivity of the form a -+ bt, as opposed to a step
change of reactivity, is involved in the problem, then significant mathematical
difficulties arise. In the latter problem, when only one group of delayed neutrons
is assumed, the differential equation for the neutron flux is of the form

b + (At + B)g + (Ct + D)p = 0 1)

where ¢ = dg¢/dt, ete. There is no serious difficulty involved in finding a par-
ticular solution of Eq. (1) in the form of a contour integral (2). However, it is
not a straightforward mathematical problem to find linearly independent so-
lutions so that initial conditions on the flux and its first derivative may be ful-
filled. Moreover, the problem becomes still more difficult when the number of
delayed neutron groups is greater than one. In this case, for each additional
delayed neutron group added, the order of the differential equation corresponding
to (1), and also the number of linearly independent solutions required to be

t Now with General Motors Corporation, Research Staff.
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found, increase by one. It is the mathematical problem just described which is
of primary interest in this paper.

The motivation for the discussion of this paper is a problem of control rod
calibration in a thermal reactor. The rod calibration technique associated with a
reactor which can be maintained at criticality in a steady-state condition with-
out substantial movement of the control rods is well known. The control rod
calibration problem under study in the present discussion is concerned with a
special situation where the reactor can be maintained at criticality only by a
virtually continuous motion of the control rods. Such a condition arises during
a xenon transient (1, page 335), that is, during the period of buildup and decay
of xenon and samarium following operation of a reactor at power.

The conventional rod calibration technique is clearly inadequate during a
xenon transient since the reactor period (7, page 293) cannot be measured
experimentally. For example, when a rod is pulled during the rising phase of a
xenon transient, a positive increment of reactivity is thus introduced and the
flux starts to rise on a steep trajectory. However, before the flux has time to
take off on its customary exponential ascent, the incoming xenon begins to take
hold with a continuous contribution of negative reactivity. The net effect of the
two opposing contributions of reactivity results in the flux attaining a peak
and then falling off until the reactor becomes subcritical. Thus, the reactor period
cannot be measured in the conventional manner.

Probably the simplest way to obtain an approximation to the reactivity in-
troduced by the motion of a control rod during a xenon transient is explained in
what follows. Suppose that a reactor is maintained at criticality during the
rising phase of a xenon transient by the continuous motion of a control rod.
Suppose further that at ¢ = f, it is desired to measure the reactivity introduced
by the motion of the control rod for the next x inches of travel of the rod. The
reactor is now held critical with the control rod in question until the rod has
moved the predetermined x inches and the elapsed time ¢ = 7 is then recorded.
It remains to determine the change in reactivity in the interval #; — # . Pre-
sumably, the amount of fuel in the reactor and the power level preceding shut-
down are known at the time of the experiment. Accordingly, there exists, at
Jeast in prineiple, a corresponding xenon buildup curve (7, page 337) which gives
the effective macroscopic xenon cross section” in the reactor at any time. Ac-
cordingly, the change in the xenon cross section in the time interval ¢ — # can
be found, and finally the corresponding change in reactivity can readily be
computed.

The greatest weakness of the rod calibration procedure outlined above is that
the correct (or most nearly correct) xenon buildup curve needed in the calcu-
lation is never available without special calculation. Evidently, the three most

2 The reactivity equivalent of the actual inhomogeneously distributed xenon.
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important parameters in the calculation of the effective xenon cross section are
the zenon weighting factor) the xenon yield, and the microscopic zenon cross
section. Of these three parameters the xenon weighting factor is the only one
amenable to improvement by the reactor physicist and is, moreover, an ex-
tremely difficult number to calculate to a high degree of accuracy. Thus, it is
of interest to seek a more accurate procedure of control rod calibration during a
xenon transient.

The present paper represents an attempt to study the problem of control rod
calibration during a xenon transient from a purely analytic point of view and
then correlate theory with experiment to obtain the desired results in the best
possible approximation. Particulars of the problem studied are described as
follows. Suppose that the reactor is critical during the rising phase of a xenon
transient at £ = £, . Then a control rod (or set of control rods) is suddenly pulled.
The approximate subsequent behavior of the flux has already been described.
It is desired to find the reactivity dp thus introduced by pulling the rod z inches
and incidentally to find the reactor period in the conventional sense.

The analytic study involves the kinetics equations which describe the time-
dependent behavior of the thermal flux. The problem can be reduced to the con-
sideration of a linear homogeneous ordinary differential equation of the second
order,* the coefficients of which are functions of the time. Fortunately, the re-
duction of the coefficients to linear functions of the time involves a physical
approximation which is very reasonable. In this paper linearly independent
solutions of the differential equation are found in the form of contour integrals;
these latter can be expanded into usable asymptotic developments.

The analytic solution to the rod calibration problem thus exhibits the thermal
flux in the form of an asymptotic series, where only a few terms are needed to
give the desired degree of approximation. The parameters of particular interest
which appear in the solution are the step change of reactivity &p, introduced
by the motion of the control rod® and the quantity m, which is the time rate of
change of the macroscopic xenon cross section at ¢ = £ . Now, the parameter m
is clearly a function of the xenon weighting factor, and it would thus appear
that the analytic approach to the rod calibration problem suffers from the same
defect as the procedure described earlier in this section. However, it is explained
in a later section how this apparent weakness in the analytic approach is over-
come and in particular how the experimentally determined flux is used to de-
termine both the reactivity 8p and the correct xenon weighting factor.

3 The xenon weighting factor is a number which depends on the preshutdown control rod
configuration and, most important of all, the control rod configuration at the time when the
control rod calibration is initiated.

4 On the assumption of one group of delayed neutrons.

5 The case is also considered in which excess reactivity is introduced initially by pulling
a rod or group of rods in a noninstantaneous fashion.



REACTIVITY CHANGES DURING Xe TRANSIENT 551

A true shortcoming of the theory developed in this chapter is the omission of
the generalization to more than one group of delayed neutrons. Apparently,
the mathematical difficulties entailed in such a generalization are substantial.

DEVELOPMENT OF BASIC KINETICS EQUATIONS

The kinetics equations needed here for a point of departure are developed in
Glasstone and Edlund (7). The kinetics equations‘* in question are

1, Nekess keff(l ! :
(@) = 5. Al AlH(t) + = ~——l—--—~- T(t) (2)
cH'(t) = —AcH({) + kBZ, AT(Q)
¢(r, 1) = AW T ()
Clr, t) = cWOH®)
i (3)
k it =
© (1 + L*B)(1 + BY)
lo 1
b= 1+ L*B¥ b = 12y

In the foregoing equations ¢ is the thermal flux, €' the concentration (in atomie
nuclei per em’) of the precursors from which a single average group of delayed
neutrons arises, A the appropriate decay constant, v the average speed of thermal
neutrons, 8 the fraction of the total number of fission neutrons in the single
average group of delayed neutrons, & the multiplication constant in the infinite
reactor, L the thermal diffusion length, +» the age, £, the macroscopic thermal
absorption cross section, B® the total buckling of the equivalent bare reactor,
ly the neutron lifetime in the infinite reactor, and 7 the neutron lifetime in the
finite reactor.
Equations (2) and (3) may also be written as

eff(l - JB) —1

’ eff
¢ = kz O+ i ¢ (4)
C' = —\C + kBZ.¢ (5)

where it is understood that the space variables are fixed throughout the dis-
cussion. Next, it is desired to write equations (4) and (5) in a form which dis-
plays the reactivity explicitly. To this end, observe that

keff(l - 5) — 1
l

8 The equation M, [u (0] = i (—D(dr/d)pr()u()] = 0 is called the adjoint equation
associated with Mo (t)] = 0, if Mlv(®)] = Ziaope(®v® (8.

=F _]_ 6 Fote = P(P - 6) (6)
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where
_ 7)?7225 —
T = (LB @)
Moreover,
Neest A _
o e R ®)
where
v
L] + rB? ©)
Then, with the use of (6) and (8), Egs. (4) and (5) may be written in the form
¢ = Tl — B¢ + MO (10)
C' = —AC + 72y Bo. 11

The form of p, peculiar to the discussion at hand, must be 1nvest1gated in
detail. The expression for p may be transformed as follows:

e R T D,BH( + 7B
B e - o
ff N2 2 2 2 (12)
e+ D,BYA + 7B 2l 4 1B
7225 N5

with 3, = 2 -+ Zp, where 2 corresponds to reactor materials except for
control rods, and where Zp represents the homogeneously (uniformly) distributed
poison corresponding to the control rods and the transient xenon. Thus,

Sp = o (control rods) + Zi. (transient xenon).

Suppose now a rod calibration experiment is initiated at / = 0 when the
reactor is just critical during the rising phase of the xenon transient. The real-
istic approximation is then made that the xenon increases in a linear fashion
for the next few minutes following the initiation of the experiment. Thus,

S = Zulimo + mi,  m = 32x/]i (13)

where Ty is the macroscopic cross section of the xenon (plus samarium).
The reactivity p in IEq. (10) consists of two terms:

p = dp1 + p2(t) (14)

where 8p; represents a change of reactivity corresponding to a change of posi-
tion of a control rod and py(f) corresponds to a xenon transient. Since the re-
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actor is critical at ¢ = 0, then py(0) = 0. Thus, from (12) and (13),

e + DBY(1 4+ 7B (S + Zu) (L + 7B mi(l + 7B
N2 7295 NZas

p2(t) = 1 —

whence, from the assumption of criticality at ¢ = 0,

2
o) = — mt( + 7B) _ _ mf” ) (15)
i T
With the use of (14) and (15), Egs. (10) and (11) become
¢’ = T[opr — (miv/T) — Bl¢ + MC (16)
O, = "‘)\O + 172253(]5. (17)

The elimination of €' from the pair of equations above to give the desired
equation in ¢ alone is readily accomplished. Both sides of (16) are differentiated
and the resulting equation solved for €”. Then, the elimination of C' and ('
between this equation and (16) and (17) yields

¢" 4+ [N + T8 — Tépy + muile’ + [mv — TAépr + Mmutlp = 0. (18)

To obtain the initial conditions let it be assumed first that

$(0) = ¢ = 1. (19)
Since ¢’ = 0 when ¢ = 0, then from (17) it follows that
Co = nZasBbo/ . (20)
Substitution of (20) into (16), evaluated at ¢ = 0, gives
¢'(0) = ¢ = T'dp; . (21)

The solution of (18) which fulfills the initial conditions (19) and (21) is sought.
The discussion of this problem is continued in the Section “Applications to
Special Cases.”

DEVELOPMENT OF BASIC KINETICS EQUATIONS: NONINSTANTANEOUS
ROD PULL

In the preceding section the kinetics equations associated with an initial
step change in reactivity were developed. The type of problem considered
corresponds to the instantaneous withdrawal of a control rod, usually the with-
drawal of merely a single rod. If, however, the initial excess reactivity is intro-
duced by the withdrawal of a group of rods, then the rod withdrawal cannot
be effected rapidly and the assumption of a step change of reactivity represents
a poor physical approximation. If the rod withdrawal takes place over a finite
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interval of time (i.e., interval large compared to the reactor period) experi-
mentalists consider the assumption of a linear change in reactivity to be a
realistic approximation. Thus, it is assumed in what follows that dp = ut, where
w is a measure of the excess reactivity inserted. If the rod withdrawal is stopped
after f, seconds, the fixed amount of reactivity introduced by the rod with-
drawal is given by 8po = ulo.

On the basis of the theory developed in the preceding section the equations
describing the procedure discussed above are given by

¢ =Tt — "2 — )¢ + MC’L (22)
0<i<t

C" = — NC + 72 3¢ J (23)

& =Tlta— "~ 8o + MC t (24)
3 =ty

O = — AC + 125 8¢ f 5)

Equations (24) and (25) are of the type already considered in the preceding

section. Equations (22) and (23), which describe the early behavior of the

reactor, pose a mathematical problem quite similar to the one presented earlier.
If ¢ is eliminated from Tqgs. (22) and (23), then

¢” + N+ I8 — Titlp’ — [I¢ + AT'¢tlp = 0 (26)
where
¢ =u— (mv/T). 27)
The initial conditions associated with the solution of (26) are
do=1, ¢ = 0. (28)

The procedure for finding the flux over the entire range / = 0 is explained
in what follows. Let ¢;(¢f) represent the flux for 0 £ ¢ = 4 and ¢(/) the flux
for £ = #. The arbitrary constants which appear in the general solution ¢:(?)
are determined by fulfillment of the initial conditions (28). The arbitrary con-
stants contained in the general solution ¢.(f) are determined by fulfillment of
the continuity conditions ¢i(f) = ¢2(lo), ¢1'(te) = &2’ (fo).

SOLUTION OF KINETICS EQUATIONS BY ASYMPTOTIC SERIES

The differential equations associated with the rod calibration problems under
discussion here are given by Eqs. (18) and (26), both being of the form

W) + (At + BYW'(t) + (Ct + D)W () = 0. (29)

Solutions of this equation which are valid for the range of values of the pa-
rameters of interest here are discussed in detail later. The general technique
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was to find solutions in the form of contour integrals and to expand these in
appropriate asymptotic series.

The two linearly independent solutions of Eq. (29) valid for the range of
parameters of interest are given by
24

Wl(t) = e—-Ct/A (At + F>)\ {Z 8; [(At + F)?

—CtfA —(At+F)2[24 n 7
m@=i—i*w{gw&—%«ﬂ4wmm+mﬂ(w

jl. + Tal(At + F)Q]} (30)

(At 4 F)M1 At + F)
where
5o T+ _(=D'TO+2+ 1)
T EAT =2+ 1) " LT+ 1)

F =B — 2(C/4).

The terms T, and V, in Egs. (30) and (31), respectively, are error terms which
may be shown to be negligible for the range of values of the parameters under
consideration and for the degree of accuracy required in the calculations.

The general solution of the differential equation (29) is a linear combination
of the linearly independent solutions:

o) = m Wi () + p W2 () (32)

where the constants are determined by the initial conditions. In the special
cases considered in the next section, from three to five terms of the asymptotic
expansions in (30) and (31) are needed to compute fluxes to an accuracy of
four decimal places.

APPLICATIONS TO SPECIAL CASES

The theory developed in the preceding sections has to the best knowledge of
the authors never been used in connection with actual experimental data. The
special flux plots exhibited in this section have been calculated on the basis of a
rather arbitrary selection of parameters and serve to illustrate the theory pre-
viously developed. Two cases have been considered.

Case 1

With the reactor assumed to be critical at some instant during the rising
phase of a xenon transient, positive excess reactivity is introduced mstantw
neously by withdrawal of control rods.

Cass IT
With the reactor assumed to be critical at some instant during the rising

phase of a xenon transient, positive excess reactivity is introduced by gradual
withdrawal of control rods over an interval of about 10 sec.
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The differential equation associated with Case I is given by Eq. (18). The
initial conditions associated with Case I are

¢o =1, ¢ = TI'dp:. (33)

Equation (18) is readily identified with Eq. (29). With the use of the linearly
independent solutions, Eqgs. (30), (31), the general solution of (18) can be written
as indicated in (32). Finally, the constants of combination are determined in
fulfilment of the initial conditions (33). In this connection, it may be shown
that the term-by-term differentiation of the asymptotic series (30) and (31) is
permissible.

The final solution has not been tabulated since the writing of the complicated
equation affords a negligible contribution to the understanding of the problem.
The flux in Case I has been plotted for three values of 8p; in Fig. 1.

The differential equation associated with the behavior of the flux in Case II
is given by Kq. (26). The initial conditions for Case II are:

¢ = 1, ¢ = 0 (34)

Equation (26) is readily identified with Eq. (29). The general solution of (26)
can once again be written as indicated in (32) and u;, pe determined to satisfy
the initial conditions (34). Let the solution thus determined be designated as
$1(0).

The flux is given by ¢:(¢) during the period of gradual rod pull over an interval
of 1y seconds. At the end of 4 seconds, it has been shown earlier that the fixed
amount of positive reactivity introduced by the rod withdrawal is given by

/ \<p= 12x107¢
4 \\\
’ /\ Sp=|éx|0'4
/ /8p= 8x[0™

2 T~ N N\

FLUX (ARBITRARY UNITS)

AN

I0 100 200 300 400 500
TIME (SECONDS)
Fig. 1. Flux during a xenon transient with instantaneous rod pull.
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Fia. 2. Flux during a xenon transient with noninstantaneous rod pull.

8p0 = uly . Thus, the behavior of the flux for ¢ = £ is dominated by Eq. (18),
where 8p; is replaced by ufo. Let the general solution of the resulting equation
be designated by ¢:(f). The constants of combination in ¢»(f) may be determined
in fulfillment of the continuity conditions ¢1(f) = ¢u(fs) and ¢’ (k) = ¢ (fo).
Thus, the flux for Case II has been completely determined.

The flux in Case II has been plotted for three values of dp; (or ) in Fig. 2.
It is noted from Figs. 1 and 2 that the eventual behavior of the flux is not in-
fluenced greatly by whether or not the rod pull is instantaneous or gradual
over a short interval of time.

IMPLICATIONS OF THE NEW TECHNIQUES

Experimentally determined flux plots would have approximately the shapes
of the theoretical flux plots exhibited in Figs. 1 and 2. In principle, the initial
excess reactivity introduced by the rod pull ép and the xenon weighting factor w
can both be precisely determined from an experimental flux plot and the theo-
retical flux as follows. Suppose that the experimental flux has been measured
at two distinet times #; and #, so that ¢(4) and ¢(f;) have been determined
experimentally. Substitution of the pairs of known values 4, ¢(&) and (4),
¢(t) into the equation for the theoretical flux gives two equations in two un-
knowns, albeit the equations are extremely complicated. If it is then assumed
that all of the reactor parameters save dp and m (the slope of the effective macro-
scopie xenon cross section at ¢ = 0) are known, then the two equations can be
solved graphically for ép and m. When m is known, the corresponding xenon
weighting factor  can be determined as follows.
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It is rather commonly known that under certain circumstances which prevail
in this discussion the effective xenon cross section can be written in the form

Zx®)]est = A@) + B)wd (35)

where & is the average flux preceding shutdown, « is the xenon weighting factor,
and where A (f) and B(f) are derived in Glasstone and Edlund (7). Differentia-
tion of both sides of (35) and evaluation at ¢ = 0 gives

m = A'(0) + B/ (0)wd

whence w is determined as a function of m.

The principal difficulty associated with the method outlined above, for a
precise calibration of a control rod during a xenon transient, is of course the
problem of the simultaneous solution of the two very complicated transcendental
equations involved. However, this problem could be greatly simplified by the
development of an appropriate code for the solution of the problem with the
aid of a large scale digital computing device.

INTRODUCTION TO THE MATHEMATICAL PROBLEM

The remainder of this paper is devoted to a detailed study of the differential
equation (29) and, in particular, the methods used in obtaining the linearly
independent solutions, Eqgs. (30) and (31). By substituting W () = PRA'10)
into (29) and then changing variables, s = A¢f + B — 2C/A, the resulting
equation becomes:

N"(s) + rsN'(s) + reN(s) = 0 (36)

where r; = 1/4 £ 0,1, = (C/A%)(C/A — B) + (D/A%) and N(s) = W(t)e "
This is the standard form of the differential equations which will be considered.

Equation (36) will be solved by using asymptotic series in the following sense:
a function f(z) has the asymptotic representation ¢(z)(as + azr " Foa A )
if, for every fixed value of n,

ng”{% — Gy =@ T — e x"”} = 0.
Any function can have but one asymptotic expansion although many different
functions may have the same asymptotic expansion. If both F(z) and G(x)
have asymptotic expansions, then aF (z) 4+ BG(z), where «, 8 are constants, has
the asymptotic expansion obtained by simply replacing I(z) and G(z) by their
asymptotic expansions in aF () + BG(z) and adding. These are the only results
from the theory of asymptotic series that will be used in this paper. For more
results and a more complete theory, the books by Knopp (4) and Van der Corput
(5) can be read. ‘
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If Ny(s) and Ny(s) are two linearly independent solutions of (36), then Eq.
(36) is said to be solved by means of asymptotic series if the asymptotic expan-
sions of Ny(s) and Na(s) are used to find the general solution of (36).

METHOD I. THE USE OF DEFINITE INTEGRALS

Equation (36) can be written as
L [N] = N”(s) + rsN'(s) -+ r.N(s) = O. (37

A solution of the form N(s) = f‘i K(s, )V (¢t) dt is assumed where «, 8, K(s, £)
and V() are suitably chosen in the following way. If differentiability under the
integral sign is assumed, then

8
LNl = [ LKG 0W() di

A linear differential operator with respect to ¢, M., is then found such that
M,[K(s, 1)] = L [K(s, t)]. Hence

8
LNl = [ MK G, 0100) de.
Lagrange’s identity (3, page 124) is now used to obtain
8 _
LN = [ Ks, 030, o)) di + P [K(s, 0,00, ]i=%

where M, is the adjoint operator® of M, , and P(K, v, ) is the bilinear concomitani
associated with M, and M,. The function v(f) can be found as a solution of
M, (@) = 0 after a kernel K(s, #) has been selected. The limits « and g are
chosen so that P(K, v, £)]/=% vanishes. Then a solution of the equation L,[N] = 0
has been found subject to the assumption concerning differentiability under the
integral sign.

METHOD II. THE USE OF CONTOUR INTEGRALS

For the sake of completeness, an nth-order linear differential operator is con-
sidered. Let

Lx = Z (am + an -’1'7) D; s Qni # (). (38)
r=0

The linear differential operator of Eq. (37) is not of this form since in that case
aq = 0. However, it can be changed to the desired form as will be shown later.
A solution of L, [y] = 0 is assumed of the form

y(z) = fce“ v(©) di
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where v({) and C, a contour in the complex ¢ plane, are to be determined. As
in the preceding section, differentiability under the integral sign is assumed so
that from (38):

Ll = [ Mcle1o(0) ds

where
M&‘ = ZO g_r (aro + (¢75] D{)

If M¢[] = 0 denotes the adjoint equation associated with My [], then by
Lagrange’s identity the equation above becomes

Loyl = [ & B blde + 1PE e
Thus, y(z) will be a solution of L, [y] = 0 if v(¢) is a solution of M; [»] = 0 and
if ' is chosen so that
[P, »)]e = 0.
From definition,

M: = Pu(9)D; + Qu(%) (39)

where P,(¢) = 2oro au¢ and Q.(¢) is some other polynomial of degree <n.
Actually P.({) is of degree n since a,; % 0. Thus

My o] = Pa(o)'(©) + Qu(0o() = 0 (40)
is the equation to be solved for »(¢). From the theory of partial fractions,
_ Q.(¢) _ M o A
Pn(;) H-}wg‘-’an—i- +§""an
where a;, -+, a, are the n roots of P,(¢) = 0 and are assumed to be distinct.

Hence
(@) = 5@ — a) - (F = an)™
The corresponding bilinear concomitant is
P, 0) = (¢ — o) oo (¢ — a8

If C; denotes the path in the complex { plane starting at — «, circling «, in a
negative direction, and returning to — o, then P(e¢®, v)]o, = 0if 2 + u > 0.
The path C; in the neighborhood of — « is usually taken to be parallel to, or at
a small angle to, the axis of the reals in such a way that each of the
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roots ar, * ¢, Qio1, Qg I , o is at a finite distance from this loop. Thus
there are n solutions of L, [y] = 0 corresponding to each ¢ in

v = [ o) .

It is important that the polynomial P,(¢) defined in (39) be of degree n since
only then will » solutions exist with the type of contour described above.” The
fact that these n solutions are linearly independent will follow from subsequent
work.

SELECTION OF THE KERNEL K(s, t) IN METHOD I
For convenience, kernels of the type K(s, {) = K(s-t) are sought. Then Eq.
(36) can be written as
L[Nl = (s F(s d/ds) + G(s d/ds)} N(s) = 0
where F(u) = w* — u, Gw) = ru + ry. If H is any polynomial and K(z) is
any solution of the ordinary differential equation
(7 F(z d/dz) — H(z d/dz)} K(z) = 0
then K (s-1) satisfies ‘
(sPF(s d/ds) + G(s d/ds)} K(s-t) = {G(t d/dt) + FH(t d/dt)) K(s-t) (41)
or, equivalently, L, [K] = M,[K]. This defines the operator M, .
If now H(u) is a real polynomial of the form
H(u) = CY1U2 + att + o3
then K(z) satisfies the equation
K@) — ad) — 2K'(2)(ar + an) — asK(z) = 0. (42)
The real numbers a1, as, as are arbitrary. ¥rom Eq. (41) it follows that
M. = v O)(eat) + WOt + ol + ast’) + wl@)(r2 + asl’).  (43)

In order to simplify the task of finding a solution to M, ()] = 0, ay is set
equal to 0. From (43) it is then clear that the solution of M, w(t)] = 0 can be
found by elementary separation of variables.

Solutions of (36) can now be found corresponding to certain restrictions on
the ratio A = —(ry/ry).

SOLUTION FOR RESTRICTED VALUES OF 7y , 7

By suitable choices of az, a3 and the limits «, 8, different solutions of (36)
can be obtained for varying values of 7, r, . For this paper only one such case

7 For more general techniques and contours, see reference 8, Chapter XVIII, or refer-
ence 6, pages 317-333.
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need be considered. In this connection, let A = —(ry/r;) and consider the case
A > —1, T > O .
It can easily be verified that K(z) = ¢ satisfies the equation

K”(z) + 22K'(z) + 2K(2) = 0. This corresponds to Eq. (42) with o; = 0,
ay = a3 = —2. Thus

M, [u] = w'(t)(rt — 26°) + u(t)(ry — 20)
and
M, = L[]
It follows then that
M, = —(d/dt)[(rd — 26) o()] + v(D)(ry — 26°)
and
P, 0(), £) = (nt — 26°) v(t)e™™""".

The solution of M, [»] = 0 up to a constant is

A-1)/2 -
N > 4/
v(t) =t (t 2) m=4/2'

. _ N 2’? - A+1)/2 a2 t=f
P 0,012 = [ (= 2) e ] (44

Hence

For s ¢ 0, @ and 8 can be chosen to be /- E/~2 and oo, respectively, to make
(44) vanish provided (A + 1)/2 > 0.
Thus, the following integral is obtained:

_ “ —s242 1A f 2 1 O-vr
Ni(s) = et -2 dt.

Vril2 2
The substitution u = # changes this into (up to a constant)
Ni(s) = f ¢ TR, (r/2)]*7 gy, (45)
r1/2

This integral exists and is an analytic function of s for A > —1. Thus, it is one
solution of L, [N] = 0, since the differentiability assumption of the previous
section is now valid.

By choosing different values for a;, as, az and «, 8, other solutions valid for
other ranges of 7, and ry can be found. The disadvantage of this method lies in
the restrictions on 7y, r, arising from the trial and error technique of choosing
ai, oz, a3 and a, 8. Method II, by contour integrals, leads to a more unified
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theory. However, as will be seen later, the solution found above leads to a more
exact remainder when asymptotic expansions are found. It might also be men-
tioned that only one solution was found for the set (A, r1) for L, [N] = 0. Since
L;[N] = 0 is a second-order differential equation, another solution linearly
independent of the first would have to be obtained in each case in order to have
general solutions.

SOLUTIONS USING METHOD II

The equation
L[Nl = N"(s) + risN'(s) + roN(s) = 0

is not, of the form suitable for Method IT. T'o circumvent this difficulty, a change
of the independent variable s = 2 can be made

Loyl = 2y (@) + () + (r2/2)ly'(2) + (r2/4)y(x) = 0 (46)
where y(z) = N(s). Thus
2 1
L, = 2. > ana'D,
with gy = 7‘2/4, dip = %‘, ayy = 7‘1/2, o1 = 1, Aor = gy = 0. Then

2 1
My =22 an¢Df

r=0 s=(0

so that

_ 2 1 ’ 1 Ty
il = (2 0) v+ (bo+ )

From the general theory of Method II, the adjoint is seen to be

d 2 Ty 1 (&) .
w50+ Ger)r=o

(@2 +3 s“) v (©) + <—§ ¢+ 5 - Z{’) o) = 0. (47)

which reduces to

This is an equation with variables separable which can easily be solved. Thus

022 r\* 7
v(f) = ¢ ¢+ 5 .

From Eq. (47), it can be seen that Py(¢) = ¢* -+ r¢/2, where Py(¢) follows
the notation used in Eq. (39). The roots of Py({) are 0 and —r;/2, which are
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distinct since r; = 0. Hence, from the previous analysis
r (A—1)/2
yi(x) = f g (§ + 51) g, 1= 1,2 (48)
Cy

forms two solutions of Eq. (46). The contour C; is composed of the following:
(1) a line making an angle « 5= 0, | « | < 7/2 with the negative real axis from

— o to |z ] = r, where r is positive,
(il) a circle of radius 7 described in a negative direction about the origin,
(iii) the line of (i) from |z| = r to — .
Thus C; is associated with the root 0, and C, is a similar contour encircling
—7r1/2. 1t is assumed that r < |r/2| so that the point 2 = —r;/2 is not in-
cluded inside the circle of (ii).
If A = —2k, with k an integer greater than 1, the integrand for y(x) is ana-

Iytic within €y and i (x) = 0. This is a permissible solution but not a very
useful one. For this case, (', can be chosen as the straight line R, starting at
— o and going to 0 at an angle o with the negative real axis. A similar case
occurs for y.(z) when A = 2n + 1, n a positive integer. This gives rise to a new
path of integration R, similar to R, .

ASYMPTOTIC EVALUATION OF SOLUTIONS USING METHOD I
In Eq. (45), if w = r/2 + ¢, then

Nils) = ¢ 752 (2/py) P2 f IOV o /)M ge (49)
0

This integral is of the form [y ¢ F(0) de. A generalized Watson’s lemma
(7, page 218 or 8, page 231) can be used to find an asymptotic series for this
integral. Thus,

@ a3 g.()\—l)/z
Loy 5 ryi X

I‘(l +g+j)1‘(j+%+%

T (1 + %)jl(m §°/2)°

S CI ) 20

where
, A , 3, )
| 1<2+§+")F(“+§+§)

gffl \ 7‘182 n-+1
F(l +~2~) (n + 1)!(—2«>

0=<|R.(s)] <




s

%
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That is, for fixed n, R.(s) = O(| s* "), Hence, except for constant factors,

N1<8> - efs271/2 8*)\‘“1 Ii a; <%)] =+ R;(S)} (50)
Ij:o 718
where
A . . A 1
w o (1) e (1 *3 J”)F(J Tat ‘2‘) Ly TO+ 2+ D)
T N o1\ 4 TN+ 1)
F<l+§> ““(é*i)
and

T\ + 2n 4+ 3) (G H
2 4+ DIT(N + 1)
ASYMPTOTIC EVALUATIONS FROM CONTOUR INTEGRALS

|R.(s)] <

Parr I. FirsT SoLUTION

Except for A = —2k, the theory developed in the section “Solutions Using
Method I leads to the integral

O—D/2
e :fc (A <§ +%1) ds

where z > 0 and () is a contour described previously. The quantity (r,/2)* "/
can be factored from the integrand to give
B 2\ 072
o = [ oo (14 2) 7
[o 1
which is also a solution of the differential equation.
If 2t = ¢ "¢, then

ple) = -"CMZL

where C,’ is the path in the complex ¢ plane described as follows:
(i) the line at an angle of o with the axis of positive reals from 4 to
[1] = rx;
(i) the circle of radius r& described in a positive direction about the origin;
(iii) the line of (i) above from —+rz to + .
A form of Taylor’s series with remainder from MacRobert (9, page 296) can
be used to obtain

A 1
i\ (1) /2 n T (— -+ “)
(1 + zfmmt> = > 2 2

MO =0 A 1 . .
F(E‘J("Z“—“])(JD

. —im (A—1)/2
ey (1 + 2e i) dt 1)

1 ’ ;BTl

(%”‘)j R o) (52)

™mx
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where

—iw ,\ n+1
Ka(t, @) = (2j ;)
1 o (

S ”) (n) (53)

1 — T N—3)/2—n
f a— e (1 42 t“) du.
0

"

The validity of this remainder formula follows from the analytic nature of
[1 + 2e"t/rz)]* " The function inside the parentheses does not vanish
because of the construction of C .

The results of (51) and (52) can be combined to give

A 1
LGy
i=0 A 1 . . T ¢y
P(§+”2‘—J> (71
(54)

+

Al )
T (‘ + ”‘) 41 |
22 (i) f T MPR, ) di
A 1 " cy’
I‘(-z— — 5 n) (nh)

1 — i (A—3) [2—n
R, z) = f 1 —w)" (1 + 2e t") du.
0

"I

where

Now

by — 271
)™ dt = —~
fcl' ¢ e Tw)

for all . A proof parallel to the ones used in Whittaker and Watson (70, page
245) and Copson (7, page 226) follows, with the additional assumption that
fa| < m/2.

Hence the first term on the right-hand side of (54) becomes

A

2203 ’ (5 + %) (=2m) > ( 2 ) , (55)

7=0 A 1 A A .
S ! A
I‘(2+2 J)J-T(1+2 J

X
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The second term of the right-hand side of (54) can be written as
A 1
r{2+4:2
A2 (2 - 2)
x

£33 ) () o (56)

where

~

I, = j e e )" PR, ) di. (57)
Cy’

By Cauchy’s theorem, Ci’ can be deformed into the following path:

(i) the line making an angle of « with the positive axis of reals from « to
jz2] =8,8 > 0;

(ii) the circle around the origin of radius §, with § < 7z so that this circle
is enclosed with the circle part of Cy';

(iil) the line of (i) from |z| = & to =,

Thus I, = I,' + I.> + I,® where I ,f, 1 = 1, 2, 3, corresponds respectively
to the three parts of the path (i), (ii), (iii).

ForI),t = ve'", 6 £ v <

oo
1 i i{am) (n—A/2 —pel® n—h[2 i
I} = — i /)f(s MR (06 ) d. (58)
3 v -
For I, t = ve'™™™ § <0 <

@
In3 - eza@z(a{ﬁr)(n-—)\/z)f e—-vewvn—-)\IQRn(vet(a+21r)’ £U) d. (59>
b}

Now, the function

3 {atm)
l 1+ 2e VU

’
{ rnx

considered as a function of «, has a minimum value (1 — cos’ q)” ? independent
of v, 71, . Thus, for n > A\/2 — 1, both R,(ve’®, ) and R,(ve"***", 2) defined
in (54) are bounded in absolute value by

o (3/4)— 1
(1 _ 0082 a)O\/‘i @/4)—n/2) |

(n+ 1)

Hence

[ L'+ | LY £ [2/(n 4+ 1)] (1 — cos® o) M@0 f e My, (60)

§
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For I, t = ¢¢°, ¢ £ 6 < o« + 2r

a2
. — — 508, —0 0
Iﬂ? - Zenr[n ()\/2)}6(71 A/2)+1) f ¢ det (619)n ( /2)+1Rn(6€z’ x) 46 (61)

which tends to zero as § — 0 for n > (A\/2) — 1. The results of (60) and (61)
combined give
’ 1| < . i . (1 — cost a)MO—60—02 jo G s a0 g

and, consequently,

2 -9 _ 2 A~ (3/H—(n[2) 1/2 —_ Z‘ )
|1, = T [cos® a(l — cos® a)] (cos ) T (n 3 +1
_ ( A ) (62)
2:-T'{n —=4+1
< 2 . oD/
n -+ 1
if « = w/4 is chosen.
Equations (54), (565), (56), and (62) give
, r(3+5) (2n ;
A2 2 2 2
nl) =292 X1 \ <@>
" r<§+§—j> (jl)r(l +§-—j)
L (63)
N P(§+2> (h2—>n+11}
T é — ]; o (n !) T '
573 : )
The identities
T)T( + §) =277 7" 1'(2) (64)
rEr — z) = «/sin vz

lead, up to a multiplicative constant, to

e )X o+ 1) 1 )
yila) = 2 {fg T 9 TG G + Yn(m)} (65)
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where

[ Ta(2) | <

. (x 1)\( 1 )"“PI‘(>\+1)IF<2n+2~—M2n—%+Z
[SITAN /o W 2]7’15731 (n—{—l)hr

2 2
which is valid for n (\/2) — 1, A = —2k.
Note that the minimum, (1 — cos® @), of the expression

zei(oeiﬂ') )

v =1—2cosa+aw,a=" (66)
T

rnx

AN

oceurs at u* = cos «/a. This is certainly valid for all 7; 5% 0, 2 > 0, and v > 0.
However, if r, < 0, a better lower bound can be found, for in this case
w* = cos a/a < 0, and hence, since only those values of % for which 0 < u < 1
are of interest, the value obtained from (66) when w = 0 can be used as a lower
bound. This new value leads to the following bound for [, defined in (56):

20(n — \/2 + 1) 1

1] < n+1 " (cos a)mhLT

If « is picked arbitrarily close to zero, the bound in Eq. (65) becomes

. I Y72[T+1)[T@n+2 =N
", (¢ 2 —1/2
| To(z) | < |sinxw(\/2 /)|(2171x|> e (67)
which is a slightly better bound and is true for n > A/2 — 1.
Parr II. SEcoND SOLUTION
The case when A = —2Fk is only slightly different from the above work and

will not be done here. The asymptotic series is the same as (65); however, the
bound for T.(x) changes slightly. The result is outlined in the final section.

From the section “Solutions Using Method 11"’ the second solution is, for
N # 2k 4+ 1, k an integer,

Y (2’3) = L exi‘ §.—>\/2~1 (g, + Tl/Q))\m-q/z de

where C, has been previously described. A change of variable, ¢ + /2 into ¢,
gives rise to a new path €y which can be considered as the path C; used for
y1{z). Thus the results of Part I can be used to give (up to a multiplicative
constant),

n 7
ya() = T g {Z vi (%) + Vn(:c)}. (68)

i=0
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As before, use of (64) has been made to obtain for v;,

vi = (= )J I A+ 2]+ 1)
4’(3')T(>\ + 1)’
and
) , nh2+2
V) | < 1 ) I(2n+§+x) 2
2| rx| (m4+ 1 TN+ 1) | cos (mr/2 |

form > —A\/2 — 3/2 and A # 2k + 1. As above, the case A = 2k 4+ 1 can be
worked out in analogy to A = —2k of Part I. The result is included in the final
section.

If r, > 0, the bound for V,(z) can be improved just as the bound for T,(z)
was improved for Part I when r;, < 0. This result is also included in the final
section.

It is clear from the expressions for y,(z) and y,(x) that they are linearly
independent if r; = 0.

SUMMARY OF SOLUTIONS AND COMPARISONS

The substitution of §* for z in (65) and (68) gives two solutions for L, [N] = 0.
These are

W) = s {Za () +r <sz>} (69)

where

5 = r(\+1)
AT -2+ 1)

and 7T,(s%) is the function satisfying (65) or (67);

Wals) = o0 50 {Z v (25) + 7t >} (70)

where v; is defined following Eq. (68) and V,(s”) is the function satisfying (68).
If N > —1 and 7, > 0, the solution (70) corresponds to the solution (50).
To obtain solutions for the original differential equation (29), the substitu-

tion of s = Af + F, where ¥ = B — 2C/A4, is used in (69) and (70), and each

of these equations is multiplied by ¢ °"*. Thus, if w,(f) and w.(f) denote the two
linearly independent solutions of (29), then

wi(t) = e Y (At + P {Z 8; ( (At?”ﬁ’”ﬁ) ' + T, [(At + F)il} (71)
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where §; is defined following Eq. (69), and

», 5
ICOS@( 1 M)"“ PN+ DT @n 22
\ 2 I\2|m | (At + F)? n+Dir

forn > % — land N # —2k;

A b

(; 1 )”“ "ETET(2n + 2 — \)
| T, [(At+ F)*] | <4 i (=N +1)
fOP">§~1and>\=——2k;
1‘osm1< 1 >”+12W(>\+1)1F(2n+2—x)
S e TaT AT e O

forn>%~— landr < 0;

ootA €~—1'1(At+F)2/2 j n 9 i 2
w0 = e B ) + ()] o

where v; is defined following Fq. (68), and

n-1 2n+()\/2)+2

( 1 ) r2n + 3 4+ \)
2| (At + F)? ’ ™
COS~2——

(n+ )TN+ 1) ]

forn>——g~§ and N = 2k + 1;

2 1 " tomas D20 4 3 + N
| Valtae+ 1) < (271 e F>2) 7 (n+ DITR T 1)

forn > A3 and N = 2k 4+ 1;

2 2
( 1 )"‘“ 1 r2n + 3 + )
2\r| (At + F)? ™ (n+DHTAN+1) |
Sy
for n > —-g—~53~ and 71 > 0.
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