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Let 4 be any 7 xXn complex matrix, and let ¢(4) denote the set of its eigen-
values. For ¢ any fixed vector norm on V,,(C), let |E ls= sup ¢ (E x) denote the
$(2)=1

associated induced operator norm of any % x# matrix E. The well known Gersch-
gorin argument for obtaining inclusion regions for the eigenvalues of 4 can be
described as follows (cf. Householder [1, p. 65]). For A€ (A), there is evidently
a vector x 4=0 such that 4 x = Ax. Thus, if D is any fixed # X7 matrix, this can
be written equivalently as

(A—D+(z—2)I)x=(I—D)x
for any scalar 2. In particular, if z2é¢0 (D), then

(@I —=D)™A—D+(z — N1} x ==,
which implies that

(1) I —D)y*d —D+(z —NI}y=1 VYzéo(D).
In particular, if A¢¢ (D), z can be chosen equal to 4 in (1), which gives
(2) (21 —D)*(4 —D)ly=1 140 (D).

If 2€0 (D), then (1) is of course valid. Thus, if the Gerschgorin set G4(A4) in the
complex plane is defined as

) Gy(4) =G4 (4) LGy (4)

where

(4) G}(A) = {z: 2¢5(D) and Izl —D)*(4 —D)|, =1},
and where

(5) G3(4)={w: weo (D) and |(zI —D)MA D4 (z—w) I}, =1 Yzdo(D)}
is a subset of ¢(D), then the above argument gives us

Theorem 1. For any fixed vector norm ¢, and a fixed »x# matrix D,
(6) o(A)<Gy(A4).

As is readily verified, G4(4) is a bounded set in the complex plane.
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All this may seem rather familiar to the reader, and at first glance, it would
seem that the closure of Gj(4), G%(4), would also give an inclusion region for
o(A), and this is tacitly assumed in [1, p. 66], and in other places as well. One
purpose of this note is to show that G4 (4) does nof in general include o (4),
and it thus is necessary to include G%(4) in G4(A4) to have the desired inclusion
of (6). As a counterexample, consider

1 0 O 1 0 O
(7) A=1|1 5 1|, D=0 5 0
1 1 5 0 0 5

and let ¢ ((2y, %, %5)7) =max (2], |#,], |5]). As is easily verified for this case,
G§(A) ={z: |z—5| =2}, which does #ot include ¢(4) ={1} {4} L {6}.

It is logical to ask when G%(4) =G, (4). Certainly if for each eigenvalue 1,
of D in G%(A), one has that ||[(2 —D)*(4 —D)|;— oo as z—>1;, then each such
Z; 1s in the closure of G%(4), and consequently, G%(4) =G 4(4). This brings us to

Theorem 2. Let A€o (D). Then, (21 —D)*(4 — D) remains bounded (i.e., in
every element) as z— 4 if and only if every left-hand principal vector of D belong-
ing to A is a left-hand eigenvector of A — D corresponding to the eigenvalue zero.
In the contrary case, |(2/ —D)™(4 —D)||;— + oo as z — A where the norm ¢
is arbitrary, but preassigned.

Proof. First, let

(8) v D=2y, y=+0.
Then,

) ¥zl —D)r=(z—2)"1yf,
and hence,

¥ (eI — D)4 —D)=(z— )7y (4 —D).
Clearly, the right member becomes infinite as z—A unless

(10) y(4—~D)=o0,

ie., v is a left-hand eigenvector of 4 — D corresponding to the eigenvalue zero.
With the assumption of (10), suppose next that there is a y,9=0 such that

(11) y§ (D —AI) =y,

so that yi is a left-hand principal vector of D belonging to A (cf. [1, p. 3]). Then,
after some minor manipulations of the identities (8) —(11), we have

(12) Y8 (2] — D) (4 —D) = (z — )y (4 — D).
Again, the right member becomes infinite unless '

(13) v (A —D)=o0.
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Next, letting y& (D — A1) = yZ, a similar argument shows that y§ (2] —D) (4 —D)
becomes infinite unless (4 —D)=0. In this way, (I —D)(4 —D) is un-
bounded as z—4 unless each left principal vector of D corresponding to 1 is a
left-hand eigenvector of 4 —D corresponding to the eigenvalue zero. This estab-
lishes the first part of the theorem.

Conversely, suppose for A€o (D), every left-hand principal vector of D be-
longing to A is a left-hand eigenvector of 4 —D corresponding to the eigen-
value zero. Let E; be the invariant subspace spanned by the principal vectors
of D belonging to the eigenvalue A€¢ (D), and let E, analogously be the invariant
subspace belonging to all other eigenvalues of D. Then, any vector y is uniquely
expressible in the form y =y, +y, where y,€E;, ¢ =1, 2. The hypothesis is that
(4 —D) =0. But,

yE(zT — D)€k,

is a linear combination of principal vectors of D belonging to eigenvalues y = 4,
with multipliers equal to powers of (z —u)™. Hence, y¥ (2 —D)! remains
bounded as z—1, and so, too, does v (2] —D)1(4 —D). It follows that for
every fixed y, y# (21 —D)(4 — D) is bounded as z—>1, and thus every element
of (I — D) (4 —D) remains bounded as z—A. The assertion about the norm
follows from the fact that if any element of the matrix becomes infinite, so
does the value of the norm. Q.E.D.

As an obvious consequence of Theorem 2, we have the

Corollary. If 4 and D have no common left-hand eigenvector corresponding
to any common eigenvalue A; they may have, then

lim (2 — D)1 (4 — D)= o.
reolh

It is also interesting to give the result of Theorem 2 in terms of the resolvent
operator R,=(v/ —D)=*. If 1 is any (isolated) point of ¢ (D), then it is known
(cf. [2, p. 305]) that R, has a Laurent expansion in powers of z — 1,

(14) R,=
k

IE

(r— 2 Ay + 3 (s — ) B,
k=1

where A, and B, are # x# matrices. Then, the following analog of Theorem 2 is
evident.

Theorem 3. Let A€o (D), and let the resolvent operator R, = (zI — D)~! have
the Laurent expansion of (14). Then R,(4 — D) is a bounded operator as z— 1 if
and only if

(15) B,(Ad—-D)y=0, k=12, ...,5.
We remark that for the counterexample given in (7), for 4, =1, the vector

(1, 0, 0) is a left eigenvector of D which is a left eigenvector of 4 —D cor-
responding to the eigenvalue zero. Also, for the analog of Theorem 3 in this
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case, all B, of (14) are null, except for

B =

o O =
o O O
o O O

and it is clear that (15) is satisfied.
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