PATTERNS OF DEPENDENCE IN GENERALIZATIONS OF GERSHGORIN'S THEOREM

ALAN J. HOFFMAN and RICHARD S. VARGA

This paper is dedicated to Professor Alston S. Householder on the occasion of his 65th birthday.

1. Introduction. A well-known theorem of Gerschgorin asserts that every eigenvalue of an \(n \times n \) complex matrix \(A = (a_{ij}) \) lies in the union of the following \(n \) disks in the complex plane:

\[
d_k = \left\{ z : |a_{kk} - z| \leq \sum_{j \neq k} |a_{kj}| \right\}, \quad k = 1, 2, \ldots, n.
\]

Our interest here concerns a problem associated with the following type of generalization of Gerschgorin's theorem, in which the radii of the disks of (1.1) are nonnegative functions, denoted by \(f_k(A) \), defined on the moduli of the \(n(n-1) \) off-diagonal entries \(a_{ij} \) of the matrix \(A \). We say that a set \(\{f_1, f_2, \ldots, f_n\} \) of such functions is a G-generating family if and only if for every \(n \times n \) complex matrix \(A = (a_{ij}) \), every eigenvalue of \(A \) lies in the union of the \(n \) disks

\[
d_k = \left\{ z : |a_{kk} - z| \leq f_k(A) \right\}, \quad k = 1, 2, \ldots, n.
\]

Equivalently, the set \(\{f_1, f_2, \ldots, f_n\} \) is a G-generating family if and only if for every \(n \times n \) complex matrix \(A = (a_{ij}) \) satisfying

\[
|a_{kk}| > f_k(A), \quad k = 1, 2, \ldots, n,
\]

\(A \) is nonsingular. For example, \(\{f_k(A) = \sum_{j=1,j \neq k}^{n} |a_{kj}| \} \) is obviously a G-generating family, and various G-generating families are easily constructed from the many known generalizations of the Gershgorin theorem. The concept of G-generating families seems first to have appeared in Nowosad [2]. For theoretical results concerning properties of G-generating families and their connections with classical Gershgorin-type theorems, see Hoffman [1].

Our problem here treats the question of patterns of dependence of the functions \(f_k \) on the variables \(|a_{ij}| \), \(i \neq j \). We first say that \(f_k \) depends on the ordered pair of positive integers \((i, j) \), where \(1 \leq i, j \leq n \) with \(i \neq j \), if and only if there exist \(n \times n \) complex matrices \(A = (a_{ij}) \) and \(B = (b_{ij}) \) such that \(|a_{kk}| = |b_{kk}| \) for all \(k \neq l \) with \((k, l) \neq (i, j) \), for which \(f_k(A) \neq f_k(B) \). We then define

\[
D(f_k) = \{(i, j) : 1 \leq i, j \leq n \text{ and } f_k \text{ depends on } (i, j)\}
\]

as the domain of dependence of \(f_k \).

* Received by the editors July 7, 1970.
* IBM Research Center, Yorktown Heights, New York 10598. The work of this author was supported in part by the Office of Naval Research under Contract Nonr-3775(00).
* Department of Mathematics, Kent State University, Kent, Ohio 44240. The work of this author was supported in part by the Atomic Energy Commission under AEC Grant AT(11-1)-2075.
It is very natural to pose the following problem. If D_1, D_2, \cdots, D_n are arbitrary subsets of the ordered pairs of positive integers (i, j), where $1 \leq i, j \leq n$ with $i \neq j$, what are necessary and sufficient conditions for the existence of a G-generating family $\{f_1, f_2, \cdots, f_n\}$ with

$$D_k = D(f_k), \quad k = 1, 2, \cdots, n?$$

The main purpose of the note is to solve this problem (Theorem 1), under the assumptions that the functions f_k, $k = 1, 2, \cdots, n$, are homogeneous (of degree unity); i.e., for every $c > 0$ and every $n \times n$ matrix A,

$$f_k(cA) = cf_k(A), \quad k = 1, 2, \cdots, n,$$

and that the functions f_k are bounded on bounded sets; i.e., for all $n \times n$ matrices $A = (a_{ij})$ with $|a_{ij}| \leq c$ for all $1 \leq i, j \leq n$ with $i \neq j$, there exist positive constants $M_k(c)$ such that

$$f_k(A) \leq M_k(c), \quad k = 1, 2, \cdots, n.$$

The assumption of (1.7) is surely satisfied if each f_k is continuous in its $n(n - 1)$ arguments $|a_{11}|, \cdots, |a_{n,n-1}|$. Note that assumptions of (1.6) and (1.7) are trivially satisfied for the G-generating family $\{f_1(A) = \sum_{j=1}^n a_{1j}, f_2(A) = \sum_{i=2}^n a_{i1}, \cdots, f_n(A) = \sum_{i=1}^n a_{ni}\}$ of (1.1).

In the subsequent material, for any subset $Q \subset \{1, 2, \cdots, n\}$, we use the notation $|Q|$ to denote the number of elements of Q.

2. Main result. Our main result is the following theorem.

Theorem 1. Let D_1, D_2, \cdots, D_n be subsets of the set of all ordered pairs (i, j), where $1 \leq i, j \leq n$ with $i \neq j$. Then, there exists a G-generating family $\{f_1, f_2, \cdots, f_n\}$ with each f_k homogeneous (cf. (1.6)) and bounded on bounded sets (cf. (1.7)) satisfying

$$D_k = D(f_k), \quad k = 1, 2, \cdots, n,$$

if and only if for every subset $S \subset \{1, 2, \cdots, n\}$ with $|S| \geq 2$, for every cyclic permutation σ of S, and for every nonempty subset $T \subset S$,

$$\left|\left\{1: i \in S \text{ and } (i, \sigma i) \in \bigcup_{k \in T} D_k\right\}\right| \geq |T|.$$

Proof. Assuming (2.1), we first show the necessity of (2.2). Assume the contrary. Then, there exists an $S \subset \{1, 2, \cdots, n\}$, with $|S| \geq 2$, a cyclic permutation σ of S, a nonempty subset $T \subset S$, and indices $i_1, \cdots, i_r \in S$ such that

$$\bigcup_{j=1}^r \{(i_j, \sigma i_j)\} \cup \{1, \sigma i\} \cap \bigcup_{k \in T} D(f_k),$$

with $r < t = |T|$. Next, given any c with $0 < c < 1$, define the off-diagonal entries of the $n \times n$ matrix $A(c) = (a_{ij}(c))$ by

$$a_{ij}(c) = -c, \quad j = 1, 2, \cdots, r,$$

$$a_{i\sigma i} = -1, \quad i \in S, \quad i \neq i_1, i_2, \cdots, i_r,$$

$$a_{ik} = 0, \quad \text{otherwise } (k \neq l).$$

Note that any ordered pair $(i, \sigma i), i \in S, i \neq i_1, i_2, \cdots, i_r$, is, from (2.3), not in any $D(f_k), k \in T$. In other words, for any $k \in T, f_k(A(c))$ depends only on coefficients of
modulus \(\varepsilon \) or zero. Hence, by virtue of the assumption that each \(f_k \) is homogeneous, it follows (cf. (1.6)) that

\[
f_k(A(\varepsilon)) = c f_k(A(1)) \quad \text{for all } k \in T.
\]

Next, consider \(g(\varepsilon) \equiv \prod_{k \in S} f_k(A(\varepsilon)) \). This can also be written as

\[
g(\varepsilon) = \prod_{k \in T} f_k(A(\varepsilon)) \prod_{k \in S \setminus T} f_k(A(\varepsilon)) = \varepsilon' \prod_{k \in T} f_k(A(1)) \prod_{k \in S \setminus T} f_k(A(\varepsilon)),
\]

using the expression of (2.4). Because the off-diagonal entries of \(A(\varepsilon) \) are in modulus at most unity, it follows from the boundedness assumption on the \(f_k \) that (cf. (1.7))

\[
\prod_{k \in S \setminus T} M_k(1) \geq \prod_{k \in S \setminus T} f_k(A(\varepsilon)).
\]

Thus, as \(t > r \), we see that for all sufficiently small \(\varepsilon > 0 \),

\[
\varepsilon' > \varepsilon' \left(\prod_{k \in T} f_k(A(1)) \prod_{k \in S \setminus T} M_k(1) \right) \geq g(\varepsilon).
\]

Fixing \(\varepsilon \) sufficiently small, this means that we can find positive numbers \(c_k = c_k(\varepsilon) \), \(k \in S \), with

\[
c_k > f_k(A(\varepsilon)), \quad k \in S,
\]

and

\[
\varepsilon' = \prod_{k \in S} c_k > g(\varepsilon).
\]

Now, we define the diagonal entries of \(A(\varepsilon) \) as

\[
a_{j,j}(\varepsilon) = c_j, \quad j \in S,
\]

\[
a_{j,j}(\varepsilon) > f_j(A(\varepsilon)), \quad j \notin S.
\]

By means of our construction, we evidently have that \(a_{j,j} > f_j(A(\varepsilon)) \) for all \(j = 1, 2, \ldots, n \). But, as \(\{f_1, f_2, \ldots, f_n\} \) is by assumption a \(G \)-generating family, it follows from (1.3) that \(A(\varepsilon) \) is nonsingular. On the other hand, our construction gives us that \(A(\varepsilon) \) is (after a suitable permutation) the direct sum of an \(|S| \times |S| \) submatrix and a \((n - |S|) \times (n - |S|) \) positive diagonal matrix. This \(|S| \times |S| \) submatrix, however, has determinant zero; the product of its diagonal entries is \(\varepsilon' \), and the only other nonzero term contributing to its determinant is \(\text{sgn} \sum a_{i,i} = -\varepsilon' \). Thus, \(A(\varepsilon) \) is singular, a contradiction which establishes the validity of (2.2).

Conversely, assume (2.2), and define the functions \(f_k \) by means of

\[
f_k(A) = \sqrt{n!} \sum_{(i,j) \in D_k} |a_{i,j}|, \quad k = 1, 2, \ldots, n.
\]

These functions \(f_k \) satisfy (2.1) and are obviously homogeneous and bounded on bounded sets.

It remains to show that \(\{f_1, f_2, \ldots, f_n\} \) is a \(G \)-generating family. From (1.3), it is sufficient to show that for any \(n \times n \) matrix \(A = (a_{i,j}) \) with \(|a_{i,j}| > f_k(A) \) for \(k = 1, 2, \ldots, n \), \(A \) is nonsingular. Thus, we assume that

\[
|a_{k,j}| > f_k(A), \quad k = 1, 2, \ldots, n.
\]
Consider any subset \(S \subset \{1, 2, \cdots, n\} \) with \(|S| \geq 2\) and any cyclic permutation \(\sigma \) on \(S \), and define the \(|S| \times |S|\) matrix \(B = (b_{i,k}) \), \(i, k \in S \), by
\[
b_{i,k} = \begin{cases}
1 & \text{if } (i, \sigma i) \in D_k, \\
0 & \text{if } (i, \sigma i) \notin D_k.
\end{cases}
\]
Noting that \(B \) is a zero-one matrix, the assumption \(\phi \) of (2.2) is precisely the condition given by Philip Hall in his famous theorem on systems of distinct representatives (cf. Ryser [3]) that there exists a permutation \(\tau \) on \(S \) with \(b_{i,\tau i} = 1 \) for all \(i \in S \). Thus, by definition, \((i, \sigma i) \in D_{\tau i} \) for all \(i \in S \); and from (2.5), we deduce that \(f_i(A) \geq \sqrt{n!} |a_{i,\sigma i}| \) for all \(i \in S \). Consequently, from (2.6),
\[
|a_{i,\sigma i}| > f_i(A) \geq \sqrt{n!} |a_{i,\sigma i}|,
\]
\(i \in S \).
Taking products in the above expression over all \(i \in S \), and noting that \(|S| \geq 2\), we have
\[
(2.7) \quad \prod_{i \in S} |a_{i,\sigma i}| > (n!)^{S/2} \prod_{i \in S} |a_{i,\sigma i}| \geq (n!) \prod_{i \in S} a_{i,\sigma i},
\]
for any subset \(S \subset \{1, 2, \cdots, n\} \) with \(|S| \geq 2\) and any cyclic permutation \(\sigma \) on \(S \). Recalling that the determinant of \(A \) is the sum of \(n! \) products of elements of \(A \), it is easy to see that (2.7) implies that \(A \) is nonsingular. This completes the proof.

We remark that with the assumption of (2.2), it can be shown by more intricate arguments that the functions \(f_i \) of (2.5), even with the factor \(\sqrt{n!} \) deleted, still form a \(G \)-generating family (cf. Hoffman [1]).

REFERENCES

