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1. INTRODUCTION

In recent years, many papers have appeared in which error bounds for
interpolating splines have been obtained. We shall present a survey of the
results of these papers. We show that by expressing the error bound for the
interpolation of a function f in terms of the norm of £ in a Sobolev or a
Besov space, we are able to give a common setting to these results. Further-
more, by applying the theory of intermediate spaces, we obtain new error
bounds which fill gaps between the bounds previously established.

We remark that Besov spaces and the theory of intermediate spaces have
found fruitful applications in other areas of approximation theory (cf. Butzer
and Berens [9] and Lofstrom [19]). While our paper is perhaps the first
application of these techniques to the theory of splines, Besov spaces and the
theory of intermediate spaces have found important applications in numerical
analysis in the study of initial-value problems (cf. Peetre and Thomée [28],
Hedstrom [14], Lofstrém [19], and Widlund [37]).

To briefly describe the contents of this paper, we first define in Section 2
Besov spaces and state results needed from the theory of intermediate spaces.
We then apply these theorems in Section 3 to error bounds for interpolation
by Lg-splines (cf. Jerome and Varga [17]). In Section 4, we apply these
techniques to the special cases of splines, Hermite splines, and periodic
splines on a uniform mesh. Finally, in Section 5 we discuss error bounds for
splines of best approximation, thereby generalizing recent results of
de Boor [7].

* This reséarch was supported in part by AEC Grant (11-1)-2075.
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296 HEDSTROM AND VARGA
2. BESOV SPACES

The Besov spaces arose from attempts to unify the various definitions of
fractional-order Sobolev spaces (see Taibleson [35] and the survey article by
Nikol’skii [21]). Since the Besov spaces are most easily described from the
point of view of the theory of interpolation between Banach spaces, we begin
with a brief description of that theory. For a more complete discussion of
interpolation of Banach spaces, see Butzer and Berens [9], Grisvard [12],
Lions [18], and Peetre [24] and [25].

Let X, and X; be two Banach spaces with norms | [, and | |,
respectively, which are contained in a linear Hausdorff space &, such that the
identity mapping of X; in & is continuous, for i = 0,1. If X, + X; =
feZ:f=fy+ fi, where f;€ X;, i = 0, 1}, then (cf. Butzer and Berens
[9,p. 165]) X, + X; and X, N X, are Banach spaces with respect to the
norms

1 flxone, = max{l[ [, [/},

I g, = nf{ll fo llo + 11 A1 I},

the infimum being taken over all decompositions f = f, + f; with f;e X, ,
i =0, 1. Moreover, it follows that

XN X, CX,CXy+ X, C&,  i=0,1, @2.1)

where inclusion throughout this paper is understood to mean that the identity
mapping is continuous. We say that a Banach space X C & is an intermediate
space of X, and X; if it satisfies the inclusion

X,NnX,CXCX, - X,C2, (2.2)

analogous to (2.1).

We now give Peetre’s real-variable method (cf. Butzer and Berens [9, p. 167]
and Peetre [25]) for constructing intermediate spaces of X, and X, . For each
positive ¢, and each fe (X, + X;), define

K(t.f) = f:ipffl{i[fo lo + 211 f1 13- 23)

Then, for any  with 0 < 6 < 1 and any g with 1 < ¢ < o0, let (X, , X1)p.,
be the set of all elements /' (X, + X;) for which the norm

(NGEEVES

sup t=9K(t, f), g = o0,
>0

1/q .
, 1 <g < oo,

IS oo x00, = (2.4)
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is finite. The following result is known (cf. Butzer and Berens [9, p. 168] and
Peetre [25]).

THEOREM 2.1. For0 < 0 < 1,1 < g < o0, (X,, X1)o.o is @ Banach space
which is an intermediate space of X, and X, , and, thus, satisfies (2.2). In
particular, (X, X)g,q = X.

Next, let Y, and Y; be two Banach spaces continuously contained (with
respect to the identity mapping)in a linear Hausdorff space#, and let 7" denote
any linear transformation from (X, + X;) to (¥, ++ ¥;) for which

1Tl < Millflle,  YfeX;, i=0,1,

i.e., T'is a bounded linear transformation from X; to ¥; with norm at most
M;, i=0,1. Again, the following result is known (cf. Butzer and Berens
[9, p. 180] and Peetre [25]):

THEOREM 2.2. For 0 < 0 < 1,1 < g < o, T is a bounded linear trans-
Jormation from the intermediate space (X,, X1)s., to the intermediate space
(Yo Y1)o,q » whose norm

M= sup [ Tf lwg.rpe, satisfies M < ML°M.pC.
I fller, x )5 '

Because this paper is devoted to interpolation and approximation by splines
on finite intervals of the real line, it is necessary to define the Sobolev spaces
W,"[a, b] and the Besov spaces By %a, b]. For m a positive integer and
1 < p < oo, the Sobolev space W,™[a, b] is defined to be the collection of all
real-valued functions f(x) defined on the finite interval [, 5] for which the
generalized derivatives Dif, (D7 = di/dx7), j = 0, 1,..., m, are all in L,[a, b].
Equivalently, W,™[a, b] is the collection of all real-valued functions f(x)
defined on [a, b] for which /'€ C™1[a, b], D™ is absolutely continuous, and
D"fe Lyla, b]. It is well known that W,™[a, b] is a Banach space with respect
to the norm

1 F ey = 3 1 Dl s -

7=0

To define the Besov space By Ya, b, let w,™(, f) where m is a positive
integer and 1 < p < 00, be the m-th modulus of continuity of f e L,la, b), i.e.,

wy™t,f) = Sup

vt

Sy (Mrerm]| o e

y=0
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where for y fixed, the L,-norm is taken over the set of x in [a, ] such that
x -+ vyela blforallv = 0, 1,..., m. The Besov space B a, b], 0 < o << m,
I <g < 0,1 < p < oo, consists of all functions /'€ L,[a, b] for which the
norm

Ul + ([ oy 57 1<q<w,

y—— 2.6)

”fHLW[a,b] + sup t_awpm(t’f)9 q = 0,
t>0

is finite, and BZ'“[a, b] is a Banach space.

It would appear from (2.6) that B “[a, b] depends on m, but actually it does
not, and we have the following equivalent norms (cf. Grisvard [12], Butzer
and Berens [9, p. 250], and Peetre [26]):

C1 Hf”gg»a[a,b]

) 1 ] dt \1/«
W/ {]ngul[a,b] -+ (fo (tlol=ow (2, Dllf))e - ) s 1 <<g< oo,
IS

HfHWgU}[a,b] + Sup t[a]_awml(t’ D[U]f)) q = 009

t>0

< C2HfHBg.q[a,b) (2.7)
for noninteger o (where [o] denotes the integral part of ¢) and

(&) ”f”gg-a[a,b]

1 dt \Ma
[ Flhgsgaoy + ([ @26 Do) 7, 1< g < oo,

< 2
wX(t, D°1
Hf”Wo-l[a,b] -+ sup 2 ( ; f) » q = 0,
\ r t>0

< C2 HfHBg’q[a,,b] (2.8)

for integral o. Note that (2.7) imposes a generalized Holder condition on
DFlf for fe Bya, b], while (2.8) imposes analogously a Zygmund condition
(cf. Zygmund [38, p. 43]) on D*-If.

As we shall see in Sections 4 and 5, many error bounds for spline approxi-
mation have been obtained in terms of the Holder classes C**[a, b]. A
function 1 is said to be in C**a, b], v = 0, 1,..., 0 < o« < 1, if fe C[a, b]
and the following norm is finite:

1 llgragapy = max, | F(0)] + /9@ — 2O

as[a,b] ,ye[a,b] [x —y
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It is clear from (2.7) that if 0 < « << 1, then
C"a, b] = BL**[a, b]. 29

For o« = 1, we see from the definitions of the norms that
Wi a, b] C C*Ya, b] C BL™ [a, b], (2.10)

where the inclusions of (2.10) are again to be interpreted in the sense of
continuous imbeddings, i.e., for any f'e W™ a, b],

”f”Bgo"'l-w[a,b] Cl H f”cv l[a ] T Cz ”f”pyv—f-l[a b] *

We now characterize the spaces intermediate between Sobolev spaces

W ,™a, b] and Besov spaces B%[a, b]. (Cf. Grisvard [12] and Pectre [24].
Although these results of [12] and [24] were proved for R, it follows from
the extension and imbedding theorems of Besov [3, 4] that they hold for
finite intervals as well.)

Tueorem 2.3, If 1 <p,, py < oo, and 0 <0 <1 are such that
lp = (1 — 0)/p -+ 0/ps , then

(Lyjla, b], Ly,[a, b])e,, = L,la, b], (2.11)

(Wyla, b, Wiila, b)e,, = W, "[a, b]. 2.12)
IFfo<0<1,1<p,q< oo, then

(Lyla, b], W,"[a, b])g,q = BY™"a, b]. (2.13)

Furthermore, if oy # 07, 0 <0 <1, 1< ¢y, ¢1 < 0, and 1 < p < o0,
then identifying equivalent norms, we have

(B;o’qo[a’ b]) B;bql[a, b])@,q = B;’q[a) b]a g = 001 _i_ (1 - 0) o »
.19
(B la, b, B(a, b)), , = B[, bl, o = 0oy + (1 — 0) oy,
(2.15)
Up = (0/py) + [(1 — 0)/p,l,
and for integer values of o; , either of the spaces B»%[a, b] in (2.14), (2.15) may
be replaced by Wyila, b].

To conclude this section, we state some important imbedding results due
to Besov [3, 4] and Peetre [24, 26], which will be used in the next sections.
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THEOREM 24. If1 <p < cwandmisa positive integer, then
ByYa, b1 C W,™a, b] C B™*[a, b]. (2.16)
fl<g <g <o l<p< 0, and 0 < o, then
B "a, b] C By*[a, b]. 2.17)
1]”0<02<dl,1<q1,q2< o, and 1 < p < oo, then
B a, b] C B7>|a, b]. (2.18)

Furthermore, if | <py < p, < 00,1 < ¢y < ¢y < 0, and

R S
! §21 ? P’
then
B;i’ql[a, b]C B;i’q“[a, b], (2.19)
and if o1 = 1/p; — 1/py > 0, then
B‘Z’;’l[a, b1 C Lpz[a, b]. (2.20)

A proof of (2.19) for o; — (1/py) > oy — (1/ps) and of (2.20) for
oy > (1/p1) — (1/p,) is given in Besov [4]. For the embeddings (2.19) and
(2.20) under the weaker hypotheses of Theorem 2.4 the only proof we know
of is in Peetre [26] which is in Swedish. We, therefore, present a proof in the
Appendix. '

3. INTERPOLATING SPLINES

In this section, we first review results on error bounds for interpolating
Lg-splines in a single variable, and then apply the theory of interpolation
spaces of Section 2 to these results.

For n a positive integer, let M be a linear differential operator of the form

M =Y a(x) D,
par
where for some positive constant r, a,(x) = v >0 for all x € [a, b], and
where a; € C'la, b], j = 0, 1,..., n. Next, let A = {AJE, be any set of linearly
independent, bounded linear functionals on the Soboley space W,"[a, b],
and let r = (r,, 1y ,..., 1) denote any vector of real Euclidean k-space, E*,

S Sy
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A function s € W,*a, b] is called an Lg-spline (cf. Jerome and Schumaker
[16] and Jerome and Varga [17]) interpolating r with respect to 4, provided
that it solves the following minimization problem:

| Msllgyla,0 = inf{]| Mflylae1 - f€ Ua(r)}, (3.1)

where
Ulr)y ={fe W"[a,b] : A(f) = r;, i = 1,2,..., k}.

The class of all Lg-splines s satisfying (3.1) for some r € E* is denoted by
Sp(M, A).

Based on the results of Golomb [10], Jerome and Schumaker [16] have
proved

THEOREM 3.1.  Given any r € E¥, there exists an s € Wy"|a, b] satisfying (3.1).
A function s € U4(r) satisfies (3.1) if and only if

b
f Ms-Mgdx =0  forall ge Uy 0).

Moreover, any two solutions of (3.1), corresponding to a fixed r € E*, differ
by a function in the null space A" of M, and (3.1) possesses a unique solution if
and only if & N U40) = {0}. Finally, Sp(M, A) is a linear subspace of
Wytla, b] of dimension k + dim{A4" N U (0)}.

In order to obtain error estimates for interpolating Lg-splines, we place
extra restrictions on 4 = {A;}-_, . Let 4 (possibly empty), called the partition
of [a, b], be the set of all x € [a, b] for which there exists a A €4 such that
A(f) = f(x). If 4 is not empty, we define, as in Jerome and Varga [17],
4 as the maximum length of the subintervals into which [a, 5] is decomposed
by points of 4, and we similarly define 4 as the corresponding minimum
length. If 4 is not empty, and x € 4 N (a, b), let i(x) be defined as the maximal
positive integer such that there exists a A, € 71 for which

M(f) = D (x) (3.2)

for each k = 0, 1,..., i(x) — 1. In other words, i(x) is the number of conse-
cutive derivative point functionals of / associated with the point
xed n(a,b). If xis a or b, define i(x) as the total number of values of %,
not necessarily consecutive, for which (3.2) is valid. With this notation, we
define y(A1) by :

y(d) = Y i(x)

wed

if 4 is not empty, and we define y(A) = 0 if 4 is empty.
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Based on arguments used in Schultz and Varga [30], the following inter-
polation error bounds extend slightly the results of Jerome and Varga [17].

THEOREM 3.2. Let A = {A}f, be such that v(A) = n and such that
NN UH0) = {0}. If fe Wy a, b], and s € Sp(M, A) is the unique Lg-spline
which interpolates f with respect to A, i.e., \(s) = M\(f) for i = 1,2,..., k,
then, for 4 sufficiently small,

1 DICf = Wy oy < KD fly s G =0, Loy — 1,

and

1D = iy guny < KD N flypay J=0, Loy, 1<7<2,
where K; and K;' are independent of A and f. G-3)

We remark that Theorem 3.2 remains valid with the hypothesis
NN UH0) = {0} deleted. In this case, the Lg-spline s Sp(M, A) which
satisfies (3.1) is not uniquely defined. However, with the hypothesis
AN U,0) = {0}, the bounded linear operator 7 : W,"[a, b] — Ly[a, b]
defined by Tf = f'— s is then well defined, and this fact is needed in
subsequent discussions.

We now assume that /1 is such that the following second integral relation
(cf. Ahlberg, Nilson and Walsh [1, p. 205]) is valid:

| " (M — Ms) dx — [ " (f — 5) M*MFdv, (3.4)

where fe Wi"[a, b] and s is an Lg-spline which interpolates f with respect to /1.
The relation (3.4) is known to be valid (cf. Schultz and Varga [30, Theorem 5D
if @ and b are points of 4 with i(a) = i(b) = n.

Again, the following result slightly extends the results of Jerome and
Varga [17].

THEOREM 3.3. Let A = {A;}1, be such that y(A) = n, /" O U,0) = {0},
and such that the second integral relation (3.4) is valid. If f€ W2"[a, b] and if
s €Sp(M, A) is the unique Lg-spline which interpolates f with respect to A,
then for 4 sufficiently small,

1 DS = g ay < KD flygarys G =0 Lown =1, (3.5)
and '

I DS = 9, 4,0y < K,/ (d)2r [ty s =0, Losn, 1<7<2,
where K; and K;' are independent of A and f.
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Theorem 3.3 can be extended if the exact continuity class of Sp(M, A),
which depends on /4, is known. For example, if i(x) <</ for every
xed n(a,b), where 1 <</ < n, then it is known (Jerome and Varga
[17, Corollary 2.4]) that

Sp(M, A) C C2n—2-0-D[g, b].

Based on the results of Perrin [29], one can further extend the result of [17]
to obtain

THEOREM 3.4. Let {/;}i, be such that y(A;) = n, A" N U, (0) = {0},
and such that the second integral relation (3.4) is valid for all i. Further, assume
that 4,)4; < w for all i = 1,2,..., and that Sp(M, A;) C C™[a, b] for all
i=1,2,.., where n < m < 2n. If f& Wi a, b] and if s; € Sp(M, ;) is the
unique Lg-spline which interpolates f with respect to /A, , then there exists an i,
such that for all i > i, ,

“ Dj(f S)[L [a b] K(A )2’”‘7 1/2 lf’[w?"[a b] bl ] = 03 19"'9 m
and
” D](f S)HL Sla, b] X K (A )2n i ”flIW2"[a b] ° ] = 0’ 13"'5 m, 1 < T < 29
where K; and K, are independent of the A; and f.

We now apply the theory of interpolation spaces of Section 2 to
the results of Theorems 3.2-3.4. If A = {A;}F, is such that y(A) >n
and A" N U,0) = {0}, define the linear transformation 7 on W,"[a, b] by

szf_sa

where s is the unique Lg-spline in Sp(M, A) which interpolates f with respect
to A. From (3.3) of Theorem 3.2, we have that

1 D = Dy gamy < K@ S gy J= 0 Lo, 1 <7 <2,

From the definition of the Sobolev norm || - \,W la,5] I Section 2, and the fact
that 4 < b — a, the above inequalities give us

1= 5oy < KN Ny gy > 1

N

7<2a

as well as

N

”f s ”L La,b] K(A) ”f”Wz'L[a ] ° 1 T < 2.

Thus, by choosing Xy = Wy'[a,b] = X, = %, Yy =% = L/Ja, b], and
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Y, = W,"[a, b], we see from the above inequalities that 7'is a bounded linear
mapping from X; to Y;, i = 0, 1, with norms bounded above by

M, = K'(d)y", M, = K, respectively.

Clearly, since, from (2.13) of Theorem 2.3, the Besov space B;*“[a, b] is the
intermediate space (L.[a, b], W."[a, b])s,, Where 0 < o = 6n <n and
1 < g < o, a direct application of Theorem 2.2 yields that

”f_ s ”B‘,’-"’[a,b] < K(Ua q)(Z)n*a Hf”WB”[a,b] 4 0<o< n, 1 < T < 2’

forany 1 < ¢ < oo, where K(o, q) is independent of fand /1. In a completely
similar way, we deduce

ProOPOSITION 3.1. Let A = {\}E, be such that y(A) = n, A~ N Uy0) =
{0}, and such that the second integral relation of (3.4) is valid. If f € Wy"[a, b]
and if s € Sp(M, A) is the unique 1g-spline which interpolates f with respect to /,
then for 4 sufficiently small,

Hf'“ s I{Bg"’[a,b] < K(O’, q)(Z)n—on”WZ”[a,b] ’ O <o < n, (36)

for _all g, 1 < q < oo, where 1 < 7 < 2, and where K(o, q) is independent
of 4. If, moreover, f'€ Wi*{a, b, then

”f_ s ”B‘,’,"’[a,b] < K'(O‘, q)(Z)Zn_a”f”W‘z“’"[a,b] 4 0 <o < n, (37)

for all g and v, 1 < q < oo, 1 < 7 < 2, where K'(o, q) is independent of f
and /.

The next result, however, is of more interest, in that we interpolate between
the spaces on the right sides of (3.6) and (3.7), using the fact from (2.14) that

(Wy"la, b), W3"la, b])o,, = B3[a, 0], o =10n+ (1 —0)2n 1<g< .

More precisely, let X, = Wy[a, b] = Z, X; = W3*[a,b], and & = ¥, =
Y, = B®%a, b] = Y. Then, applying Theorem 2.2 to the inequalities of
Proposition 3.1, gives '

THEOREM 3.5. Let A = {\}¥_, be such that (A1) = n, /" N Ux0) = {0},
and such that the second integral relation of (3.4) is valid. If fe By»"la, b],
n < oy < 2n, and if s € Sp(M, A) is the unique Lg-spline which interpolates f
with respect to A, then for 4 sufficiently small,

IS = 5 llpgsopa,ny < K(@: 04 o)y | f laga-ria,eq » (3.8)
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where 1 <1<2,0 <0y <n and 1 <gq, r < oo, and where K(q, 0y, 03)
is independent of [ and A. Moreover, in the limiting cases fe Wy[a, b],
f€ Wia, bl, the inequalities (3.6) and (3.7) are valid.

We remark that the results of Theorem 3.5 extend those of Jerome and
Varga [17] and Schultz and Varga [30], in that the error bounds for Lg-spline
interpolation are obtained for functions which are in W,"[a, b], but not in
Wi"la, b]. In particular, these error bounds apply to functions in W,![a, b],
where / is any positive integer satisfying n <C I < 2n, since, from (2.16) of
Theorem 2.4, we have

Wy'la, b] C BY”[a, b].

We state this as

COROLLARY 3.1.  With the hypotheses of Theorem 3.5, let fe Willa, b],
n <1< 2n. Then,

Hf_ § “Bg"’[a,b] < K(Qa a, l)(Z)l—c ”f”Wzl[a,b] s 1

N

T2,
where 0 < o <nand 1 < q < oo. In particular,

1 D = gy < KD flhy gy s =0 Loy, 1< 7 <2

. For another result of interest which can be obtained as a special case of
Theorem 3.5, we utilize (2.9), (2.10), and (2.19). We have

COROLLARY 3.2. With the hypothesis of Theorem 3.5, let fe Cba, b],
where 1 is a positive integer, 0 < o < 1, andn < 1+ o < 2n. Then

” D](f - S)”L,,[a,b] < K(Z]-)l+m_j Hf”cl,a[a’b] s
forallj =0,1,..,n 1 <7 <2.

It is also worth noting that the exponents of 4 obtained in Theorem 3.5
are, in general, best possible. This follows from the results of Birkhoff, Schultz
and Varga [6] concerning Hermite piecewise polynomial interpolation, i.e.
the special case in which A = D" and / consists only of point functionals of
the form

MNP = Dif(x), j=01.,n—1,

foralli=0,1,.,N+ 1, where a = xy < x, < *** < Xpyq = b.
To extend further the results of Theorem 3.5, we use the embedding results
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of (2.19) and (2.20) of Theorem 2.4. Specifically, from (2.20), we know that
Bg*Ma, b]C L [a,b], for 2 <p, o =5—=.

Hence, it follows that there exists a positive constant C such that
Hf s ”L ol b] Hf s Hggl-l[a,b] .
Thus, from (3.8) with o, = 1/2 — 1/p, we have

PROPOSITION 3.2. With the hypotheses of Theorem 3.5, let fe B3»"[a, b],
n < oy < 2n. Then,

1 = 5 Vg g < K@ 00 s XA Flggaurgany » (3.9)
2 < p < oo, wherel < r << 0.

Similarly, using (2.19) of Theorem 2.4, we have that

| 1
Hf_ s lipg,Q[a’b] C‘ f 130'1 U[a,b] where 0y — z = g —

1
p 2
2 < p < co. From Theorem 3.5, it follows that

1= 8 agaam < K@ £ lpgerpany
Consequently, since o; = o -+ ¥ — 1/p, we have

THEOREM 3.6. With the hypotheses of Theorem 3.5, let f € Bg»"[a, b], where
n < oy < 2n. Then, in addition to (3.9),

1= 5 laggay < KA fllper iy (3.10)

forany 0 <o <n— 3%+ 1/p, where 2 < p < .

Thus far, the results based on interpolation spaces involve bounds for
If — 51294z for 0 <o <n, and one would desire similar results for
o > n. This can, in fact, be achieved, based on the results of Perrin [29] in
Theorem 3.4.

THEOREM 3.7. With the hypotheses of Theorems 3.4 and 3.5, let
fe€Bg»"[a, b], where n. < oy < 2n. Then, f2<p< oo, there exists an i,
such that for i > i,

Hf S HBU Ila b] & K(A )02 oY Hf1|302 T[a b]



APPLICATION OF BESOV SPACES TO SPLINE APPROXIMATION 307

Sfor any positive
2 2” — Oy m .
7= (" —1 +§)(~7—) + 5 (=),
Moreover, in the limiting cases fe W,"[a,b], fe WErla, bl, we have,
respectively,

- 2
If—s, ”Bg=0[a,b] < K(Ai)'n~o—-1/2+1/17 Hf“%n[a’b] , O<o<n—1 —!—]—’ R

[ f— s, ”Bg»q[a,b] < K(Ji)zn—a—1/2+1/ﬁ ”f”wgn[a,b] R 0 <o <m.

All the results of this section basically depend upon the error estimates for
Lg-spline interpolation of Theorems 3.2-3.4. These same error bounds have
been extended to more general operators M and linear functionals
(cf. Lucas [20], Varga [36], and Jerome and Pierce [15]), so that our inter-
polation results, Theorems 3.6-3.7, remain valid for these more general M
and A, with no change in the arguments. We have presented the simplest error
bounds for Lg-spline interpolation so as to make the discussion as brief and
clear as possible.

4. SpeCIAL TYPES OF INTERPOLATING SPLINES

In the previous section, the emphasis was on the L,-theory. Here we shall
present L,-estimates, which may be obtained by applying the theory of
Section 2 to estimates known for certain special types of splines. We begin
with Hermite L-spline interpolation, where L ,-error bounds are known for all
p with 2 < p < co. We then turn to interpolation by cubic and quintic splines
and to interpolation of periodic functions by polynomial splines on a uniform
mesh. In these cases, we obtain L,-error bounds, 2 < p < o, from known
L,- and L-error bounds.

For Hermite L-spline interpolation, letd : a = x, < x;, < -+ < Xy =2>b
be any partition of [a, b], and let the Hermite L-spline space H(M, 4) be
specifically the Lg-spline space (cf. Section 3) Sp(M, /) in which the set A
of linearly independent bounded linear functions on W,[a, b] is given by
A = {X 00w, where

Mg = Dis(x),  i=0,1,.,N+1, j=01,.,n—1.

The following is a known result of Swartz and Varga [34, Coro'llary 7.51].
(For special cases, see Birkhofl, Schultz, and Varga [6], and Hall [13].

THEOREM 4.1, For any fe W,k[a, b], 1 < k < 2n, 1 L p < oo, and any
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partition 4 of [a, b for which 4]4 < B, let s be the unique interpolant of f in
H(M, 4) in the sense that

Dis(x;) = DSy if)x),  j=0,1,yn—1, i=01,.,N+1,

where, for each i,i = 0, 1,..., N -+ 1, there exist 2n specified consecutive knots
X, s Xj41 seees Xjan—a With X; € [X; , X; 1an-1], and where Fym.+f is the Lagrange
polynomial (of degree 2n — 1) interpolating to f at these knots, i.e.,
(Lon o)) = fO), 1 =Jji,ji+ Ly ji + 2n — 1. Then, for r and j with
max(p,2) <r < o0,j=0,1,.,min(k — 1, n — 1), we have

1 = 8y spamy < KSR @.1)

We can immediately apply Theorems 2.2 and 2.3 to obtain

COROLLARY 4.1. For any fe Bya,b], 1 <o <2n, 1 < q < o, and
any partition 4 of [a, b] for which 4]4 < B, let s be the unique interpolant in
H(M, 4) in the sense of Theorem 4.1. Then, if max(p,2) < r < o,

1S = Sl sgany < KPP fly 2
Jfor any nonnegative integer j with j << min(k — 1, n). Furthermore,
1S = 8 g oy < KEAY=200 | fllpg @3)

if0 <7 <mintk —1,n), 1 <q" < oo.

One goal of this study of error estimates for piecewise-polynomial inter-
polants is to establish inequalities of the type (4.1)-(4.3) for spline functions.
Theorem 3.6 is a step in this direction. For cubic and quintic splines, we can
go beyond Theorem 3.6. In analogy with the Hermite L-spline space H(M, 4),
we now define the spline space Sp™(d4) (which corresponds (cf. Section 3)
to the Lg-spline space Sp(M, A) with M = D", and 4 particularly chosen). If
d:a = x, < x4 <+ < xy4y = b is a partition of [a, b], then Sp*"(4) is
the collection of all real-valued functions s on [a, 5] such that s is a polynomial
of degree at most 2n — 1 on each subinterval (x;, x;4), { = 0, 1,..., N, and
such that s € C#"~2?[q, b]. In the case of interpolation by a cubic (n = 2) or
quintic (n = 3) spline without any restriction on 4/4, we have de Boor’s
result [8]:

THEOREM 4.2. For any f€ C¥a, b, n < k < 2n — 1, where n = 2 or 3,
let s be the unique interpolant of f in Sp*™(4), i.e.,

s(x;) = f(x), i=0,1.,N+1, 4
Dis(a) = D'f(a),  Dis(b) = D'f(b), j=l,.,n—1L :
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Then, -
If = Sl _itap < K@ w M4, DY),  j=0,1,.,n

Sharma and Meir [32] obtained Theorem 4.2 for the case n = 2, as well as
for that of a periodic quintic spline, n = 3, with every knot a double knot.
Special cases of Theorem 4.2 for cubic splines were obtained earlier by
Atkinson [2] and Birkhoff and de Boor [5].

We shall not apply the theory of Section 2 directly to Theorem 4.2, but
rather to its weaker form, Corollary 4.2. For our purposes, it is more
convenient to have estimates in terms of the Holder classes C»*[a, b], rather
than in terms of the moduli of continuity w,X(d, D*f). As a direct
consequence of Theorem 4.2, we have

COROLLARY 4.2. For any f € Cv*a,bl,v =n,n+1,.,2n— 1, n =2
or 3,0 <« < 1, let s be its unique interpolant in Sp'™(4). Then

Hj_ s ”Wooi[a:b] < K(Z)v+a_j ”f“cv'u[gyl] 3 j = 09 1:--'3 n.
Furthermore, for any f € W"[a, b],

1 = 8wty < KDy ppays =0, Loy,

Because the space Sp™(d4) is a special Lg-spline space Sp(M, A) with
M = D" and because of (4.4), it follows that the hypotheses of Theorem 3.5
are fulfilled, ie., p(4) = n, # N U,0) = {0}, and the second integral
relation (3.4) is valid. Consequently, Corollaries 3.1 and 3.2 are applicable.
Thus, we may couple Corollary 4.2 with Corollaries 3.1 and 3.2, via
Theorems 2.2 and 2.3. The result is

THEOREM 4.3, For fe C*a, bl and n = 2 or 3, let s be its unique inter-
polant in Sp™(4) (¢f. (4.4)). Then, for fin W,[a,bl, k = n, n + 1,..., 2n,
2 < p < o, we have

Hf“. s “Wj,j[a,b] < K(Z)k-7 HfHka[a,b] ’ j - 0’ I:'": n,
and for fe By"a,bl,n <+ <2n,1 <r < 00,2 <p < o0, we have
1 = $lngagay < KA1 flpgingry» O <o<n 1<g< oo,

It is worthwhile to compare Theorems 4.2 and 4.3. If f € B%*[a, b] where
n <7 < 2n and 7 is not an integer, then Theorem 4.3 and the imbedding
Bila, b] C W, i[a, b] of (2.16) give

”f—' SIIWWj[a,b] < K(Z)Tﬁj HfHBg'o'w[a,b] 9 ] = 0? 15"': n,
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This, however, is, in general, less sharp than the result k¥ = [r] of Theorem 4.2,
viz.,

1S = Iy _ay < K@M w, M, DUIf),

~since, from (2.7), the ratio w. Xz, DlerIf)/t=l"1 || f||zm.=, ;1 is bounded for all 7,

and this ratio may in fact tend to zero as ¢— 0. On the other hand, if
feBE®la,b], k+1=n-+1,n+2,.,2n—1, the imbedding (2.16)
applied to the second inequality of Theorem 4.3 gives

”f_ § Hij[a,b] < K(A_)}H—l-j “fHBEg"l'w[a,b] s J = 09 19"'7 n, (4'5)

and this inequality is not implied by the analogous inequality
1= 8l spay < KAV w (A, DY) (4.6)
of Theorem 4.2. To show this, consider the function
f(x) = x*1n x, 0<<x <1,
where k is a positive integer with n < k < 2n — 2. Then f'e C¥[0, 1] and
woMt, D) ~ kltIn(1/t)  as t— 0.

But, because fis an element of B%™>[0, 1], it follows that the upper bound of
(4.5) is asymptotically better than that of (4.6) by the factor In(1/4).

We now define the Besov space By ?[O] of periodic functions. Given a
function f'in L,[0, 27], we extend it periodically to (— co, -+ c0), and say that
its extension is in L,[O]. Then, the m-th modulus of continuity is defined
(cf. (2.5)) by

> 1 (") 7G4 )

y=0

w, ™1, f) = lsup

yl<t Ly[0,27]

where the L,-norm is taken over all x € [0, 27]. The Besov space BZ[O],
0<o<ml <qg< o, <p < w,consists of all such periodicfe L,[O]
for which the norm of (2.6), with the above definition of w,™(, f), is finite.
We remark that C[O], C**[O], and W, /[O] denote, respectively, the space
of continuous 2w-periodic functions, the Holder spaces of 2w-periodic
functions, and the Sobolev spaces of 27-periodic functions.

For a partition 0 <C x; <X, < = < xy < 2w, N > 1, of the interval
[0, 27], let 4 denote the periodic extension of this partition to (— oo, -+ o0),
with 4 and 4 denoting, respectively, the maximum and minimum lengths of
the subintervals (x; , x;.4) (With xy,q = x; -+ 2). Thea Sp{’[O] is defined
as the collection of all s € C**~*(— oo, 4- 00) which are of period 27 and which
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coincide with a polynomial of degree at most 2n — 1 on each subinterval

(xi 5 Xipq).
For periodic cubic splines, we have the following result:

THEOREM 4.4. Let {4}, be periodic partitions of (— oo, +0) such that
4,4, < pfori=1,2,...ForfeC[O], lets; e Sp[O] be its unique cubic
spline interpolant, i.e.,

Fx) = s:dx;), Vx;e4d;.

Then, for all i,
1= 5. 0s0em < KISy am - @7
1= 5l ioy < KAY 1y soys J=0,1,23, (48
1 = 5,100 < Koo XA, ), 4.9)

1= Sl oy < K@) w M4, DY),  j=0,1,2,3. (4.10)

The estimates (4.8) and (4.10) are due to Birkhoff and de Boor [5], and (4.9)
is due to Sharma and Meir [32]. Nord [22] has improved the constant in (4.9).
Clearly, (4.7) follows directly from (4.9).

If we apply the theorems of Section 2 to the estimates of Theorem 4.4, we
obtain the following

THEOREM 4.5. Let {4,}7, be periodic partitions of (— o0, +00) such that

4,)4; < pfori=1,2,... Forfe C[Q], let s; € Sp¥? 2, '[O] be its unique cubic
spline interpolant. Then zf 2 <p<r< w, we have, respectively, for f in
WAO] or B3O,

1f = il oy < K@Y £l g0 j=0,1,2,3, i=1,2,...
.11

1f = 5,1 10.0m < K4, DI fllpg.ag o » i=12,.. (4.12)

where either 4fp <o <4 and 1 <q < ©, or o =4Jp and 1 < q < p.
Moreover, for e B>*[O],

1S = i lwapop < KA1 fllgg oy (4.13)
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where either 3 4 (2/p) <o <4 and 1<g< o0, or 0 =3+ (2/p) and
1 <q <p. Furthermore, if 2<p <r< oo and f is in W, O] or in
B3[O], we have, respectively,

1f = 5, g0y < K-t 1l ooy, 0<7<3, 1<¢g <o,

(4.14)
1/ = 5,y < K@Y =430 flle o @.15)
where either (i) o=4/p, q=p, 0 <7 <(@lp)+UA/r), 1 <q < oo,

() o =4/p, g=p, 7=0Cp)+U/r), p <q < oo, (il) 4p <o < 4,
1 <q,q < 0,0 <7 < u(o), where (see Fig. 1)

331
. 301 p r 4
p(o) = min 3,1;—1‘;—]' —‘—“-‘_‘*—3Mg (U_p) s
p
#(o)
2,
(3+5.3) (@3
(33+3)
o
FIiGure 1

or (iV)4lp <o <3+ Q2/p), 7= o), 1 <q,q < .

Proof. Because Theorem 3.4 is applicable in the periodic case, (4.11) is a
direct consequence of Theorem 2.2, (2.11) and (2.12) repeatedly applied to
(4.8), and both inequalities of Theorem 3.4. Similarly, (4.14) follows from
(2.13) of Theorem 2.3 applied to the cases j = 0 and j = 3 of (4.11). The
special case of (4.12),

If=s, ”Lp[o,zn] < Ky ”f”B%/a»,p[o] ) 2<p <o, (410
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follows from an application of Theorem 2.2 and (2.15) to (4.7) and to the
case 7 = 2, j = 0, and n = 2 of (3.3). The case of (4.12),

I}f_ Si HLD[O’zﬂ.] < K(Zz)o HfHBg‘q[O] 9 (417)

2<p<w,4fp <o <4,1<qg< oo,isobtained by applying Theorem 2.2
and (2.15) to (4.16) and to (4.11) with j = 0 and r = p. The other cases of
(4.12) follow directly from (4.17) and Theorem 2.4.

We conclude directly from (4.10) that

If— Sy ”Ww3[o] < K“f“Ww?)[O] . (4.18)

By Theorem 2.2, (2.12) and (2.15), the estimate intermediate between (4.18)
and the case j = 3 in Theorem 3.4 is

1 = 8; 1l 0y < K(d)o-3-1mstsr 1/ l3g.; 07 » 4.19)

2<p<r<o,0=3-4+ (2/p). Inequality (4.19) is a special case of (4.13);
the case of (4.13) with2 < p < r < ©, 1 < g <p,o=3+(2p) follows
from (4.19) and (2.17). The other cases of (4.13) are proved by an application
of Theorem 2.2 and (2.14) to (4.19) and to (4.11) with j = 3.

We still have to prove (4.15). By Theorem 2.2 and (2.15), the result inter-
mediate between (4.7) and (3.3) with n = J=2,7=21s

If=s, “B"},/M’[o] < K“f”g%/ﬂm[o] . (4.20)

Case (ii) of (4.15) follows from (4.20), (2.17), and (2.19). Case (i) of (4.15)
is the estimate intermediate between case (ii) of (4.15) and the case o = 4/p
of (4.12). We obtain case (iv) of (4.15) by an application of Theorem 2.2 and
(2.14) to case (ii) of (4.15) and to (4.13) with o = 3 + (2/p). Finally, case (iif)
of (4.15) is obtained by writing either the estimate intermediate between case
(iv) of (4.15) and case (i) of (4.15) or the one intermediate between case (iv)
of (4.15) and (4.14). This completes the proof of Theorem 4.5.

If the partition 4 of [, b] is uniform, it is possible to obtain error bounds
of the type given in Theorems 4.1-4.5 for polynomial splines (M = D) of
arbitrary order. We first consider, as in Theorem 4.1, the case where the
derivatives of f at the end-points of [a, b] are approximated via Lagrange
interpolation polynomials. Then, we turn to the case of periodic splines on a
uniform partition. Swartz and Varga [34], using results of Swartz [33], have
obtained the following result.

THEOREM 4.6, Given f'e W,*a, b] with 1 < k <2, 1 <p < oo,and q
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uniform partition 4 of [a, b], let 5 be the unique interpolant of f in Sp™(4) in
the sense that

S(x'é) =f(xi)a i = Os 19--*3 N+ 1’
Dfs(a) = Dj(’gzn’of)(al .] = l"“’ n— 15

where %, . fis the Lagrange polynomial (of degree 2n — 1) interpolating to Vi
at the knots x, , X1seees Xon g, and similar relations hold qr X =b. Then, if
max(p,2) <r< 0,0 <;<k— 1, we have

17 = 5l < Kyp=rmarmsaiey gy,

- As the extension of this result to Besov spaces is clear, we omit its details,

When a periodic function is interpolated on a uniform mesh by a periodic
polynomial spline, we can prove stronger results than those of Theorem 4.5.
The basic' estimates are due to Golomb [11] and Ahlberg, Nilson, and
Walsh [1]. The error bounds in [1] involve the Holder classes C"™<[(O] and
are given in the following theorem. Similar estimates, but in less generality,
are contained in Golomb [11] and Schurer [31]. '

THEOREM 4.7. Let 4 pe ¢ uniform partition of (— o0, +0). For feClO],

let s € Sp™[ O] be its unique interpolant. Then, for fe C™o[0], 0 < m < 2n,
0 < o < 1, we have the estimate

VO = Mgy < KD flmngoy = 0, L m, 421)

and, for fe C[O], we have
”f'_ § “Lw[o,zﬂ] < K”f“l.w[O,Zﬂ . (422)
The other result on which we base our study of periodic splines is due to

Golomb [11]. Golomb’s estimates are in terms of the Hilbert space H°[ Ol
o > 0, of periodic functions

JG) =} ceiia
for which the norm
1/2
1oty = Veg | + (172, )

is finite. It is clear from (2.6) that H°[O] = B3*[O], with equivalence of
norms, Stated in terms of Besoy spaces, Golomb’s result is as follows,
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THeOREM 4.8. Forfe B3*[O], 0 > 1/2,let s € Sp”[O] be its unique spline
interpolant, where 4 is a uniform partition of (— o0, --0), and 2n > o. Then,
we have

| DICF = )l 0,20y < KA1 £ a0 0<j<o—12 (423

ID(f = )y o0y < KA fllggnor,  0<j<o—1/2. (4.24)

The restriction o > 1/2 in Theorems 4.8 is necessary for two reasons. On
the one hand, the condition /'€ By?[O], o > 1/2, implies that fis continuous,
while there exist functions in Bg*[O], 0 < ¢ < 1/2, which are not even
bounded (cf. Golomb [11]). On the other hand, for a fixed uniform periodic
partition 4 of (— oo, 4 c0), there exists a sequence of trlgonometrlc poly-
nomials {f;} such that

”fj HBI/Z,Z[O] < K, (425)
while the corresponding interpolating periodic s; € Sp{?[O] satisfy
II's; HLz[(),zw] — . (4.26)

In fact, we may assume without loss of generality that 4 = {j/2#N},
J =0, 41, +2,.... Then, s; € Sp{[O] which interpolates

9= ¥ % log Fe

=2

is the constant function
5 = Z  Klogk logk

Clearly, f; and s, satisfy (4.25) and (4.26), respectively.
We collect the results intermediate between Theorems 4.7, 4.8, and the
periodic version of Theorem 3.2.

THEOREM 4.9.  For fe C[O], let s € Spi¥[O] be its unique spline interpolant,
where A is a uniform partition of (—oo, +o0). Then, for fe Wi O],
2 < p < o0, we have

If = s r0,0m < K(AT)MH]’HW%,,[OJ, - (427
1/ = slwgpaop < K- AN om0 » (4.28)

Hf § HBT q[o] K(A)ZH_T ||f”W2”[O] 2 (429)
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where 0 < 7 <2n—1, 1 < g < oo. Furthermore, if 2<p< o and
feBe O] 1 < r < o, we have

- \ 1
1= s lgonm < KA [ flgroys 5 <o <2 (4.30)
- 1
Hf_— S,Hw%’n—l[o] < K(A)a—2n+1 “fHB%JJ[O] s 2n — 1 "{“ -<<o< 2”5
p (4.31)
Hf_ § HB%’”[O] < K“f“z;gm[o] H o = 2n/Pa (432)
- 1
| f—s ||B;,Q[O] < K(dye ”f”Bg-’“[O] , P <o <2n, 0<t<<h(o),
4.33)
where h(o) is given by (see Fig. 2)
1 1 1 2n
((+5=1)le=5) p=<o<p
o2
o) =4, _ ; 2n ot
T =D =1’ p<0<2” by
m—1, | 2n——1—!—%<cr<2n.
A
h{o)
-1+l 20
(2n=14%,2 1)(2n'2n_1)
o

FIGURE 2

Proof. Inequalities (4.27) and (4.28) both follow from (4.21) and
Theorem 3.4 by means of Theorem 2.2, (2.11), and (2.12). By (2.13) of
Theorem 2.3, the estimate (4.29) is a direct consequence of (4.27) and (4.28).



APPLICATION OF BESOV SPACES TO SPLINE APPROXIMATION 317

By (2.15) of Theorem 2.3, the estimate intermediate between (4.22) and (4.23)
with j = 0 is

llf § ”L p[0,27] TS C(A) f”Bg’f"[O] ’ 2 < P < co, l/p < g < 4n/p
(4.34)

Inequality (4.30) now follows from (4.27) and (4.34) by (2.14) and
Theorem 2.2. Inequality (4.31) is a direct consequence of (2.15) and
Theorem 2.2 applied to (4.23), (4.21), and Theorem 3.4. The estimate
(4.32) is proved by an application of Theorem 2.2 and (2.15) to (4.22)
and (3.3).

In order to prove (4.33), we apply Theorem 2.2 and (2.14) to (4.30) and
(4.32) if 1/p < o < 2n/p, to (4.31) and (4.32) if 2n/p < o < 2n— 1 + 1/p,
and to (4.29) and (4.30) if 2n — 1 + (I/p) < o < 2n. Q.E.D.

In Theorem 4.9 we considered the operator 7f = f — s, where f€ WZ2*[O]
or fe By"[O], 2 <p < oo, and Tfe L]0, 27] or Tfe B3 O] It is also
possible to consider 7" as an operator from WZ‘[Q} or B;’,;’[O], 2<p; oo,
to L,,[0, 27] or B[O, py < p» << . The easiest way to obtain such a
generalization is to combine the inequalities of Theorem 4.9 with the following
inequalities:

”f ”B"' q[o] K”f s ”B;;rllml—-l/mz.q[o] » D <p2 < 0, T > 0’
(4.35)

1= 8l oy < KIS = S lgmaimagy s b1 <po <00 (436)

The estimates (4.35) and (4.36) are merely restatements of the imbeddings
(2.19) and (2.20) of Theorem 2.4.

We would find, though, that we would not be able to derive all cases of
(4.24) in this manner. Therefore, we give the estimates intermediate
between (4.24) and those obtained from Theorem 4.8 by using (4.35) and
(4.36). In the following theorem, we write out only the generalization of
(4.33).

THEOREM 4.10. For fe C[O), let s € SpM[O] be its unique spline inter-
polant, where 4 is a uniform partition of (— oo, + ). Then, for fe B” IOl
Ipy <o <2m2<p <o, Lr < o, we have

Hf s ”BT q[o] K(Zf o~7=1/D14+1/ Dy ”fHBU T[OJ ,




318 HEDSTROM AND VARGA

where p; <p, < o0, 1 <g< o, and 0 < 7 < g(0); g(o) is given by
(see Fig. 3)

(14— o1y L 2n

) (1 * Po(2n — 1))(0 P1 )’ 21 = <pl ’
2n—1 | 1 2 2n
= {1 = — =),
| _ P + Pe ( Popr — 1D(2n — 1) )(0 P )
g(o) = 2n 1

! ' —<o<2n—1+4 —,
D1 P
h 2n — 1, 2n-1—|—~1-<0<2n.

’ - pl

(2n=1 +351, 2n-1) '
{2n,2n=1)

FIGURE 3

5. SPLINES OF BEST APPROXIMATION

iR For a family # of splines, we introduce the functional
Ep(f) = slen,%f’: ”f_ ’SHLZ,[a,b] s 1 \<\p < o0,

on Ly[a, b]. In this section, we discuss the behavior of E(f)as d—0, for f
in a Besov space. We begin by stating a result of de Boor [7] in this direction.

THEOREM 5.1. Let 4 :a = xy < x; <+ < Xyy = b be a k-extended
partition of la,b], ie., for some integer k =2, x; < X Jor all
J=0,1,.., N — k + 2. Consider the family F = S of all real Sfunctions s
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on [a, b] which coincide with a polynomial of degree at most k — 1 on each
subinterval (x; , x;,1),] = 0, 1,..., N, and such that if x; has multiplicity v; with
respect to 4, then s € C*~Y in a neighborhood of x; . Then for any f € C*[a, b],
j=0,1,.,k—1,0 <« <1, we have

Ew(f) < K(Z)j—l—oz Hf‘HCj-D‘[a,b] ) (5.1)

where K is a constant, independent of f and 4.

It is interesting to remark that de Boor’s error estimate (5.1) was obtained
by linear projections of C?=[0, 1] onto S,

If the family & is one of the classes previously considered, viz., Sp™(4),
H™(4), or Sp(M, ), then it is easy to obtain upper bounds for E,(f) from
the results of Sections 3-4, since

Ep(f) < ”f“‘ f”Lp[a,b] s

where § is a spline interpolant of /. If the functional E, were linear, we could
immediately apply the intermediate-space theory of Section 2. However, E, ,
for p # 2, is a nonlinear functional. But, we can make use of the fact that £,
is semilinear, i.e.,

E(fy +12) < EJ(f) + Eu(f).

As we shall see in the following lemma, some of the theory of intermediate
spaces may be applied to £, . Although this lemma may be regarded as a
folk-theorem, we include its proof for completeness.

Lemma 5.1. Let X be a Banach space, and let T : L,[a, b] — X be any
nonlinear mapping such that there exist constants B, My , M, , and some positive
integer m for which

1T+ Rlx <BUTAlIx + I TRk, Vi€ Lyla, bl (5.2
and

1Tl < Myl fll ey VL4 b],
(5.3)

I 771 < My S by ooy Y€ W0, B

Then, for any fe B%%a, b],0 <o <m, 1 < g < oo, we have

| Tl < C0. @) MEML | fllygaay > 0= ol (5.4)
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Similarly, if (5.2) holds and if for some 7, r with0 < = < m, 1 < r < o0, on
has

1 Tl < My 1 gy » |
1Ty < M1y 5.5

then for any fe By%a, bl < o <m, 1 < g < o, we have

1Tl < G0 ) ME ML gy 0= (=D (56

Proof.  Since the proofs of the inequalities (5.4) and (5.6) are similar
we shall only establish (5.4). Our basic tool is the inequality

Kl(t: Tf} < 2AlOI(Z(A{lt/]lJO af)r 0 <t < OO, (57
where, as in (2.3), K; and K, are defined for ¢ > 0 by

Ki(t, Tf) = ng}f;v Uloollx + 2l o0,

(5.8
(ROt
and
Kz(t:f) = f=ifrol£f1 (”./6 ”L,,[a,b] -+ t”.f;_ ”Wp’"[a,b])' (59]

Suppose we have secured (5.7). Then, if 1 < g < cand0 < 8 < 1,

(f:o (t-°Kq(t, TF))e .i_t)l/q < 2M, (f: (t=°Ky(Mt/ M, , f)) %)1/"

g (5.1
_ 1-6070 (7 /10 1\
= 2070y ([ ke )
and forg = cvand 0 < 0 < 1,

sup t°Ky(t, Tf) < 2My~°M,° sup t°Ky(z, f).
>0 >0

(5.11)
From the definition (5.8), it is readily verified that
IS Ny 0<t <1,
Ky(t, Tf) = § I 5.12
I =71 (> 1, G2

so that the left sides of (5.10) and (5.11) are equal to C(6, q) || Tf|lx , where

C,q) = gc_; (T—l—ﬂé)}m’ 1<g <o,
L g = oo.
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Furthermore, it follows from (2.4) that the expressions on the right sides of
(5.10) and (5.11) are simply

2MG°M,° ”f“(L,,[a,b],pr[a,b]m,q .

Consequently, (5.10) and (5.11) become

CO, ) TS Ny < 2M3 M 1 f g 1,000, (5.13)
Next, using (2.13) of Theorem 2.4, we have

(Lola, b, W, [a, b])p,q = By™[a,b], 0<O<1, 1<gq< oo.
Thus, using equivalence of norms, i.e.,
Coll, D1 agmagan < 1 iy go1 w001, < CoO D1 llpgmny s

(5.13) can be expressed as
CO, DN Tf e < 2ME* M Cl6, @) | flygmaay» 0 <0 <1, 1<g< oo,

Le., the desired result of (5.4). Thus, (5.7) implies Lemma 5.1.

It remains to prove (5.7). Assume f'e L,[a, b]. From the definition (5.9) it is
clear that for each fixed positive ¢, there exist f, € L,la, b] and f; € W,"[a, b]
with f = f; - f, such that

1 o+ S s iy < 2K OM0IM, ). (5.14)

Therefore, using the hypotheses (5.2) and (5.3), and the relation (5.12),
we find for ¢ > 1 that
K@ T = 1 If e = 1| T(fo + Dllx < BUTh llx + 1| T Nl
< BUTH e+ 21 T d < B 1S, gy + £ 11, Dy g
< 2BMoKy(Myt/ M, , f), (5.15)
the last inequality following from (5.14). Similarly, for 0 < ¢ < 1, we have

K@, TF) = t|| T(fo + I < B Thllx -+ ¢l T I}
S BMo 111y oy + ML NS e ) < 2BMKy(M /M, f).
(5.16)

The desired inequality (5.7) now follows directly from (5.15) and (5.16).
Q.E.D.
We now present our main theorem on best approximation by splines,
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THEOREM 5.2. Let 1 <p <y < 0, and let F pe a collection of spline
defined on the interval |q, b]. Suppose thar Jor some positive integer 5
m > 1/p — 1r, and Jor all e W,ma, b, the Jollowing inequality is valid:

E(f) = ésnyf Nf—s ”L,[a,b] < K(dyn-1/wiasr I f”%m[a,b] . (.17
Then, for all fe Bya, b], 0 Slp—1r <o <m,1 < g 0, we have
ED =i 1f =51, 1 < Keyovime W lagigany - (5.18)

Proof.  First, Suppose that p = r. From the trivial estimate

E() <111l 0y

and the assumed inequality (5.17), the desired resylt (5.18) follows imme-
diately by Lemma 5.1 with

11 = E,(f) and X =R (5.19)
Ifr > p, we use (2.20) of Theorem 2.4 to deduce that

But then, Inequality (5.18) for r ~ p follows from Lemma 5.1, using (5.19)
and the inequalities (5.17) and (5.20). Q.E.D.
Since the theorems of Sections 3-4 provide estimates of the type (5.17),
We can, of course, apply Theorem 5.2 to each of them. We give two such
applications to illustrate the method,
Asa consequence of Theorem 5.2 and (3.9), we have

COROLLARY 5.1, Let F be the collection Sp(M, 4) of Lg-splines on [a, b]
With respect to Jamily A — {AE 1 of bounded linear functionals on Werla, b)
Such that YD) =n 4 A Ui0) = {0}, and such that the second integral
relation (34 is valid If feBgq, b, 0 <o < 2n, 1 < g < %, and if
2<p < 0, then

El) < K@y gy (5.21)

We remark that the Inequality (3.9) of Proposition 3.2 directly implies
(5:21) if 5 <4 << 2n, since trivially E(f) <|If — Sz lap1  Where
S €Sp(M, A) is the unique Lg-spline interpolant of J- On the other hand, if
0 <o <n, the inequality (5.21) extends Proposition 3.2,

As a consequence of Theorem 5.2 and (4.27), we obtain
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COROLLARY 5.2. Let F be the collection Sp'™[O] of periodic 2n-splines on
a uniform mesh. If fe B[00, 0 <o < 21,2 <p < o, 1 < q << oo, then

Ezr(f) = ll’lf Hf_ 5 ”Lp[(),Zn] < K(A_)(T”fngg.q[o] .

sesp™[ 0]

Finally, we state a corbllary which extends Theorem 5.1 of de Boor [7].
From the special case j=k — 1, o« =1 of Theorem 5.1 and from
Theorem 5.2, we obtain (cf. (2.10))

COROLLARY 5.3. Let 4 be a k-extended partition of [a, b]. Then, for
feBga,b],0 <o <k, 1 <q< oo,

Eo(f) = 00,10 = 51, fany < K| flng s - (5.22)

ses (1)

We remark that if o is not an integer, (5.22) is not an extension of 5.1,
but is equivalent to it since

B24a, b] C B5[a, b] = Clebo-ol[q, b].

However, if o is an integer j, then (5.21) is stronger than (5. 1) in the sense that
it is valid for a larger class of functions since (cf. (2.10))

BL®[a, ] ¢ C"*Ya,b]  and  C* g, b] C BE:7[a, b)].

APPENDIX. PRrOOF oF (2.19) AND (2.20)

The proof is based on Peetre’s characterization [27] of Besov spaces. This
characterization is in terms of functions g(x) and ¥(x), —o0 < x < 0,
whose Fourier transforms @, ¥ are C*(— oo, -+ o0) functions such that the
support of @(£) is the set {¢:1/2 < | ¢ | < 2} and the support of ¥(&) is
the set {¢: | €| < 2}. For every positive integer k, we define the function
r(x) by the relation

(X)) = 2%p(2%x), (A.D)
so that

() = P277E).
The support of ¢,(¢) is thus the set {£:2+1 < | £ ] < 2%+5 - Further, the

functions ¢, ¥ are chosen so that

W@+§%@=L | (A2)
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It follows from (A.1) that
Il o ”Ll(—oo,w) < C, | s ”Lw(—oo,w) < C2%,
Consequently, from Holder’s inequality, we have that

Pl o) < C7200-1m < . (A

We shall also use a special case of a continuation theorem for Besov space:
It is clear that if JeBy(—o0, ), then the restriction of S to [a, b]is i
By a, b]. Conversely, Besov [3] has shown that if J€ ByYa, b], then ther
exists an Fe BS%— oo, o) such that

FO) =7, a<x<b,
1/ lpg a0,y < CIIF ll5g.a(—co,c0y «

Consequently, we may restrict our attention to the space By Y(— oo, o),
This restriction is made in order to enable us to take the Fourier transform

of f.
Peetre [26, 27] has shown that if o > 0, 1 Sp<oo,and 1 < q < oo,
then the norm in BZY(— o0, +o0) is equivalent to

had 1/q
N3 = {1 # Moo + | T @l pin flym ™ 1< g < o0

I % fllzy o) + SUP 251 @1 5 f (o), g = o0,

where ¥ x f denotes the convolution of ¥ and J- Hence, there exist constants
C; and C, such that

CNYD < IIf lagea,r < CNZ(S),  fe BYY—co, ). (A4)

We may therefore use Ny *(f) as the norm in B3 %(— o0, ).
By (2.17), it is sufficient to prove the imbedding (2.19) only in the case
%=%=%Wﬂﬁmw%mmMWHMumwmwwﬂ@mm-

2

After taking the Fogrier transform of ¥ « f andznoting (A.2) and the [ocation
of the supports of ¥ and ®x » we find that
Y’*f:?’*(?’*f)—}—qpl*(’f’*f). (A.5)
Similarly,
1
xS =T (g 5f) + Y oy 5 (g %),
v=0
(A.6)

1
Pk = Y ok (puxf), k>0
y=-1
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We now apply Young’s inequality (cf. O’Neil [22]),

lg*h ”Lpz(-—w,oo) <&z (o) 1 ”Lpl(_co,oo) » Upy = 1/r + 1/py — 1,

and inequality (A.3) to deduce that

I @asn % (@1 %Pz, o) < C27FW2) Y i il
I 4 (P 5 e, o) < CNE 5 Sy (o » (A7)
1P+ (@1 Nl o) < Cll eyl o -

Consequently, if oy — (1/py) = o3 — (1/py), it follows from (A.4) through
(A7) thatfor 1 < g < oo,

1 lgyemay < CNZ) = Coll ¥ £, (o
ol 1/q
+Co (X @) ga %Sl o))
k=1

’ ’ < ko a /e
< CNE 5 iy o + C (X @ @ 5 Sy )

k=1

1 ATOLs C, 2
= OV < G W g

This proves (2.19) for the case 1 < ¢ < oo; the proof in the case g = oo is
analogous.

We now turn to the proof of (2.20). If B;(— o0, w0),0 < 0,1 < p < oo,
1 < g < o, is defined to be the collection of tempered distributions f with
finite norm N7 %(f), then it is easy to show that B3%— o0, c0) is a Banach
space (cf. Peetre [26, 27]). Furthermore, the above argument shows that the
imbedding (2.19) is valid even when o, or o, is nonpositive. In particular,
if py < p,and oy = 1/p; — 1/p,, then

B;Q'l(— 0, 00) C Bg;l(— 00, 00). (A.8)
However, we also have (cf. Peetre [26, 27])
By} (— o0, a0) C L, C BY:®(— 00, o). - (A9)

The imbedding (2.20) now follows from (A.8) and (A.9). Q.E.D.




326 HEDSTROM AND VARGA
REFERENCES

1. J. H. AHLBERG, E. N. NILSON, anp J. L. WALSH, “The Theory of Splines ang
Applications,” Academic Press, 1967,

2. K. ATKINSON, On the order of convergence of natural cybije spline interpol;
SIAM J, Numer. Anq], 5 (1968), 89-101,

3.0. v, Brsov, On some families of function spaces, Irnbedding and continy;
theorems (Russian), Dokl. Akaq Nauk. SSSR 126 (1959), 1163-1165.

4. 0. v, Besov, Continuation beyond the boundary of the domain for Some class
differentiable functions (Russian), Trudy Inst. Mat. Stekloy 77 (1965), 35-44,

5 G. BIrkHOFF AND C. pE Boor, Error bounds for spline interpolation, J. Math, M
13 (1964), 827-836.

6. G, BIRKHOFF, M. H. SCHULTZ, AND R, S. VARGa, Piecewise Hermite interpolatio,
one and two variables with applications to bartial differentja] €quations, Ny
Marh. 11 (1968), 232-256, '

7. C.pg Boogr, On uniform approximation by splines, J, Approximation Theory 1 (19¢
219-235,

8. C.pg Boor, On the convergence of odd-degree spline interpolation, J. Approximaz
Theory 1 (1968), 452-463, -
9. P

- L. Butzer anp H. Bereng, “Semi-Groups of Operators and Approximatior

Springer-Verlag, New York, 1967,

10, M. GoLows, “Splines, n-widths, and Optimal Approximation,” Technical Summa;
Report #784, Mathematics Research Center, Madison, Wisconsin, 1967,

11. M. GoLoms, Approxirnation by periodic spline interpolants on uniform meshe
J. Approximation Theory 1 (1968), 26-65.

12. p, GRrisvarp, Commutativitg de deux foncteurs @interpolation et applications,
Math. Pypey Appl. 45 (1966), 143-290.

13. C, Harr, Oon error bounds for spline interpolation, J. Approximation Theory 1 (1968)
209-218.

17. 7. w, JEROME AND R, S. VARGa, Generalizations of spline functions ang applications
to nonlinear boundary value and eigenvalye problems, i “Theory and Applications of
Spline Functiong” (T. N. R, Greville, Ed.), pp. 103-155, Academic Press, New York,
9.

18. J. L. Liows, Théorémes de traces et d’interpolation, I-V, I-1T: Ann. Scuolg Norm, Sup.
Pisa 13 (1959), 389-403; 14 (1960), 317-331; 111 J. Math, Pypeg Appl. 42 (1963),
195-203; 1v: Math. Angl. 151 (1963), 4256 3 Vi dead. Brogiy, Ciensas 35 (1963), 1-10,

19, 7. LoFSTRGM, Besov Spaces in the theory of approximations, Ann. Mazh, Pura App,
85 (1970), 93-184,

T. R. Lucas, A generalization of L-splines, Numer. Mary, 15 (1970), 359-370.

21. 8. M. NIKOL’SKH, On theorems of imbedding, extension_, and approximation for
differentiable functions of several variableg (Russian), Uspehi Mar. Nauk, 16 (1961),
63-114,

22, 8. Norp, Approximation broperties of spline fit, Nordisk Tidskr, Informations.
Behandling (BIT) 7 (1967), 132-144,



23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

3s.

36.

37.

38

APPLICATION OF BESOV SPACES TO SPLINE APPROXIMATION 327

RrcHARD O’NE1L, Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963),
129-142,

J. PeeTrE, Espaces d’interpolation, génératisations, applications, Rend. Sem. Mar.
Fis. Milano 34 (1964), 133-164.

J. Peetre, “Introduction to Interpolation™ (Swedish), Lecture notes, Department of
Mathematics, Univ. of Lund, Lund, Sweden, 1966.

J. PeetrE, “Reflections about Besov Spaces” (Swedish), Lecture notes, Department
of Mathematics, Univ. of Lund, Lund, Sweden (1966).

J. PEETRE, Sur les Espaces de Besov, C. R. Acad. Sci. Paris; Sér. A 264 (1967), 281-283.
J. PEETRE AND V. THOMEE, On the rate of convergence for discrete initial-value problems,
Math. Scand. 21 (1967), 159-176.

F."M. PERRIN, “An Application of Monotone Operators to Differential and Partial
Differential Equations on Infinite Domains,” Doctoral Thesis, Case Institute of Tech-
nology, Cleveland, Ohio, U.S.A., 1967.

M. H. ScuuLTZ AND R. S. VARGA, L-splines, Numer. Math. 10 (1967), 345-369.

F. ScHurer, A note on interpolating quintic splines with equally spaced nodes, J.
Approximation Theory 1 (1968), 493-500.

A. SHARMA AND A. MEIR, Degree of approximation of spline interpolation, J. Math.
Mech. 15 (1966), 759-767.

B. Swartz, 0(h**+*-")-bounds on some spline interpolation errors, Bull. Amer. Math.
Soc. 74 (1968), 1072-1078.

B. SwarTz AND R. 8. VARGA, Error bounds for spline and L-spline interpolation,
to appear.

M. H. TAIBLESON, On the theory of Lipschitz spaces of distributions in Euclidean
n-space, 1. Principal properties, J. Math. Mech. 13 (1964), 407-479.

R. S. VARGA, Error bounds for spline interpolation, in “Approximations with Special
Emphasis on Spline Functions” (I. J. Schoenberg, Ed.), pp. 367-388. Academic
Press, New York, 1969.

O. B. WIDLUND, On the rate of convergence for parabolic difference schemes. L, in
“Numerical Solutions of Field Problems in Continuum Physics” (G. Birkhoff and
R. S. Varga, Eds.) Vol. II, pp. 60~73, SIAM-AMS Proceedings, Amer. Math. Soc.,
Providence, Rhode Island, 1970.

- A. Zyamunp, “Trigonometric Series,” Vol. 1, Cambridge University Press, 1959.

Printed in Belgium by the St. Catherine Press Ltd., Tempelhof 37, Bruges




