ON POWERS OF NON-NEGATIVE MATRICES

BY

J. C. HOLLADAY AND R. S. VARGA

Reprinted from the Proceedings of the American Mathematical Society
Vol. 9, No. 4, pp. 631-634
August, 1958
ON POWERS OF NON-NEGATIVE MATRICES

JOHN C. HOLLADAY AND RICHARD S. VARGA

Let $A = [a_{i,j}]$ be an $n \times n$ matrix consisting of non-negative elements. It is well known [1, p. 463] that A is primitive if and only if, for some positive integer n, A^n has all its elements positive. One needs to know only this property of primitive matrices to understand this paper. If A^k is positive (i.e. has all its elements positive), then A^h is also positive for all integers $h > k$ [1, p. 463]. Letting A be primitive, we shall define $\gamma(A)$ as the smallest positive integer h such that A^h is positive.

Wielandt [2, p. 648] stated without proof the inequality

\begin{equation}
\gamma(A) \leq n^2 - 2n + 2,
\end{equation}

and gave an example to show that $\gamma(A)$ could equal $n^2 - 2n + 2$. In the special case that all the diagonal elements of A are positive, Wielandt [2, p. 644] showed that one may obtain the better bound

\begin{equation}
\gamma(A) \leq n - 1.
\end{equation}

In this paper, we show that when there are one or more positive diagonal elements of A (or of one of its low order powers), bounds may be found for $\gamma(A)$ which are better than (1), although not necessarily as good as (2). We shall also give an easy proof of (1).

In our discussion, we shall assume that the matrix A is non-negative and primitive. Let J be the set of positive integers one through n. For L a subset of J, define $F^0(L) = L$ and, by induction, for k a positive integer, define $F^k(L)$ as the set of all $i \in J$ such that for some $j \in F^{k-1}(L)$, $a_{i,j} > 0$. For h a non-negative integer, and $j \in J$, define $F^h(j)$ as $F^h(L)$ where L is the set containing j and only j. We remark that, for h a positive integer, the element of A^h in the ith row and jth column is positive if and only if $i \in F^h(j)$.

Lemma 1. $F(J) = J$.

Received by the editors January 16, 1958.

1 Work done under the auspices of the A.E.C.

2 One may also use Lemma 1 of this paper.

3 Others, in examining the fundamental properties of non-negative primitive matrices have indirectly obtained bounds for $\gamma(A)$. For example, as pointed out by Wielandt [2, p. 647], Frobenius [1, p. 463] indirectly obtained the bound $2n^2 - 2n$, while Herstein [3, p. 20] indirectly obtained the bound n^2 for $\gamma(A)$.

4 This obviously implies that A is irreducible. See [1, p. 463].

631
Proof. For \(j \in J, J = F_{r(A)}(j) \subseteq F_{r(A)}(J) = F[F_{r(A)}^{-1}(J)] \subseteq F(J) \subseteq J \).

Lemma 2. If \(L \) is a proper subset of \(J \), then \(F(L) \) contains some element not in \(L \).

Proof. If not, then \(J \supseteq L \supseteq F(L) \supseteq \ldots \supseteq F_{r(A)}(L) = J \) which contradicts \(J \neq L \).

Corollary. If \(h \leq n - 1 \), then \(\{j\} \cup F(j) \cup \ldots \cup F^h(j) \) contains at least \(h + 1 \) elements.

Proof. This is obviously true for \(h = 0 \). Using mathematical induction, assume it is true for some \(0 \leq h \leq n - 1 \). Set \(L = \{j\} \cup \ldots \cup F^h(j) \), and apply Lemma 2.

We remark that, given \(j \in J \), the set of integers \(h \) such that \(j \in F^h(j) \) is a semigroup. Therefore, properties described below may be easily observed by observing the first few iterates of \(A \).

Lemma 3. Let \(k \) be a non-negative integer, and \(j \in J \). For \(h \geq k \), let \(j \in F^h(j) \). Then, \(F^{n-h+k}(j) = J \).

Proof. The corollary above implies that \(\{j\} \cup \ldots \cup F^{n-1}(j) = J \). For each \(0 \leq h \leq n - 1 \), \(j \in F^{n-1+h-j}(j) \), and so \(F^h(j) \subseteq F^{n-1+k}(j) \). Therefore, \(J = \bigcup_{h=0}^{n-1} F^h(j) \subseteq F^{n-1+k}(j) \subseteq J \).

Theorem 1. Let \(k \) be a non-negative integer. Let there be at least \(d > 0 \) elements \(j \) of \(J \) such that for \(h \geq k \), the \(j \)-th diagonal element of \(A^k \) is positive. Then, \(\gamma(A) \leq 2n - d - 1 \).

Proof. The corollary above implies that, for each \(j \in J \), there exists \(0 \leq h \leq n - d \) such that \(F^h(j) \) contains at least one of the \(d \) elements described above. Then,

\[
J \supseteq F^{2n-d-1+h}(j) = F^{n-d-h} \{F^{n-1+h}(j)\} \supseteq F^{n-d-h}(J) = J.
\]

Corollary. Let at least \(d > 0 \) of the diagonal elements of \(A \) be positive. Then, \(\gamma(A) \leq 2n - d - 1 \).

Theorem 2. Let \(h \) be a positive integer, and let \(A + A^2 + \ldots + A^h \) have at least \(d > 0 \) of its diagonal elements positive. Then, \(\gamma(A) \leq n - d + h(n-1) \).

Proof. Let \(j \) be one of the \(d \) elements such that \(j \in F^p(j) \) for some \(p, 1 \leq p \leq h \). Then, if we substitute 0 for \(k \), and \(F^p \) for \(F \), we may apply Lemma 3, and conclude that \(F^{(n-1)p}(j) = J \). Choose arbitrarily \(j' \in J \). Then, the corollary to Lemma 2 implies that there exists an \(l \),

\[^6\text{If all the diagonal elements of } A \text{ are positive, then } d = n, \text{ and the inequality of the corollary reduces to Wielandt's result (2).} \]
0 \leq l \leq n - d \text{ such that } F^l(j') \text{ contains at least one of these } d \text{ elements. Therefore, } J \supseteq F^{n-d+k(n-1)}(j') = F^{n-d-l+(h-p)(n-1)} \left\{ F^{l-1}(j') \right\} \supseteq F^{n-d-l+(h-p)(n-1)}(J) = J, \text{ since } n - d - l + (h-p)(n-1) \geq 0.

Corollary. Let } A \text{ be non-negative and positively symmetric in that } a_{i,i} > 0 \text{ if and only if } a_{i,j} > 0. \text{ Then, } \gamma(A) \leq 2(n-1).

Proof. } A^2 \text{ has all its diagonal elements positive. Now, apply Theorem 2.}

Theorem 3. } \gamma(A) \leq n^2 - 2n + 2.

Proof. Given } j \in J, \text{ consider the case where } \{ j \} \cup \cdots \cup F^{n-2}(j) \neq J. \text{ Then, for } 1 \leq h \leq n - 1, F^h(j) \text{ contains exactly one element not in } \{ j \} \cup \cdots \cup F^{h-1}(j). \text{ Let } p \text{ be the smallest positive integer such that } F^p(j) \text{ contains at least two elements. Then, there exists an integer } m < p \text{ such that } m > 0 \text{ (unless } p = 1, \text{ in which case } m = 0) \text{ and such that } F^m(j) \subseteq F^p(j) = F^{m+(p-m)}(j) \subseteq F^{m+2(p-m)}(j) \subseteq \cdots. \text{ Lemma 2 implies that } F^{n-(n-1)}(p-m)(j) = J. \text{ But } p \leq n \text{ implies that } m + (n-1)(p-m) = p + (n-2)(p-m) \leq n^2 - 2n + 2.

If } \{ j \} \cup \cdots \cup F^{n-2}(j) = J, \text{ then there exists an integer } h, 0 \leq h \leq n - 1, \text{ such that } F^h(j) \subseteq F^h(j) \subseteq \cdots \subseteq F^{(n-1)h}(j) = J. \text{ But, } (n-1)h \leq n^2 - 2n + 1 < n^2 - 2n + 2. \text{ This completes the proof.}

Let } A \text{ and } B \text{ be two non-negative primitive matrices such that if } A = \| a_{i,j} \|, \text{ and } B = \| b_{i,j} \|, \text{ then } a_{i,j} > 0 \text{ implies that } b_{i,j} > 0. \text{ It is clear that } \gamma(A) \geq \gamma(B). \text{ Furthermore, if } B \text{ has many positive elements for which there are no corresponding positive elements of } A, \text{ then one would expect to have } \gamma(A) > \gamma(B). \text{ We shall show that when there are many positive off-diagonal elements of a non-negative primitive matrix, some of the preceding inequalities may be improved.}

Given a positive integer } j, 1 \leq j \leq n, \text{ define } X(j) \text{ as the number of elements } a_{i,j}, i \neq j, \text{ for which } a_{i,j} > 0. \text{ Then, the corollary to Lemma 2 implies that } X(j) \geq 1 \text{ whenever } n > 1, \text{ for all } j. \text{ Whenever } X(j) > 1, \text{ we may improve the result of the corollary to Lemma 2 by observing that if } 1 \leq h \leq n - X(j), \text{ then } \{ j \} \cup F(j) \cup \cdots \cup F^h(j) \text{ contains at least } h + X(j) \text{ elements. If we use this result in the proofs of Lemma 3 and Theorem 1, we obtain the following improvements.}

Lemma 4. Let } k \text{ and } j \text{ be as in Lemma 3. Then, } F^{n-X(j)+k}(j) = J.

Theorem 4. Let } A \text{ be as in Theorem 1. Let } X_1 \text{ be the minimum of } X(j) \text{ for the } d \text{ elements } j \in J. \text{ Let } X_2 \text{ be the minimum of } X(j) \text{ for the remaining } n-d \text{ elements } j \in J. \text{ Then,}

\[\gamma(A) \leq 2n - d - X_1 - \min \left[X_2 - 1; n - d \right] + k. \]
Corollary. Let \(d > 0 \) of the diagonal elements of \(A \) be positive. Then,
\[
\gamma(A) \leq 2n - d - X_1 - \min [X_2 - 1; n - d].
\]
A similar improvement may also be obtained for Theorem 2.

For any non-negative irreducible matrix, we may define the (irreducible) order of \(A \), denoted by \(\Lambda(A) \), as the smallest positive integer \(h \) such that \(I + A + A^2 + \cdots + A^h \) is positive, or equivalently, \(\{j\} \cup \cdots \cup F^h(j) = J \) for each \(j \). By definition of irreducibility, it is clear that \(\Lambda(A) \leq n - 1 \). If \(\Lambda(A) \) is less than \(n - 1 \), and the value of \(\Lambda(A) \) is known, many of the preceding inequalities may be improved. We summarize how the order of \(A \) may be used to sharpen respectively the results of Lemma 4, Theorem 4, and its corollary above. These results are respectively:

(3) \(F_{\min \{n-X(j); \Lambda(A)\}}(j) = J \),

(4) \[
\gamma(A) \leq \min [n - X_1; \Lambda(A)] + \min \{n - d - \min [X_2 - 1; n - d]; \Lambda(A)\} + k,
\]

(5) \[
\gamma(A) \leq \min [n - X_1; \Lambda(A)] + \min \{n - d - \min [X_2 - 1; n - d]; \Lambda(A)\}.
\]

Bibliography

Los Alamos Scientific Laboratory of the University of California and Westinghouse Electric Corporation, Bettis Plant