Reprint from ISNM Vol. 20, 1972.

LINEAR OPERATORS AND APPROXIMATION
Edited by P. L. Butzer, J.-P. Kahane and B. Sz.-Nagy
Proceedings of the Conference in Oberwolfach, August 14—22, 1971

Birkhiiuser Verlag, Basel und Stuttgart



452

Chebyshev Semi-Discrete Approximations
for Linear Parabolic Problems®)**)
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1. Introduction
Consider the solution u(x, £) of the heat equation

u (x, t):uxx(xa t)+l"()€), 0<x=<=1, t=0,
(1.1 u{x, 0) = (x), 0=x=1,
u(0,t) =u(l,t) =0, t=0.

Leaving time continuous, consider the particular spatial discretization of (1.1)
brought about by the usual three-point difference approximation to u, i.e.,

u((i+ D)k, 1)—2u(h, ) +u((—1)h 1)
hz

Uy (ih, 1) = (N +1)h = 1).

The resulting approximation w(ih, t) to the solution u(x, ¢) of (1. 1), called the semi-
discrete approximation of u(x, f), satisfies

(1.2)
dw(;ftl, ) _ w(G+Dh, Z)MZW'S?, 1) +w((i—1h, t) Cr), 1=i=N, (=0,
w(ih, 0) = i(ih), O=i=N+1,
w0, 1) = w((N+1h, 1) =0, ¢ =0.

Written equivalently in matrix notation, this becomes

v dw(t)
(13) 7————“’“AW(t)+l', t>0,

w(0) = u,

where w(t), r, and & are column vectors with N components, with w(t)=
=(w, (), ..., wy(?))" where w;(t)=w(ih, t). Note that r and i@ are determined from

#) Research supported in part by AEC Grant AT (11-1)-2075.
**) The contents of this paper also can be found in [12, Ch. 9].
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given quantities, and A4 is the familar tridiagonal Hermitian and positive definite
NX N matrix, given by

2 —1 0]
-1 2 -1 ,
(1.4) AWL .

) TR .
.1

0

In what is to follow, only the Hermitian positive definite character of the NXN
matrix A is essential, and we henceforth assume that our semi-discretization results
in (1.3) with A Hermitian and positive definite. In particular, this assumption is
valid for linear parabolic problems in n spatial variables of the form

u(x, 1) = :}? (K; (x) 1y, (x, t))xi—a(x)u(x, t)+r(x), for t=0, x€L,

09 )y, 0) = 20, e,
u(x, t) = g(x), x€0Q, t=0,

where Q is a bounded region in R", and the quantities K;(x), o(x), are positive in
0, provided that a suitable (2n+1)-point difference approximation of (1. 5) is used
(cf. [10, p. 253]).

Returning to (1. 3), the solution w(z) can obviously be expressed as

(1;6) w(t) = A= 'r+exp(—t4) {i—4"'r} (t=0),

where as usual, exp (—14) = f’ (—tA)/k!. The solution of (1.6) is commonly
k=0 .

approximated by means of matrix Padé rational approximations of exp (—t4), and
these give, as special cases, the well-known forward difference, backward difference,
and Crank—Nicolson methods for such parabolic problems (cf. [10, § 8. 3]). Our
interest in the next section will be on Chebyshev, rather than Padé, rational approxi-
mations of exp (—t4). This is because Padé rational approximations of e, being
defined as local approximations of e™* at x=0, are generally poor approximations
of e=* for large x, and this leads to restrictions (for reasons of stability and/or ac-
curacy) on the time step that can be taken. Chebyshev rational approximations of ™%,
in contrast, are defined globally with respect to the interval [0, + ), and do not
have such time step restrictions, as we shall see. -
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2. Chebyshev semi-discrete approximations

To define the Chebyshev semi-discrete approximations of (1. 6), we consider
the following approximation problem. If 7,, denotes all real polynomials p(x) of
degree at most m, and T, . analogously denotes all real rational functions Py, o (X) =
=p(x)/q(x) with per,,, q €mn,, then let

(2 I) j“ni,n = lnf ”e_x'rm,n(x)”Lw[O,w] = Inf {Sup ;ewx“rm,n(x).'}'
Ton,n T xz=0

These constants Am,n are called the Chebyshev constants for e=* with respect to the
interval [0, + o). It is obvious that Am, u 18 finite if and only if 0=sm =n, and more-
over, given any pair (m, n) of nonnegative integers with 0=m=n, it is known (cf.
ACHIESER [1, p. 55]) that, after dividing out possible common factors, there exists a

A

unique Py € Ty, With :

2.2 Finn () = Pon 0 (X)/ G ()
and with ¢, ,(x)=0 on [0, =), such that
(2 3) )Lm,n = ”enx'—'fm,n(x)”Lw[O,m]'

Since g, ,(tA4) = Zn’ ¢j(t4)’ is a real polynomial in the N X N matrix A, it is evident
=0

=
from the fact that Gm,n(X) is positive on [0, + <) that ¢, ,(¢4) is a Hermitian and
positive definite N X N matrix for each 7=0. Thus, in analogy with (1. 6), we define
the (m, n)-th Chebyshev semi-discrete approximation w,, ,(t) of the solution w(z) of
(1.3) as

@A Wn () = AT A (G () (Prpd) - A1) (1=0),

For the practical computation of W, (¢) for a fixed finite t==0, assume first
that the steady-state solution W=A4"r of (1. 3) has been determined, which amounts
to solving the matrix equation AW =r. Then, we write (2. 4) equivalently as

(2 5) ém,n(lA)wm,n(t) = VO; v0 = ém,n(tA)®+ﬁn1,n(fA){ﬁ_‘?v}s

where v, is determined from the known initial vector i (cf. (1.3)), and the known
steady-state vector w=A"'r. Since Gmn€m, is positive on [0, +°), ., can be
factored into real linear and quadratic factors: :

(2.6) Gon,n () =fﬂl fi(x)- ]]; mi(x), s;+2s, = n,
i= j=

where /;€n,, m;€n,, and where the l; and m; are also positive on [0, + o). Thus,
the matrices /,(14) and m ;(t4) are again Hermitian and positive definite for each
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t=0, and the solution w,, ,(¢) of (2. 5) can be obtained by solving recursively the
matrix problems ‘

m;(tA)V; = v;_q, l=sj=s,,
@7 {l,-(zA)vS2+i = Vorio1s 1Ziss,,

and then defining w,, ,(1)=v, , . In particular, when 4 is tridiagonal as in (1. 4),
the matrices of (2. 7) are either tridiagonal or five-diagonal positive definite matrices.
As such, the solution of (2. 7) by means of Gaussian elimination with no pivoting
is both computationally fast and numerically accurate.

For computational efficiency, one should always choose m=n in (2. 4) for
applications of the Chebyshev semi-discrete method to actual problems. The reason
for this is quite clear: the bulk of the work in finding the solution w,, ,(#) of (2. 5)
comes from the inversion of the polynomial 4, ,(t4) of degree n in the matrix 4,
and the work involved in this inversion in practice is virtually independent of the
choice of m. For further discussion of such computational aspects of the Chebyshev
~ semi-discrete method, see [11].

To estimate the error in w(t)—w,, ,(t) we use vector /,-norms, ie., if v=
N

=y, ..., o))", then [v[3 = 3 |v,>. If, for any NXN matrix C, |C|, denotes
=

the induced operator norm (or spectral norm) of C, i.c.,

@3 | ICl, = sup{“cv”z},

v=0 L[Vl

it is well known (cf. [10, p. 11]) when C is Hermitian with (real) eigenvalues p;,
I=i=N, that | C|, can be expressed as

2.9 ICll, = max |u.

1=i=N
Consequently, if {4} , denotes the (positive) eigenvalues of 4, the assumed Her-
mitian character of 4 allows us to conclude from (2. 9) that

(2.10)  |lexp(—t4)~ 7y a(tA)], = max |e~"*—7, ,(t4)], for all 7=0.
1 .

=i{=N
But as #4;=0 for all 1=i=N and for all r=0, it follows from (2. 3) that
lexp(—1A4) = Fp w(tA s = Ay, for all ¢z=0.
Consequently, from (1. 6) and (2. 4),
(2. 11) 1w (@) = Wou (Dll2 = llexp(—14) = F y (A5 - U~ A7 r |, =
= Apali—A4-1r|,, for all r=0.

Note that since the right-hand side of (2. 11) is independent of t, we have an error
bound for w(#)—w,, ,(¢) for all t=0. In contrast with the familiar Padé "m‘et‘hods

&
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which restrict the size of # for reasons of accuracy and/or stability, the Chebyshev
semi-discrete method can be used for very large values of 7. The difference, of course,
comes from the fact that Padé rational approximations of e™* are designed to approxi-
mate e~* well in a neighbourhood of x=0, whereas Chebyshev rational approxi-
mations of e are designed to approximate e™* over [0, + o).

In general, the error of the spatial discretization leading to (1. 3) must be bounded
to give the total error (i.e., space and time) of these Chebyshev semi-discrete approxi-
mations. Such spatial discretization errors are discussed in [12], for example.

3. The Chebyshev constants for e™*

The utility of the Chebyshev semi-discrete approximations depends, from (2. 11),
on the behavior of the Chebyshev constants 4, , of (2. 1), as n <. From (2. 1),
it is clear that

(3 1) 0= }“n,n = j‘n—-i,n == lo,n (7’350)

Based on elementary arguments, the following result was proved in Coby, MEINARDUS,
and VARGA [4].

THeOREM 1. Let {m(n)};>, be any sequence of nomnegative integers with 0=
=m(n)=n for each n=0. Then,
1

T e ?
(3 2) ,}1_1130 ()'m(n),n)lln = 72’ < ’5:

where 0=0.13923... is the real solution of 20e?**1=1. Moreover,

3.3) lim (2, )" = %
The results of (3.2) and (3. 3) establish the geometric convergence to zero of
the Chebyshev constants 4, , for e™* in [0, ). In particular, if m(n)=n, then the

Chebyshev constants 1, , for e in [0, +<) are from [4]:

n| n | e Nal

0 | 5.00(—01) 5 19.35(—06) 10 | 1.36(—10)

1 |6.69(—02) 6 |1.01(—06) 11| 1.47(—11)
2| 7.36(—03) 7 1.09(-07) 12 | 1.58(—12) |’
3 | 7.99(—04) 8 [1.17(-08) 13 | 1.70(—13)

4 | 8.65(—05) 9 | 1.26(—09) 14| 1.83(~14)




CHEBYSHEV SEMI-DISCRETE APPROXIMATIONS FOR PARABOLIC PROBLEMS 457

where a(—f) denotes «-107# in the table above. Thus, the rate of convergence
to zero of the 4, , appears to be much better than that given by the upper bound of
(3-2). Also, the quantities 4, ,, 0=n=9, as tabulated in [4], would lead one to con-
jecture that lim (4, )"/ exists, and that

(3.4) lim (Ao, )" = %

>0

This in fact has been recently shown by SCHONHAGE [8].

4. Chebyshev constants for other entire functions

The preceeding results on the geometric convergence to zero of the Chebyshev
constants 4,, , for 1/e* in (3. 2) and (3. 3) hold for a wider class of entire functions
than just f(z)=e*. A generalization of the results of Theorem 1 has been recently
given in MEINARDUS and VARGA [7], and can be described as follows.

Let f(z) = Z’ a,z* be an entire function (i.e., analytic for every finite z) with
M (r)y= sup | f(z)] its maximum modulus function. Then, fis of perfectly regular
121 =

growth (o, B) (cf. Boas [2, p. 8] and VALIRON [9, p. 45]) if there exist two (ﬁmte) :
positive numbers ¢ (the order) and B (the type) such that

4.1 lim lll_j“r’;‘ll
We then have (cf. [7])

= B.

THEOREM 2. Let f(z) = 2 a,z* be an entire function of perfectly regular growth
K=0

(¢, B) with a,=0 for all k=0, and for any pair (m,n) of nonnegative integers with
O=m=n, let

Fmn (x) ’

“4.2) A = mfg “L 01

Tmn

f()

be its associated Chebyshev constants. Then, for any sequence {m(n)}:-_, of nonnegative
integers with 0=mm)=n for each n=0,

(4} 3) jﬁ (;Lm(n),n)lln = 2-1/9 -1 .
Moreover,
4.4 lim (1, )" = 2721V,

n-co

As special cases of Theorem 2, we have of course f(z)=¢", f(z)=sinh (z7) and
f(z)=J,(iz) for p a nonnegative integer, where J, denotes the Bessel functioxi of
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the first kind. For f(z)=¢*, for which ¢ —=RB=11in (4. 1), the results of (4. 3) and (4. 4)
are slightly weaker than those of (3.2) and (3.3) of Theorem 1.
The proofs of Theorems I and 2 depend upon estimating

i 1
(@) (%)
where 5,(z) = }Z’ a,z* is the n-th partial sum of f(z). It is shown in [7] that, under the
hypotheses of !_cf:hoeorem 2,

1/n
1i = e,
Eri[ se S ]

so that the upper bound of (4. 3) cannot be improved using this specific technique.

Upon examining Theorem 2, we see that the bounds of (4. 3) and (4. 4) depend
upon g, but not on B, and this suggests the possibility of extensions of Theorem 2
to entire functions which are of finite order, but not of perfectly regular growth.
Such extensions have been considered in MEINARDUS, REDDY, TAYLOR, and VARGA
[6], and we state a representative result which generalizes Theorem 2. For notation,
let &(r, s), for given r=>0 and s=>1, denote the unique open ellipse in the complex
plane with foci at x=0 and x=r and semi-major and semi-minor axes @ and b such
that bja = (s2—D/(s*+1). If f(2) is any entire function, we set

(4. 5) M (r, $)=sup {f@)|:z€e(r, 9)}-

11

L. 10,¢°]

TuroreM 3. Let f(z) = > a,z* be an entire function with nonnegative Taylor
k=0

coefficients and ao>=0. If there exist real numbers s=1, A=0, =0 and ro=0 such that
(4. 6) M (r,5) = A(S o) for all r=rg,

then there exist a real number q=s*0=1 and a sequence of real polynomials
{p, ()} with p,€m, for each n=0 such that

_ {1 1 g
1 | — -
@ ’:Eg {hf(x) Pa(X) l¥L,,°[0,<>o]} g =1L
Note that (4.7) implies the geometric convergence to zero of the Chebyshev
constants {4, . .Jmeo Of 1/ When O=m(n)=n.
To motivate the next result, it is convenient to recall some classical results of
Bernstein for polynomial approximation on finite intervals. Given a real-valued
function f€ C°[—1, +1], let

(4. 8) E,(f) = i%f If=Pallpor—1,+13-

If fis the restriction to [— 1, +1] of a function analytic in an ellipse in the complex
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plane with foci —1 and +1, then Bernstein proved (cf. MEINARDUS [5, p. 91]) that
there exists a real number g=>1 such that

4.9) fm EL(f) :é< 1.

Conversely, if (4. 9) holds, Bernstein proved the inverse result (cf. MEINARDUS [5, p.
92]) that f is necessarily the restriction to [—1, +1] of a function analytic in an
ellipse in the complex plane with foci at —1 and +1. Consider then the results of
of Theorems 2 and 3. These give sufficient conditions on the entire function f(2)
so that the Chebyshev constants 4, , of 1/, for 0=m=n, converge geometrically
to zero as n—eo. In the spirit of Bernstein’s classical inverse theorems, the fol-
lowing result of [6] gives necessary conditions for this geometric convergence.

THEOREM 4. Let f(x)=>0 be a real continuous function on [0, =o), such that there
exist a sequence of real polynomials {p,(x)};"_, with p,cn, for all n=0, and a real
number q =1 such that

1/n
1
—— _.1 } = — =< 1.

Pn S L 10,1 q

Then, there exists an entire function F(z) with F(x)=f(x) for all x=0. Moreover, F
is of finite order, i.e.,

11

(4.10) im [

Ti?n— InlnMF(r)

= O < oo,
r—>oco Inr @

In addition, for each s>1, there exist real numbers K=K(q,s)=0, 0=0(q, s)>1,
and ro=ry(q, s)=>0 such that

@.11) My(r,s) = K(| Sfliroron)? forall r=v,.

Finally, to complement the preceding results of this section, it is shown in [6]
that there exist entire functions f(z), of finite order which are positive on [0, + <o),
for which the Chebyshev constants A, Of 1/f, for 0=m=n, cannot converge geo-
metrically to zero as n — <.
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