Minimal G-Functions

DAVID H. CARLSON anp RICHARD S. VARGA

REPRINTED FROM LINEAR ALGEBRA AND ITS APPLICATIONS

VOLUME 6 - 1973

© American Elsevier Publishing Company, Inc., 1973







LINEAR ALGEBRA AND ITS APPLICATIONS 6, 97-117 (1973) 97
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ABSTRACT

The concept of a G-function has been introduced by Nowosad and Hoffman; it
gives an appropriate setting for many generalizations of the Gerschgorin Circle
Theorem. In this paper we establish several equivalent conditions for a minimal
continuous G-function and for a minimal G-function, and give characterizations of
such minimal functions. We show that a convolution of two minimal G-functions
is seldom minimal. Finally, we establish new results concerning the patterns of
dependence of G-functions.

1. INTRODUCTION

The concept of a G-function has been introduced by Nowosad and
Hoffman; it gives an appropriate setting for many generalizations of the
Gerschgorin Circle Theorem. In this paper we establish several equivalent
conditions for a minimal continuous G-function and for a minimal G-
function, and give characterizations of such minimal functions. We show
that a convolution of two minimal G-functions is seldom minimal. Finally,
we establish new results concerning the patterns of dependence of G-
functions.

2. NOTATION AND PRELIMINARY RESULTS

Let C» denote the set of all # X 7 complex matrices. Let #,, n > 2,
be the collection of all functions / = (f,..., /) such that for each s =
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L2,...,n [0 >R, ie, oo > f(4) =0 for any 4 €C»”, and §,
depends only on the moduli of the off-diagonal entries of the matrices,
Le, if B =(b;;) and 4 = (a, ;) are in C*" with |b,,| = |a, ;| for all
t,1=12,...,n, 07, then f{(B) = /,(4). We begin with (cf. Hoffman
(2], Hoffman and Varga [3], and Nowosad [5, 67)

DeriNiTioN 1. We say fe 2, is a G-function if, for each 4 = (a, ;) €
Cmnn satisfying
la, | >7.04), i=1,2,...,n, (2.1)

A is nonsingular,

Equivalently, fe 2, is a G-function if, for every 4 = (a, ;) eCmm,
every eigenvalue of 4 lies in the union of the » disks

Ay ={2€C: |z — a5 ;.| < /(4)}, k=1,2,..., n (2.2)

We will denote by ¥, the set of G-functions in Z,,.
As examples, if

ri(d) =2 |agl, c(d) = 2 |as, i=1,2,...,n  (2.3)
j=1 j=1

i i
then 7 = (r4,...,7,) and ¢ = (cy,. .., ¢,) are G-functions. More generally,

if x = (xy,..., x,)7 is any column vector in C* with positive components,
written x > 0, and

1 Fia
a; %5,  cd) =— 2.,
X

r(4)

!l

IS
;;;.Aa|

X, i=1,2,...,n, (24)

~
u—y

4

S

j=
Vi

S
Iy

then 7* = (r4%,...,7,% and ¢® = (¢;%,.. ., ¢,*) are G-functions.

The study of G-functions is closely related to the study of M-matrices!,
as 1s shown by the following proposition, which follows easily from the
initial work in this area by Ostrowski [7], as well as a result of Fan [1].
For notation, if f€ &, and if 4 = (a, ;) € €7, then A7(4) = («; ;) € C*"
1s the matrix whose elements are defined by

OCZ’,_?‘ = I(li.j‘ J{OI‘ a]l 7/ # 7’, O(Z-’Z- = fz(A), 7:, 7 _ ]., 2, PEPEN n. (2.5)

1B = (b; ) € R®F, k= 1,is a (possibly singular) M-mairix if and only if b; ;< 0
for all 4 £ 7, and for any d = (dy,..., d;) T e €% with d > 0, B + diag(d,,. .., dy) is
nonsingular. 1f Bis an irreducible M-matrix, then B + diag(d,, . .., d;) is nonsingular
for any d == 0 with d 5 0.
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Prorosition 1. Let fe P,. Then f€ G, if and only if M7(A) 15 a
(possibly singular) M-matvix for every A e Cvm. Thus, if fe€ 9, and if
A € € is srreducible, there exists an x € C* with x > 0 (depending on A)
such that

Ay = 7o), i=1,2,...,n; (2.6)

f(d) =r24), i=12,...,n 2.7)

It follows from Eq. (2.6) thatif /€ ¢, and 4 € €™ is irreducible, then
f:(4) > 0,7 =1,2,...,n Note also that the vector x of Eq. (2.7) is the
unique (up to scalar factors) eigenvector associated with the zero eigenvalue
of the irreducible matrix .#7(A4).

We shall say that /€ £, is continuous if, for each + =1,2,..., n, [,
is continuous on all of . The set of continuous /€ &, and ¥, will be
denoted by £,¢ and ¥,°, respectively. Since the set of irreducible # X »
matrices is dense in €™7, it is clear that if fe £, is continuous, it is
completely determined by its action on the irreducible matrices.

PROPOSITION 2. Let f € P,°. Suppose that jor every irreducible A € €™
which satisfies Eq. (2.1), A vs nonsingular. Then, f € %,°.

Proof. Let A be any reducible matrix in €" which satisfies Eq. (2.1).
We must show that 4 = (a; ;) is nonsingular. For ¢ > 0, define 4(e) =
[a:,5(¢) ] € G by

— || if ¢557 and a; ;7 0;
a; (e =3 —e¢ if ¢s%7 and a,;,;=0; (2.8)
l a,,| i 1=7.

For ¢ > 0 sufficiently small, it is clear from (2.1) and the continuity of
f, that A(e) satisfies (2.1), and is irreducible as well. Thus, by hypothesis,
A(e) is nonsingular, and 4 (e) is evidently a nonsingular M-matrix. But,
because the entries a; ; of A satisfy

a; ;| <la; ;)] for all 2547, la;l=a,:e), 47=12,...,n (2.9)
N | '

and because A4 (&) is a nonsingular M -matrix, then it follows (cf. Ostrowski
[7]) that |det 4| > det A(e) > 0, i.e., 4 is nonsingular. Q.ED.
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3. THE CONVEX STRUCTURE OF ¥, AND ¥ ,°

We first define a partial order on #,. If / and g are in &,, we write
=g if [,(4)=g(4), 1=1,2,...,n, all deC»" (3.1

It is clear from Proposition 1 that if fe &, and ge 4, with f > g, then
also fe 9.

Next we state a theorem of Hoffman [2]; we shall in Sec. 4 prove a
slight extension (Theorem 3), and use our proof to obtain other results.

TaeEOREM 1. [If [ and g are in G,, and O << o. << 1, then h, defined by
hi(A) = 1#4(4)gr=(4), r=1,2,...,n, al AeC" (3.2)
1s also mn 9,

We shall call the G-function %, defined by Eq. (3.2), the a-convolution
of f and g. As has been noted by Hoffman, it follows from Theorem 1
that ¢, and 9,°¢ are convex sets. To see this, given / and ¢ in ¥, and
0 <oa<1,define o = (ky,..., &) €, by

BAA) = ofi(A) + 1 —a)gd), i=1,2,...,n, al AeCw»  (3.3)

By the generalized arithmetic-geometric mean inequality, £ > 4. Since
he9,, we have ke ¥,, ie., 9, is convex. Obviously if f and g are in
4, so are i and %k, and %,° 1s also convex.

We next define

Fy={Inf=(nf,...Inf): f= {1, ..[)€Fn}, (3.4)

and % ,¢ analogously; note that the In f, may assume the value — oo.
Hoffman’s result may be restated as: ., is convex (and, hence, so is
Z,°).

Suppose [ and g are in ¥,, with / > ¢. Then, for any 4 eC*",
determines larger eigenvalue inclusion regions [cf. Eq. (2.2)] than g, and
is thus, in a sense, uninteresting. We may cull out such uninteresting
G-functions with the following

DEerFINITION 2. Let f€ 9,

(i) [ is mimwmal in %, (or mimimal) if, for every ge &, for which
g < [, we have g = [;

i) if fe9,° ie., if f is also continuous, then [ is menimal in 4,°
(or minimal continuous) if, for every g € 4, for which g << f, we haveg = /.
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The minimal elements of the convex sets 4, and %,°¢ are in fact the
extreme points of &, and ¥,° [An extreme point f of a convex set C is
such that if / = «g + (1 — a)h, where 0 <o << 1 and g, heC, then /[ =
g = h(cf. [9, p. 162]).] Suppose f € %, is not minimal; then there exists
g€%,, ¢ <], ¢/ I wedefine h =2f—g then h >/, he¥,, and
/ = 1g + ik is not extreme in %,. On the other hand, if /€ %, is not
extreme in ¢,, then f = ag + (1 — )k, where 0 <a <1, ¢, he ¥,, and
g # h. Since g # h, thereis an 4 € ¢ for which, for some 7, g,(4) 7 h;(4).
For this 4 and this 7, we have

g (AW HA) <agi(d) + (1 — a)hi(4) = [i(4). (3.5)

Thus, we have g“st* < ag + (I — o) = f, and g*h1~* 3£ [, so that [ is
not minimal in ¢,,. The same arguments apply to %,°.

4, MINIMAL CONTINUOUS G-FUNCTIONS

It follows from Eq. (2.6) of Proposition I that, for a G-function / which
is minimal in 4, we must have f(4) = #*(4) for each irreducible 4 € (™",
where the vector x > 0 depends on 4. We will show in this section that
this property holds for any f which is minimal in %,°, and in fact is
equivalent to minimality in ¢,°. In the succeeding section, we find a
generalization of this property, to include reducible matrices, which is
equivalent to minimality in &,,.

Let .#,°, n > 2, denote the collection of all functions g = (g4,. .., &),
where, for each 7 = 1, 2,. .., n, g, is defined, positive, and continuous on
the set of irreducible matrices in €™”, and depends only on the moduli
of offdiagonal entries. For ge.7,° we define ¢ = (r,%,...,7,79) € #,° by

1 n
rI(A) = —— X la; lgd),  i=1,2,...,n, (4.1)
( ) g2<A) j.=_1’ Qt J
Vil

for each irreducible 4 e (™™,

THEOREM 2. Let f€9,°. Then the following are equivalent:
(i) [ s munimal i 9,°;
) [ is an extreme point of the convex set G ,°,
) (n > 2)1Infis an extreme point of the convex set L ,°;
(iii) for every A € C", the matrix M7 (A) 1s singular;
) for every A €eCv, there exists a B e O™ with
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by 5| = la,, ;| for all 157, ;.| = 1i(4), ,7=12,...,n, (42)

for which B singular ;
(iv) for every irveducible 4 € C*", theve exists an x€C" with x >0
(depending on A) for which

[(4) = r2A), 1=1,2,...,n; (4.3)
(iv') there exisis a g€ J," such that, for every irreducible A € C™",

7:(A) =r2(4), 1=1,2,...,n (4.4)

Remark. Because [ is continuous, conditions (iii) and (iii’) could be
restricted to matrices 4 € (" which are irreducible.

Proof. That (i) and (ii) are equivalent has already been proved. That
(i) implies (ii’) for » > 2 will be proved later in this section. To prove
that (ii’) implies (i) for all # > 2, assume that / is not minimal in G,°.
Thus, there exist a ¢ € ¥,° with ¢ < f and a matrix A such that g,;(4) <
f;(A) for some §, 1 < j << ». By continuity, we may assume that 4 is
irveducible. Next, regarding A as a point in the nonnegative hyperoctant
of R,™"=1 it is clear again from continuity that we can redefine g€ %,°
so that g </, but with ¢ =/, except on an g-neighborhood of 4. For &
sufficiently small, this e-neighborhood of A contains only irreducible
matrices. Thus, f and g differ on the irreducible matrix A, but are identical
on any reducible 4 € ¢**. We can now define s € #,° by

in(A) =g(4), i=12,...,n, if AeC™" isreducible,

hi(A) = 4.
(4) 1]‘?;2(A)g7;'1(/1), i1=1,2,...,n, if AeC®" isirreducible. (4.5)

For irreducible A € ¢™*, it follows from Proposition 1 that, for all ¢ =
1,2,..., 1 g,(4) >0, h(A) is defined, and h,(4) = [2(A)g, 1 (4) = [(4).
Thus, actually 2 € %,°. Now it is easy to see that In/ = $Ing+ $In 4,
so that In f is not extreme in Z,°.

That (iii) implies (iii’) is obvious. Conversely, since € ¥,, then from
Proposition 1, .#7(4) is an M-matrix for any 4 €C*". DBut, for all B
satisfying Eq. (4.2), it follows (cf. [7]) that \det B| = det #7(4) = 0.
Clearly, (iii") implies (iii), and (iii) and (iii") are thus equivalent.

That (iii) implies (iv) follows from Proposition 1. To show the converse,
chose any irreducible 4 € (", and define X = diag(xy,. .., x,) for any
x> 01in €* Assuming (iv),if ¢ = (1, 1,..., 1)7, then Eq. (4¢.3) becomes
M7(A)Xe = 0, which implies that .#/(4)X and .#7(4) are singular. By
our remark, this is sufficient to imply (iii).
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We next show that (i) is equivalent to (iii). Suppose (i) does not hold,
and that g € %,,¢ is such that ¢ <{ /, g 5= f. There then exists an 4 € ™"
and an integer § with 1 <{7 <C n, for which

g A) < /4),  i=1,2,...,n and gd)<fi4). (£6)

Since / and g are both continuous, we may assume that 4 is irreducible.
Since .#9(4) is, using Proposition 1, an irreducible M-matrix, the in-
equalities of Eq. (4.6) give us that .#7(4) is nonsingular, and (iii) does
not hold, i.e., (iii) implies (1).

For any fe %,¢, we can construct a ge %,° with ¢ </ by defining

g;(A) for every 4 € €™ as
gi(A) = 1,(4) — A4), 1=1,2,...,n, (4.7)

where A(A) is the minimal nonnegative real eigenvalue of the M-matrix
MF(A) (cf. [T]). Now, suppose (iii) does not hold, i.e., .#7(A4) is nonsingular
for some A € (=, For this 4, M(4) > 0, and g;(4) < f,(A) for all 1 =
1,2,..., n ie., [is not minimal in ¢,°. Hence, (i) implies (iii).

Suppose that (iv) holds. The vector x > 0 of Eq. (4.3) is, as we noted
after Proposition 1, the unique (up to scalar multiples) eigenvector for the
null eigenvalue of .#7(4). It can be shown that, with proper normalization
(e.g., choose x; =1 for all irreducible 4 eC™"), the vector x = g(4),
defined for all irreducible 4 € €™, depends continuously on the moduli
of the off-diagonal entries of 4. Thus, ge .7,°, 77 is defined by Eq. (4.1),
and, for all irreducible 4 €C™", Eq. (4.3) becomes Eq. (4.4), ie., (iv')
holds. That (iv’) implies (iv) is obvious. Q.E.D.

In general, for g € ./,°, we cannot extend either g or 79 to all of €™
We shall discuss this further in Sec. 6. Note that in order to show that
fe 9, is not minimal in %,° it is sufficient by Theorem 2 to show that
M’ (A) is nonsingular for some 4 € C™".

COROLLARY. For any xe€C" with x >0, #* and c* are minmimal
continuous G-functions.

Another general example of a minimal continuous G-function is as
follows. Givenany 4 = (a; ;) €C*", let p(4) be the maximal eigenvalue of
the # X n nonnegative matrix 2(4) = (|a;,;| — 0;,;]a;,), and define
fA) = [f1(4),..., [.(4)] by [(4) = p(d) for all 1 =1,2,...,n It is
seen from (iii) of Theorem 2 that / is minimal in %,¢, and the associated
oAy = [g(4),..., g.(4)] from Eq. (4.4) is, for any irreducible 4 C™",
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just a (normalized) positive eigenvector of #(A) corresponding to the
eigenvalue p(4). As our last example, it can be verified that g = (g1, 82, 83)>
defined on irreducible 4 € (33 by

gi(d) = l“lzi -+ ial,gi, ga(A4) =g3(4) =1,

is an element of ¢, In this case 77(4), for each irreducible 4 €(?3, is
given by

(L, l“?ﬂﬂ“}z‘ -+ ;ﬂl,gl} -+ i“z,g!)

ag1l{lay o] + larsl} T las.2)),

and f € 24, defined by the same rule, is clearly a minimal element of @5°.
In contrast with the G-functions #* and ¢ (with x e, x > 0) and the
above example, f, is 7ot homogeneous ef. Eq. (7.7)].

We give next the generalization of Theorem 1 promised in Section 3.
For notation, if 4 = (a; ;) €€™", then 4% = (|a, ;|*) for any o0 = 0.

THEOREM 3. If [ and g are in &, and 0 < o, f <1, then h defined by
hi(A) = [2(AP*)g Aa-s/u-e) g =1,2,...,n, al A€ grr, o (4.8)

is also in G,

Remark. We call h, defined by Eq. (4.8), the (o, )-convolution of f
and ¢. When /=7 and g =¢ [cf. Eq. (2.3)], the theorem reduces to a
result of Ostrowski [8]. When o = /f, we have Theorem 1. Our proof
here is for /, g € ¢,°; the general proof can be similarly established using
Corollary 2 to Theorem 6.

Prooj. Torf, g€ @,°, itisclear that e 2,¢. Thus, from Proposition 2,
it is sufficient to prove that for any irreducible 4 € (™" satisfying

| > hld),  i=1,2...m, (4.9)

A is nonsingular. Choose an irreducible 4 eC®n; by Proposition 1,
M (AP and A0 AUTH (121 are irreducible M-matrices, SO that there
exist v, ye €, x >0,y > 0, such that

fi(AB/m) = Z iﬂyt,j‘ﬁ/a(xj/xi)i 8 1:A(1*5)/(1—a)] = 2 |az’,9‘.(1_6)/(1_a)(y9'/yi);
j=1 j=1
ji J#i

i=1,...,n (4.10)

As 0 < o < 1, the above inequalities and Holder’s inequality give
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h(A) = [ AB/Hg 1= 4 1=8)/ (=)

1—o

n o "
> < / ‘“zt,jlﬁ/mxj/xi> <Z ai’jifl—*ﬁ)/(l——u)yj,/yi)
1 j=1

7=1 =1
el I

= 2:1 faz',y'll(%u}’fl—u/xfaﬁ"ilha) = Z] Id77[(29/37) = 7,7(4), (4.11)
j= j=

i i

= (2,...,2,)7 isin O" with z, =x2°v ™ >0 for 7=1,2,..., n

(4.12)
Thus, if 4 satisfies Eq. (4.9), then

@i > hA) = [AASR)gAI= (AO0] Sy p(A), =12
(4.13)

But since »* = (..., 7,5) € ¥,, A is evidently nonsingular. O.E.D.

The results in this paper grew out of our attempts to answer the
following question. If f and g are minimal in %,¢, and 0 < « < 1, is /, the
a-convolution of f and ¢ [cf. Eq. (3.2)], necessarily also minimal in %,°?
For n = 2 it is easy to verify that the answer is yes. The negative answer
to this question for # > 2 is contained in our next theorem.

THEOREM 4. For n > 2, no («, B)-convolution with 0 < «, f <1 of
distinct (if o = f) minimal elements of 9 ,° s minimal in G ,°.

Proof. Consider first the case when # > 2, 0 <a = <1, and /
and g are distinct G-functions, minimal in ¢,°. Since f and g are distinct,
there exists an 4 € ™" and an integer ¢, 1 <7 <, for which /,(4) 5~
g:(4). By the continuity of f and g, we may assume that 4 has all nonzero
offdiagonal entries (and is thus irreducible). Following now the proof of
Theorem 3, the assumption that f and g are minimal continuous gives us,
from (iv) of Theorem 2, that equality must hold throughout in Eq. (4.10)
forall: =1, 2,..., n.

If & were minimal continuous, we would have, analogously, that
equality holds throughout for all 7 in Eq. (4.11) in the application of
Holder’s inequality. Hence, the vectors (for this case o = f)
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(iﬂmt%/’%)?zl and <Iﬂi,jl3”j/yi)?z‘1 (4.14)
Kkall N kol

are proportional for all 7. Using the fact that 4 has all nonzero offdiagonal

entries, for n > 2 this proportionality can only occur when the positive

vectors x and y in €" are proportional. This, however, implies that

FA) = 7o(A) = r(d) = gdd),  1=12...m (4.15)

which contradicts the assumption that / and g differ on A. Thus, for the
case o. = f and distinct minimal continuous f and g, the («, 3)-convolution
of Eq. (4.8), i.e., the s-convolution of f and g, is not minimal continuous.
We consider now the case when 7 > 2 and o == f with 0 <a <1,
0< <. If h were minimal continuous, we would again necessarily
have that equality holds throughout for all 7 in Eq. (4.11) in the application
of Holder’s inequality, for each 4 e ™" with nonzero offdiagonal entries.
Hence, the vectors
(1“z’,j~3/%a‘/%z‘)?=; and (l“e‘,jl(l—ﬁ)m““))’j/yi)?zl (4.16)
I Jai
are proportiohal for all 7. Because f§ # «, these proportionalities imply
that all the products [ Ti1 |@s,p4f, for any cyclic permutation o o7
{1,2,..., n}, are equal. But, it is clear that there is an A eCvm with
nonzero offdiagonal entries for which these products are zot all equal. Thus,

when o == 8, the (a, §)-convolution of Eq. (4.8) is not minimal continuous.
O.ED.

We can now complete the proof of Theorem 2. We must show that,
for n > 2, (i) implies (ii’). Suppose In f is not extreme in &,°; there exist
0<a<l,ghe9,, g7 hsuch that Inf=olng+ (I —o)nk This
means that f = gkt %€ &,° I both g and & are minimal in % ,.c, Theorem
4 tells us that f is not minimal in @ c: on the other hand, if either of g
and 7 is not minimal in %,°, clearly neither is f. Thus (i) implies (ii').

As we have just seen, Theorem 4 gives us that (ot, B)-convolutions,
with 0 < o, § < 1, of distinct (if & = f) minimal continuous G-generating
families in &, are not minimal. Quite the same negative result can be
deduced for the new G-functions of Nowosad [6]. To describe Nowosad’s
result, let ¢ be any monotonic norm on n—1 and let ¥ be its conjugate
(or polar) norm, Le., for ¥ = (%g,. .., %,) and ¥ = (¥s, - L, v, in €L

Y(x) = sup }inyi{.
By)=1




W

Y et
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For these norms, one has the generalized Holder inequality (cf. [4, p. 43])

]

-

i
o

x| < plx) - Py (4.17)

K

Using the notation again that A* = (|a;,;|*) if 4 = (a; ;) eC®" for
0 <o <1, we next let (4), denote the ith row of A4 with its diagonal
entry deleted; thus, (4); can be regarded as a vector in €"~'. Then,
Nowosad [6] proved that f defined by

SA) = (A%, PIADA=],  i=1,2...,n (418

is in 4,° for any o with 0 <o <C 1. We shall give a proof of this, and
show, for any 0 << o << 1, that / is nof minimal continuous for 7 > 2.

For A irreducible in €®™, it can be shown (cf. [6, Lemma 4.3]) for
each « with 0 <{o <1, that there is a positive diagonal matrix D =
diag(d,,. .., d,) e C®" such that

H[(A%),] = ${ (DA% TD],}, 1=1,2,...,n, (4.19)
or equivalently,
BIDA™),] = H{[(A9TDY},  i=12...,n (419

For the vector d eC?, d > 0, consider the minimal continuous &-function
¢ defined by Eq. (2.4). We can write this, from Eq. (4.17), as

z “Nla, |od;
e ) = 7:2] a;,:\d;5ld; = J; {F—j;g““j’} {la; '~}
< H{ (DY AT)D ] }P((AT) 1), 1=1,2,...,n
Thus, from Egs. (4.18) and (4.19),
eMA) < HUA%)]-PAD) ] =14),  i=12...,n (420)

from which it is clear that f, as defined in Eq. (4.18), is in 9,°.
Our interest once again is in showing a negative analogue of Theorem 4
for the G-function of Eq. (4.18).

THEOREM 5. For n > 2, no [€ 9,°, defined by Eq. (4.18) with 0 <
o << 1, zs mamamal in 9 ,°.

Proof. For n > 2, choose any positive vectors x = (¥,..., &,) and
Y = (ys,..., ¥,) in €*1 which are not dual vectors, i.e., inequality holds
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in Eq. (4.17). Because Eq. (4.19') is homogeneous in D = diag(d,,. .., d,),
we can set d; = 1. Now, for 0 << o < I, set

1=2,...,n (4.21)

NEd

| o I 1o ___ | [
!“imf! d; = %, l@m[ = Vi [“1,;} =X

These equations determine positive ds,. .., d,, and nonzero offdiagonal

entries |a; ;| and |a; |, j = 2,...,n. Then, simply set all remaining

entries of the matrix 4 = (q; ;) € ™" to zero. DBecause the nondiagonal
entries in the first row and column of 4 are nonzero, then 4 is irreducible.
Next, because we are using the non-dual vectors x and y in €*~1, then by
construction, inequality holds for 7 = 1 1n Eq. (4.20), while all the equations
of Eq. (4.19') are valid. In other words, since ¢;%(A4) < f1(4), then ¢? </
with ¢? # /. Thus, f1s not minimal in ¢ °. 0.E.D.

5. MINIMAL G-FUNCTIONS

To characterize minimal (not necessarily continuous) G-functions, we
first need some auxiliary results from elementary graph theory. Given any
reducible A4 € ("7, it is well-known (cf. [10, p. 46]) that there is a permuta-
tion matrix P (™", and a positive integer m, 2 < m < n, such that

I‘IJJ, /Il,z Al,m

ro

papr—| 0 Aee o Ao | (5.1)

O 0 - d

M, m

where cach square submatrix A, ., & = 1,2,...,m, is either irreducible,
or o b b ol matrixs The form g, (5.1) gives rise to a partitioning of
o2 s nto o disjoint nonempty sets S, = S,(A4), corresponding to
the distinet connected components of the directed graph for 4. The
subsets S do ot depend o the chotee of the permutation matrix P which
vomed o obtam the from o (501 For I,2,...,n, let (+) denote the
Syocontannng ooand let Gy denote the cardinality of {7), i.e., the
ot distinet elements m (). Next, we define, from Eq. (5.1),

g I

41

rr ““?i{i(’j!,lw R fT’m,wL)P; (52)

it eeence, Ao obtioned by setting to zero all offdiagonal blocks in the
Blociotrmanpular matrix of fig. (5.1). If 4 e€™7 is irreducible, we define
f, o Adand Gy o200 mpforalle = 1,2, ., 0

We remark that if A4 € ¢ is reducible, it follows from Eq. (5.1) that,

for any /e 4

kIR
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P! (A ) PT = diag [ M1 (A),. .., Myu(A)], (5.3)

where each 4 ;;(A) is either a square irreducible matrix with nonpositive
offdiagonal elements, or a 1 x 1 null matrix. If 40" is irreducible,
we define, in analogy with Eq. (5.1), m = 1, and set

MIA) = Mo 1(A). (5.3)

If fe %, then, by Proposition 1, #/(4), P.#7(A)P*, and all the J/ﬁ)k(/l)
are M-matrices.
We now define, for each x € ¢ with x > 0,

1 1 .
Fd) = — §<‘_, a5, o(d) = — ; la; %, i=1,2,...,n (54)
i JEQ 7 J€(t
jjsﬁi> ]j#i>

(we take 7(A4) = ¢5(4) = 0 if (i) = {1}). It is easy to see that 7 =
(71%,. .., 7,%) and &* = (&4%,. .., ¢,%) are in ¥, and that 7* = r®and é”; c®.
The functions 7, and ¢é,% are, however, not continuous; if e = (1, 1) and

1 1
At: y
t 1

we have 7,9(4,) = &,°(4,) = 1 forallt > 0, and yet #,4(4,) = &%(4,) = 0.
Let ¢ € £, such that, for every 4 e(™",

g:(4) >0 whenever [7)|>1. (5.5)
We define 79 = (719,...,7,7) € #, by

1
P (A) = ——r a; ;lg;(4), i1=1,2,...,n, 5.6
() =3 %z gs(4) (5.6)
VEad)

We can now characterize the minimal elements of 4,,.

THEOREM 6. Let [ € 9,. Then the following are equivalent:
(i) [is mimimal in G,;
(1) [ s an extreme point of G,;
(iii) for every A e (™7, //{fk,k(/l) [c]. Eq. (5.3)] s a singular M-matrix
for each k = 1,2,..., m;
(iv) for every A €Cnn, there exists an x € Cr with x > 0 (depending on
A) such that
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fld) =754),  i=1,2...n; (5.7)

(iv')  there exists a g€ P, such that, for every A e C™", Eq. (5.5) holds,
and

fd) =79(4), i=12...,n (5.8)

Proof. We have already shown that (i) and (ii) are equivalent. We
first show that (i) is equivalent with (iii) by contraposition. Suppose (i)
does not hold. Then, there exists g€ ¥, with ¢ < /, g # /. Consequently,
there exist an 4 € (™" and an integer 7, 1 <{7 < #, for which Eq. (4.6)
holds. Suppose j&S,. From Proposition 1, #%;(A4) is an irreducible
(or 1 x 1 null) M-matrix. Using Eq. (4.6), as in the proof of Theorem 2,
we see that %};;’k(A) is nonsingular, and (iii) does not hold, i.e., (iii) implies
(i).

For any f€ 9,, we construct a g€ ¢, for which g < /, by defining,
for each 4 e €7,

g(d) = F(A) — M(4),  i=12...n (5.9)

where 7 € S;, and 4,(4) is the minimal nonnegative real eigenvalue of the
M-matrix e%)’;,k(A). Now, suppose that (iii) does not hold. Then, there
exists an 4 e (™" for which some .# ;C_,k(A) is nonsingular. Consequently,
¢ 7 [, and (i) is violated, i.e., (i) implies (iii), and thus, (i) is equivalent
with (iii).

We next show that (iii) is equivalent with (ii). Assume (iii); then
,//Zﬁ,k(A) is either an irreducible singular M -matrix, or a 1 X 1 null matrix
for each 2 =1,2,...,m. Thus, if [Ski denotes the number of elements

in S;, there exists a «® with |S;| positive components such that
M p(A)x® =0, ie.,

fld)es = 2 laislx;, 1€ S (5.10)

7Sk

771
The components of the x® form a vector x € C* with x > 0, for which

Eq. (5.7) holds; 1i.e., (iii) implies (iv).

Assume next that (iv) holds. For each &, k=1, 2,..., m, let X® be
an [Sy| x [Si| positive diagonal matrix with diagonal entries #,;, 7 € S,.
If ¢ is the |S,|-tuple whose components are all unity, then Eq. (5.7)
implies that 4} ;(A)X%e® = 0; hence .#}4(A)X® and A}4(A) are
singular. As this holds for all &, 2 =1,2,..., m, then (iv) implies (iii).
That (iv) and (iv’) are equivalent is clear. Q0.E.D.
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COROLLARY 1. Let f be mimimal in 9,, and asswme that each [; s
monotone, i.c.,if A, Be C*"and |a; ;| < |b; ;| forallt # j,1,7 =1,2,...,m,
then f,(A) < f(B) for all 1 =1,2,...,n. Then f;(4) = f;(4g) for all
1=1,2,...,n,and all A € C*".

COROLLARY 2. Let fe %,. Then for each A € C™™, there exists a vector
x e C" with x > 0 for which
f(A) = 75(4), 1=1,2,...,n (5.11)

Proof. For the G-function fe &, let g€ ¥, be defined by Eq. (5.9).
Because the matrices .7 ;(A) are by construction singular for all &=

1,2,...,mandall 4 € €7, then g is from Theorem 6 minimal in .., with
g </ But as g(4) = 7#(4) from (iv) of Theorem 6, and ¢ </, then
Eq. (5.11) follows. Q.E.D.

COROLLARY 3. Let g€ %,. Then Eq. (5.5) holds for every A € C™™.
If g is minimal in %, then also, jor every A € Cmn, g,(4d) = 0 whenever

Bl =1

COROLLARY 4. For any xeCr with x >0, 7 and & are minimal
G-functions.

6. GENERALIZATION TO THE EXTENDED REAL NUMBERS

In Theorem 2, we have shown that, if / is minimal in ¢,°, then there
exists a ge.#£,° such that f(4) = f¢(4) for every irreducible 4 € C*".
We cannot, however, given an arbitrary g € £,¢, always find a continuous

extension of 77 to all of ¢»"; for an example, let » = 2, and define, on
irreducible 4 e (22,

g(Ad) = (5“1,2 2, iﬂz,ﬂz)v
Then g € ¢ and
221> | 212>
9(4) = , L2l 6.1
7o) (\“1,2| |a2,1] (6-1)

which clearly has no continuous extension to all of C*2. If ge .#,° has
a continuous extension ¢ e £,°¢ for which g;(4) >0, all:=1,2,..., 7,
all A € ¢»n, then 77 has a continuous extension 74, defined by (4.1) for all
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A € ¢7n. The question of finding (interesting and useful) necessary and
sufficient conditions on g € .#,,° so that such a continuous extension exists
remains however open.

One could consider G-functions in the following extended setting. Let
P, m = 2, be the collection of functions f=1(f1,fs. .., [o) such that for
eachts=1,2,...,n + oo = /(4) = 0 for every 4 € C»7, and f, depends
only on moduli of offdiagonal entries. Then fe &, is an extended G-func-
tion if, whenever f(4) is finite, Eq. (2.1) implies that A is nonsingular.
(Note that when any /,(4) is not finite, the union of the » disks A, [cf.
Eq. (2.2)] is the entire complex plane €.) In this setting, we could extend
77, defined in Eq. (6.1), to all of €2 in a natural way, and obtain an
extended G-function.

We shall say that fe 2, is continuous if | is continuous (and hence
finite) at every irreducible 4 € ¢"*, and if, for every reducible 4 € C*7,

f(4) = Tim [},/(B), 1=1,2,...,n (6.2)
Bir?eg:fible

(ie., [ is actwally upper semicontinuous at every reducible 4 e C*").
With this definition, Proposition 2 still holds (i.e., if 4 is reducible, f(4)
is finite, and |a,;| > f;(4),7 =1, 2,..., n, then 4 is nonsingular).

Now if ge /%7€ S, we can define a continuous extension / of
7? using Eq. (6.2) for all reducible 4 € ¢*". Then fis a continuous extended
G-function, which is minimal among such functions. Conversely, if fis a
minimal continuous extended G-function, then there exists a ge .#,¢ such
that / = #7 on irredugible 4 € ¢™".

One final remark. If x = x® e C* with x > 0, then, for every 4 € (*"
which has a nonzero offdiagonal entry in each row, we can define

vilA) =0y e (6.3)

If also A is irreducible and primitive (cf. [10, p. 357), it is not difficult to
see (cf. [10, p. 44]) that

Hm 7)) = p(d), i=1,2,... m, (6.4)

>0

where p(4) is the maximal eigenvalue of the nonnegative matrix 2(4) =
(las,;] — 045la; ;). This “limiting function,” as we have seen in Sec. 4,
does extend to a continuous G-function on (*7.
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7. MINIMAL G-FUNCTIONS WITH SMALL DOMAINS OF DEPENDENCE

Forany /= (f;,..., [,) € #,, wesay [3] that f, depends on the ordered
pair of positive integers (7, j) where ¢ 5= 7 and 1 < ¢, 7 < n, if there exist
A4 = (a,)eC»* and B = (b, ,) €C™" such that |a,,| = |b;,| for all
k== 1 with (k, [) == (1, 7), for which f,(4) = [/(B). We then define

D(fp) = {(i,7): 1<<i,7<<n and /, depends on (7,7)} (7.1)

as the domain of dependence of f,. With this notation, we now prove the
following proposition.?

PROPOSITION 3. Letf€ %,. For each ordered parr (1, 7) with 1 < 1,7 <
n and 1 # 7, there exists a positive integer k with 1 < k < n such that

(i, 1) € D(Jy).

Proof. We consider the ordered pair (7,7) with 1 <77 <% and
1 % 7. Suppose (¢, 7) ¢ D(f,) forallk =1, 2,..., n. Then, for any 4 eC*",
each f,(4) is independent of a, ;. It would then be possible to find a
nonsingular irreducible M-matrix 5 = (b, ;) € R*" with

by > fu(B) forall I=1,2,...,n.

Without affecting these inequalities, we could decrease the element — |b; ;|
until B becomes singular, contradicting that f is a G-function.  Q.E.D.

Most well-known G-functions (cf. [2]) have

D(fy) ={(k, 1) 1 <<I<<m, [k} (7.2)
fork=1,2,...,n, or

Dify) = {(Lk): 1<i<n, L#F) (7.3)
for k =1,2,..., n, or are obtained by convolution from functions in &,

with such domains of dependence. Among these, the row and column
sums 7* and ¢* have always played a central position in Gerschgorin-type
arguments for matrices. The next surprising result gives yet another
reason for this.

2 After submitting this paper, we learned that Proposition 3 was independently
included in a talk by A. J. Hoffman at a Conference on Graph Theory at St. John
University in the summer of 1970,
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THEOREM 7. Let [ be minimal in 9,5 1f Eq. (71.2) is valid for one
particular k, and if

{U D(fl)} and D(f) are disjoint, (7.4)
oy
then Eq. (7.2) is valid for all k, k= i, 2,...,n, and theve exists an x eC"

with x > 0 (independent of A) such that f = r*. Sumlarly, 1f Eq. (7.3) 1s
valid jor one particular k, and if Eq. (7.4) is valid, then Eq. (7.3) s valid for
all b, b =1,2,..., n, and there exists an x e with x > 0 (independent
of A) such that | = c*.

Proof. Assume that f is minimal in %,°, that Eq. (7.2) is valid for
k = 1, and that Eq. (7.4) holds for £ = 1. Then, from Theorem 2, MT(A)
is a singular M-matrix for each 4 e€™". For any irreducible 4 =
(a, ;) €C»m with all nonzero offdiagonal entries, there is a unique normal-
ized x = (1, %o,. .., x,)Tin C" with x > 0 such that .#7(4)x = 0, and thus

N

1
fuld) =— 2 lag j|x;, for all k=1,2,... %
Xy =
ik

Tt

Let BeCr-1n-1 be the principal submatrix of .#7(4) obtained by
deleting the first row and first column from .#7(4). It is easily seen
(cf. [10, p. 30]) that B must be nonsingular. Since #7(A)x = 0 can be
written as the pair of equations

B (xg,..., L (’aZ,l

3o v vy

“n,l))T:O; /1(A)““]_:212‘“1,y‘1xj20; (7.5)

then as B is nonsingular, the vector (xs,. .., x,)7 €C"! can be express-
ed simply as

yoror e

(xg,. .., x,)T = B_1<[ﬂz,1

an )7 (7.6)

But from Eq. (7.4), the f;(4) for j = 2,...,n, and hence B-1, are all
independent of |ay o, . ., |a1,,]. Thus, from Eq. (7.6), the components of
a1 ,,|- This means that
if we now vary the matrix 4 only in the components |ag,e

x = (1, x,. .., x,)7 are independent of |a; of,. ..,

A1,n
keeping A irreducible, the second equation of (7.5) remains valid where

EE )

X9, .. ., %, are fixed, i.e.,

f1(4) :]:Zz ay ;|%; = 7r"(4).
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Hence, from the continuity of /4, the above expression must be valid for
all 4 eCnn,

Next, suppose that xy(4),. .., x,(4) can vary when 4 varies over the
matrices for which (@) =0, 1 =2,...,m, 7=1,...,n 1+ 7, and for
which the first row of 4 has the explicit form ¢, = (0,0,...,1,0,.. ., 0),
b=2,...,n Because [;(4) = r,2(4) from the second equation of (7.5),

we have in this case that /;(4) = x,(4). On the other hand, since /1 can,
oy hypothesis, depend only on {(1, /): 2 <! < n}, while x,, from Eq. (7.6),
s independent of the first row of 4, then /1(4) = x;,. Hence x,,. .., %,
rom Eq. (7.6) are fixed for all A e ™. Tt thus follows that Eq. (7.2) is
valid forall k = 1, 2,..., n, and f == #®, where x is independent of A. The
roof of the rest of the theorem is similar. Q.E.D.

In the rest of this section, we make specific use of the main result of
doffman and Varga [3], which we state below as Theorem 8. For notation,
ve say that f € 2, is homogeneous (of degree unity) if, for every A > 0 and
wvery A e Cnn,

[w(Ad) = Af,(4), k=1,2... n, (7.7

nd we say that / is bounded on bounded sets if, for all A = (a; ;) e Crm
vith |a, ;| <c¢ for all 4,j =1,2,..., n with 7 = 7, there exist positive
onstants M, (c) such that

flA) < Mc), k=1,2,.. n (7.8)

THEOREM 8. Let Dy, Dy, . .., D, be subsels of the set of all ordered pairs
[ positive integers (1, 7), with 1 < 1, 1 < m,and i 5~ 7. Then, there exists an
m G, with f homogeneous and bounded on bounded sets, satisfying

Dy, = D(f.), k=1,2,...,n, (7.9)

Fand only if, jor every subset S C {1,2,..., n}with IS| = 2, for every cyclic
ermutation ¢ of S and for every nonempty subset T C S,

{i: ieS and {(,0i)}eU D)
keT

=T (7.10)
With Theorem 8, we establish

ProrositioN 4. Let [ € G, with f homogeneous and bounded on bounded
#s. Then

D) =n—1 jor k=1,2..,n (7.11)
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Prooj. Let k be a fixed positive integer with 1 < ER<n IfS,=
{k,j} for any 7 with 1 <7< n and j 3 &, then \S;| = 2. Next, let
T = {k}C S, Applying Eq. (7.10) of Theorem 8, it is clear that either
(k,7) or (j, k) is in D(f). Thus, letting 7 run from 1 to n, 7 5= k, D(f;) must
contain at least n — 1 distinct ordered pairs, ie., [D(f;)| = n — 1, which
establishes Eq. (7.11). Q.ED.

We note that, as we saw at the end of Sec. 4, there are non-homogeneous
continuous G-functions for which (7.11) does not hold.

THEOREM 9. Let f€ @, for which [ is homogeneous and bounded on
bounded sets, and for which

Dfp)|=n—1 for k=12, n (7.12)

If (1,2) e D(t,), then Eq. (1.2) holds for all h=1,2,...,n Otherwise,
(2, 1) € D(},), and Eq. (1.3) holds for all k = 1,2,..., .

Proof. TFrom Proposition 3 and from the assumption of Eq. (7.12), it
is clear that the n(n — 1) ordered pairs of integers (z, 7) with ¢ %= 7 and
1 < 4,7 < n, must be distributed among the D(f,)’s in such a way so that
the D(f,)’s are pairwise disjoint.

First, consider the set D(f;). As in the proof of Proposition 4, if S =
{l,j}forany 2 <j <nandif T = {1} C S, then Eq. (7.10) of Theorem 8
gives us that either (1,7) or (7, 1) is in D(f;) for each j =2,...,n. In
particular, either (1, 2) or (2, 1) is in D(fy). Assume (1,2)€ D(fy). Then,
(2,1) ¢ D(fy); otherwise |[D(fy)| >n—1. For n>2, consider S; =
{1,2,0} with [ =3,...,n, and T = {1yc S,. For the particular cyclic
permutation o of S, defined by ol =/, 02 = 1, ol = 2, it follows from
Eq. (7.10) that at least one of the pairs (1,1), (2, 1), and (}, 2) is in D(f1),
ie., (1,4) or (/, 2) is in D(f,). Because [D(f,)| = n — 1 and because (1, 1)
or (j, 1) must be in D(f,) for eachj =2,..., %, then (/, 2) ¢ D(f,) for any
] =3,. .., m so that (1,7)e D(f;) for each [ =3,..., 7. Thus, D(f;) =
{(1,7): 1=2,8,..., n}, the special case k=1of Eq. (7.2

(

7 In a similar
way, one establishes the general results of Egs. (7.2) and

).
73). Q.E.D.

By the methods of [2], we can construct continuous, nonhomogeneous
G-functions, satisfying Eq. (7.12), for which the conclusion of Theorem 9
does not hold.

The authors gratefully acknowledge many helpful comments and suggestions
from Dy. Alan J. Hoffman. In particular, at the Fourth Gatlinburg Sympo-
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stum on Numerical Algebra wn 1969, Dr. Hoffman posed the question on

whether convolutions of minimal continuous G-functions were minimal, and

this study was in fact inspived by his question.
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