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REACTOR CRITICALITY AND NONNEGATIVE MATRICES*
GARRETT BIRKHOFE sxo RICHARD S, VARGA

1. Multiplicative processes. [n this paper, we apply the Perron-Frobenius
theory of nonnegative matrices to provide a rigorous mathematieal hasis for
the physical concept of “‘eriticality,” and for typical computational inter-
pretations of this concept.' Though the applications given are almost en-
tirely new,* fow new mathematieal results are given, and so many proofs
will be omitted.

The proper mathematical setting for many coneepts of chain reaction
theory is provided by the concept of a (finite, stationary) multiplicative
process, which we now define.

Definition. A real square matrix /> = || p;; | will be called nonnegatire
if and only if
(la) pi; 20
for all 7, j. Similarly, o real square matrix Q = || ¢;; || will be ealled essentially
nonnegative if and only if
(1b) ;20 (7 # 7).

A discrete multiplicative process with a finite number m of “states” is a
system of difference equations of the form

@) N+ 1) = X ps N (=1, m)

where 1 is nonnegative. A continuous multiplicative process is any system
of ordinary differential equations of the form

(3) de/({t = Z(IuN]([) (i = ly e )m))
Sl

where () is essentially nonnegative.
Such multiplicative processes generalize the usual concept of a stochastic
ov Markofl process [5, §4]. By definition |2, pp. 24, 206, these are multipli-

* Received by the editors January 9, 1958 and in revised form Muay 23, 1958.

! The authors wish to thank the referee for suggesting many improved formula-
tons,

#S. Ulam 1} seems to be the first to have recognized the conneetion between dis-
crete multiplicative (aling “hranching™) processes and reactor theory. Some related
ideas were also ruggested in Report UMM-144 to Westinghouse Electric Corp. by
W. F. Bauer, J. F. Carr, R. Dames, Gi. Graves, and V. Larrowe, (Oct. 1953), and by
M. K. Butler and J. M. Cook [13].
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cative processes for which (1a) and (1b) are supplemented by the conditions

w Srot Genm
or

tam]

respectively. Multiplicative processes are more general than Markoff
processes in that they permit birth (fission) and death (escape or absorp-
tion), as well as pure diffusion and slowing down.

2. Relation to chain reactions. .\ natural connection between continuous
multiplicative processes and nuclear chain reactions is suggested by the
following model for multigroup diffusion.

The expected neutron distribution in a nuclear reactor can be subdivided
into m ‘“cells” (or neutron ‘‘states’’) in various ways. Commonly, the sub-
division is into so-called space and lethargy groups, corresponding to differ-
ent neutron positions and velocities. In transport theory, there are direction
groups as well. If N.(¢) denotes the number of neutrons expected in cell ¢
at time ¢, and ¢;; denotes the average rate of production of neutrons in cell
¢ from a single neutron in cell 7, then (3) holds (4, §13.2]. The negative terms
on the diagonal correspond to loss of neutrons from a cell by leakage, ab-
sorption, and slowing down.

Caution. The preceding model assumes o {fme-independent neutron en-
vironment. As usual’ in criticality calculations, one neglects changes in
the matrix () due to depletion, poisoning, expansion by fission heating, etc.

A natural interpretation of discrete multiplicative processes is furnished,
similarly, by iterative computation schemes for caleulating critical flux
distributions on high-speed computing machines (§10). In nuclear reactor
theory [4, 8|, it is usual to take the neutron flux ¢; = v.N; as the dependent
variable, mstead of the neutron density N,. However, this substitution
simply replaces a process P or Q by a diagonally equivalent one D™'PD
or D™'QD, where D is a positive diagonal matrix. Thus, this change does not
alter any of the properties discussed below.

In the simplest case of thermal reactors, if epithermal fissions are neg-
leeted and all fission neutrons are assumed fast, we get multigroup equa-
tions of the special form

(5) dvor = Bipi (k= 2, ,n)
(5’) A'llwl = V]gltp“ (V > 0)

i See [4], Chs. VII and XII; also [8].
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In (5) and (5'), @» = @a(x) represents the thermal (slow) neutron flux
distribution, ¢, the fast neutron flux, and @s, - - -, .1 intermediate neu-
tron flux distributions, arranged in order of decreasing velocity (inereasing
lethargy). The flux ¢, arises from the “slowing down” und scattering of
neutrons in ¢,_, which may thus be regarded as a (distributed) source.
The matrices A, , B: involved will be defined in §9.

It will be shown in §9 that the .1, in (3) and (5') are nonsingular, and
that the mutrices A7', By are nonnegative. Hence, the composite matrix

0 e 0 V./l;lBl
©) A7'B, 0 0
6 v A-:.IBn O

defines, for each » > 0, a (discrete) multiplicative process from (5) and
(5.

Of great physical interest is the spatial thermal flur distribution which,
for the simple model (5) and (3'), satisfies (in the critical case)

(7) wn = V((l:llgﬂ ct 4’11.[—1Bl)¢n = T(Pn,
where
") T = y(A7'B, - AT'B)).

This evidently defines a second multiplicative process from (5) and (5').

3. General properties. Nonnegative and essentially nonnegative matrices
have a few general properties. As these are either known' or obvious,
we shall state them without proof.

LEMMA 1. Any nonnegative matrix 1’ has a nonnegative cigenvector, with
nonnegative eigenvaluc.

LeMMma 2. The matric Q is cssentially nonnegative if and only if ' is
nonncgative for all t = 0.

Similarly, the matrix  defines o continuous Markoft process (4b), if
and only if P = ¢% defines a discrete Markoff process (4a) for any ¢ > 0.

Lemma 3. For any square matriv Q, with cigenvalues i , the matrices Q,
¢ and sl + Q have the same cigenvectors for any t = 0 or s. Moreover, the
etgenvalues of ¢* are the A, = ™', and those of (sI + Q)" are the (s + w)”
for any inteqer n.

This result ix obvious when @ is put into its Jordan canonical form.
Combining with Lemmas 1 and 2, we get the

CoroLLaRry. Any essentially nonnegative matriz has a nonnegative eigen-
rector.

4 See [9, 11]. The irreducible case was originally treated in [3].
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However, for most applications, the matrices I°, Q of (1a) and (1b) must
satisfy further conditions, of which the following are typical.
Definition. A matrix P will be called positive if and only if

(8) pij > 0

for all 7, j. A matrix Q will be called irreducible’ if, for any ¢, j, there exists
a finite sequence of indices #(0) = ¢, - -+, k(r) =y such that qip—v, w0y # 0
forh =1, - ,r.

In the first interpretation of §2, irreducibility is evidently equivalent to
the possibility of ultimate transition from any cell to any other; thus, it
implies the gecometrical connectedness of the reactor.

LemMma 4. exp ((Q) s positive for all t > 0 of and only if Q is essentially
nonnegative and trreducible.

Hence, we define Q to be essentially positive if and only if it is essentially
nonnegative and irreducible. Again,

LEMMA 5. If ann X n matrix () is essentially positive, then (sI 4+ Q)" is
posttive, for all sufficicntly large s and m.

TueorEM 1. Any essentially positive matric Q has a unique’ strictly
posilive cigenvector @y, with real simple’ cigenvalue wy, = M. Moreover,
w > Re {u;} for any other cigenvalue uj of Q.

Proof. Since ¢°* is positive (Lemma 4), this follows from Lemma 3, and
the main result of Perron and Frobenius about positive matrices,” which
asserts

|| = "t > [t = ettt

ift>0andj > 1.

THEOREM 1’. Any trreducible, nonnegative matrix P has a uniquc strictly
positive etgenvector ¢y, with positive simple cigenvalue L = X\ . Morcover,
i 2 I\ for any other cigenvalue \; of P, and any nonnegative cigenvector is a
scalar multiple of ¢ .

IFor this aud other results due to Frobenius, sce [3].

Definition. The spectral norm of a matrix .1 is the maximum of the ab-
solute vulues of its eigenvalues \; . The spectral prenorm of A is the maxi-
mum of the real parts of these A; .

The following result follows directly from the previous definition ‘md
Theorems 1 and 1.

5 This ix also ealled “indecomposable.”” See (2, 6, 9, 11] and H. Geiringer, Reissner
Anniversary Volume, Ann Arbor, 1949, pp. 365-93.

" Up to scalar factors.

T An eigenvalue g of o matrix Q is “simple’” if (A — g) is not a repeated factor of
the determinant | Al — Q.

¥ For a new, geometric proof, see G. Birkhoff, ““Iixtensions of Jentzsch’s Theorem,”
Trans. Amer. Math. Soc., 85 (1957), pp. 219-27.
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CoroLLary. The spectral norm of any nonnegative irreducible matriz P
is the L of Theorem 1'; the spectral prenorm of any essentially positive matrix
Q is the M of Theorem 1. The spectral norm of % is e’ ift > 0.

4. Importance vector. Obviously, (off-diagonal) nonnegativity and ir-
reducibility are unaffected when a matrix 4 is replaced by its transpose
A’. Hence the transpose of any irreducible multiplicative process is also
an irreducible multiplicative process. Hence, in Theorems 1 and 1’, P’
and Q' also admit positive (column) eigenvectors with the properties de-
scribed there. Moreover, since |[P — M| = |P' — M| and [e¥ — A]|
= [e¥" = A\, clearly P and P’ have the same spectral norm I = B,
while Q and Q' have the same spectral prenorm M = u; = max [Re fuet].
Hence, if F’ is the positive (column, right-) eigenvector of P!, P'F’ = [F'—
and similarly for Q.

Taking transposes, we get FP = LF, and similarly Q has a positive
left-eigenvector satisfying FQ = MF. We can summarize these facts as
follows.

Definition. For any irreducible process (2) or (3), the positive left-eigen-
vector of P (or Q) is called the smportance vector of the process.

THEOREM 2. The importance vector F of any irreducible multiplicative
process (2) or (3) satisfies respectively FP = LF or FQ = MF.

For any discrete process (2), we have

9) F-N(r + 1) = F-PN(r) = L""'F.N(0).

It is a corollary that the real hyperplane F-N = 0 is ¢nvariant under the

process. Moreover, since F-¢ > 0 for any positive F and ¢, this hyperplane

H is complementary’ to the line containing ¢, , the positive eigenvector of P.
Similarly, for any continuous process (3),

(10) F-N(t) = ¢"'F.N(0);

the hyperplane F-N = 0 is again complementary to ¢, , and invariant
under the process.

If F=(F,, - F,)is the importance vector of an irreducible multipli-
cative process with matrix °, we may let D be the diagonal matrix with
positive diagonal entries (F,, ---, F,). For this D, one easily shows"
that S = L™'DPD™ satisfies (4a)—i.e., is a stochastic matrix. Therefore,

TuroreMm 3. If P is an irreductble nonnegative matric, with spectral norm
L, then P = L(D7'SD), where D is a posttive diagonal matrix, and S satis-

Jies (4a).

? In the sense of Birkhott and MacLane Survey of modern alyebra, rev. ed., p. 185.
19 This observation is due to Kolmogoroff; sce N. Dmitriev and E. Dynkin, Dokl.
Akad. Nauk SSSR, 10 (1946), pp. 167-184.
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Similarly, one can prove

TueoreM 3. If Q is essentially positive with spectral prenorm M, then
Q = (D7'TD) + MI, where D is a positive diagonal matric and T sc':sfies
(4b).

This result makes many facts about irreducible multiplicative processes
follow from the corresponding results about (irreducible) Markoff proc-
esses.

Minimax property. Now let Q be essentially positive, and let £7 be the
set of all vectors with strictly positive components. The following result
about the “spectral prenorm” M of Q can then be proved as in" [12], §13:

(11) M(Q) = supxee+{infyce+~ XQY/XY} = infyes+{supxee+ XQY/XY},

the minimax being assumed when X is the importance (row) vector and
Y is the dominant (column) eigenvector of Q.

A curious related theorem holds in game theory: if XY = XIY is re-
placed by XJY, where J is the (positive) matrix all of whose entries are
unity, then the eigenvectors in question define “optimal strategies’ for
the game with “payoff matrix” Q. '

An analogous characterization of the spectral norm L of a nonnegative
irreducible matrix P is known {9, p. 648], and

T

the minimax being assumed for x the dominant eigenvector of I’.

6. Semi-irreducible matrices. Reactor calculations based on multigroup
equations like (5) and (5") commonly define multiplicative processes like
(6) or (7) which are semzi-irreducible in the following scnse.

Definition. A nonzero matrix P is semi-irreducible when, for each j, cither
allp;, = 0, or, for all ¢, there exists a finite sequence, £(0) = 7, - - - , k(r) = j,
such that peg—n gy #= 0 forh = 1,2, -« 1.

"T'he indices of the first kind generate the null space’™ of P, while those
of the second generate its range. After o permutation A of indices, trans-
forming P into APA™', the matrix P assumes the form of Fig. 1, where
I’y is an irreducible square submatrix. One can show that Theorem 1" also
applies to semi-irreducible matrices.

Turorem 17, Any semi-irreducible, nonnegative matrixe I’ has a posilice
cigenvector @ with positive simple eigenvalue [ = . Moreover, Ny = |\ |

tin [12], p. 28, line 6, the inequality sign should be reversed.

" "The null space corresponds physically to that part of the thermal flux in the
reflector. For a fuller discussion of this and many other points, see (12]. Continuous
multiplicative processes which are semi-irreducible are irreducible for reactors.
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Jor any other cigenvalue \;, and any nonnegative etgenvector with nonzero
etgenvalue 1s a scalar multiple of ¢, .
The proof, being straightforward, will be omitted (cf. [12]. . 14). A
similar result holds for (.
(o Pl)
0 P,

Fra. 1

From Fig. 1, it is evident that the transpose I’ of a semi-irreducible
nonnegative matrix I is not usually semi-irreducible. Nevertheless, P’
has a nonnegative ecigenvector with simple eigenvalue L—-this follows
from Lemma 1, and the fact that the characteristic polynomial of P is
the same as that of /. In the case that /> is semi-irreducible, the unique
nonnegative eigenvector F of P’ corresponding to the simple eigenvalue L
will still be called the importance vector of P, aund the invariance of the
real hyperplane F-N(r) = 0 still holds. Moreover, if @1 I8 any positive
eigenvector of P, then F-¢; > 0 as before.

6. Criticality. We can now define the concept of criticality, for multi-
plicative processes defined by irreducible or semi-irreducible matrices.

Definition. A process (3) will be called subcritical, critical, or supercritical
according as M < 0, M = 0, or M > 0 in Theorem 1. A process (2) will
be called suberitical, critical, or supercritical according as L < 1, L = I,
or L > 1 in Theorems 1’ and 1”. The positive eigenveetor of any irreducible
or semi-irreducible multiplicative process (2) or (3), normalized to make
IN: = 1, will be called the dominant distribution."

Lvidently, a semi-irreducible multiplicative process (2) or (3) is critical,
if and only if the positive eigenvector ¢, in its range is invariant, so that
N(r) = @1 or N(t) = ¢ satisfies (2) or (3), respectively. Markoff processes
are always critical, since their transposes admit the invariant left-cigen-
vector (1, --- | 1),

CoroLrary L™ For any irreducible process (3),

(¥) If supercritical, Q ¢ > 0 for some ¢ > 0and Q ¢ < 0 for no ¢ > 0,

(1) If critical, Q ¢ = 0 for some @ > 0, but Qp > 0 for no ¢ > 0 and
Qe < 0 forno e > 0,

(112) If suberitical, Q ¢ < 0 for some ¢ > 0,but Q ¢ = 0 forno ¢ > 0.

Proof. Tn all cases, the first statement follows from Theorem 1, letting
@ be the positive eigenvector ¢, of Q. The second statement follows by

'* In the case of the multiplicative process (6), this (mathematical) critical dis-
tribution is proportional to the (physical) critical fluz distribution. In the cuse (7),
Bigs is proportional to the critical fission distribution.

4 See also Lemma (11]. p. 601.
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writing @ = ci1 + ¢, where F- ¢ = Osothut F-o = ¢\F- ¢, ;cf. (10). [Tenee
F-Qp = Mc(F-1) + F-Q = M(F-p).

Hence F-Qp > Fp, F-Qp = F-p,0r F-Qp < F-¢p forall & > 0,according
to whether @ defines a supercritical, critical, or suberitical process (33).
Again, since F has all positive entrics, F-¢p > 0ifp > 0. Henee F-(Qp — o)
2 0 if Qp = ¢, ete. From this, the second statement of (i)-(iii) above
follows.

Using the minimax property of (11), we also have the sharp converse

ConroLLARY 2. An rreducible process (3):

(2) is supercritical if Qo > 0 for some ¢ > 0,

(22) s critical of Qo = 0 for some ¢ > 0,

(227) s subceritical of Qe < 0 for some ¢ > 0.

Conovrranry 1. For any semi-irreducible process (2),

(1) 2f supereritical, Pp > ¢ forsome ¢ > 0, and Pp = ¢ Jorno ¢ > 0,

(#7) if critical, P = ¢ for some ¢ > 0, and Po =z ¢ forno o > 0,

(¢72) if suberitical, P < ¢ for some @ > 0, and Po =z ¢ [or no o > 0.

Since the second conclusion in each of cases (0)—-(247) is incompatible
with the other two cases, we have also the sharp converses

Conrornrany 2. A semi-irreducible process (2):

(2) 1s superceritical if Po > ¢ for some ¢ > 0,

(#7) is eritical if P = ¢ for some ¢ > 0,

(#77) s subceritical if Po < ¢ for some ¢ > 0.

Turorem +. For any irreducible process (3),

(13) N(t) = Ke"'pr + o(c"),

where @ and M are as in Theorem 1. In (13), u ts any number strictly be-
tween M and sup;>Refu;}, and K = (F-N(0))/(F-¢1), F being the im-
portance rcector and @y the positive eigenvector of Q.

Proof. We can write N(O) = Ko + G, where

F-G = F-NQO) — KF-o. = 0.
Then, for all ¢ > 0,
N(t) — Ke"'pr = N(t) — Ke¥'pr = ¢*'G.

But G is in the linear subspace W, which is invariant under (2 and hence
under ¢““. On M, all eigenvalues of e are less than ¢* in modulus, from
which ¢“'G = o(¢""), us t — + o, follows. The existence of such p follows
from Theorem 1.

The constant 1/M in Theorem 4 may be called the “e-folding time”
or “period” ([4], p. 293) of the process (3).
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CoRrOLLARY. Fur any irreducible process (3), of N(O) > 0, then

(+oo, -+, +ow) if (3) is supercritical

(14) lim, .40 N(t) = <(Kg, of (3) is critical
@, ---,0) if (3) is suberitical
The mathematical expectation || N(t) || = SN,(¢) of the neutron flux

N(t) should not be confused with the statistical distribution of expected
neutron fluxes. The distinction is strikingly illustrated by a theorem of
Sevastyanov [5, Theorem 5], which asserts that, in eritical processes as
defined above, the neutron flux will die out with probability one! This
paradoxical fact corresponds to the cumulative possibility that, in infinite
time, all the neutrons of any one generation will be absorbed. In practice,
this possibility can be ignored in any reasonable time interval.

7. Cyclic and primitive matrices. Since |\;| = \, is possible in Theorems
1" and 17, the theory of discrete irreducible processes is less simple. Though
it could be derived from Theorem 3 and the literature on stochastic matrices
(e.g., [2, 6]), it is more instructive to go back to basic principles of algebra.
These involve the concept of a cyclic matrix.

Let P be any m X m matrix. By a cycle of length /, is meant a sequence
of [ nonzero entries

Dijy s Pivias * " 5y Pigyi -
Following Frobenius [3], we make the

Definition. The index k(P) of an irreducible matrix I’ is the greatest
common divisor (g.c.d.) of the lengths of its cycles. If k() = 1, Pis primi-
tive; if k(P) > 1, it is cyclic.

Frobenius has shown (3, p. 463] that an irreducible nonnegative matrix
P is primitive if and only if some positive power of P (and all higher powers)
i positive.

[vidently, the matrix of (6) is eyelic: the length of any eycle of P is a
multiple of the number n of lethargy groups considered. Hence k(P) is
also o multiple of n. In general [6, p. 162], an m X m matrix £ is
cyelic of index n if and only if there exists a permutation A of indices such
that APA™" has the form of Fig. 2, with square blocks on the main diagonal.

For any such nonnegative irreducible cyelic matrix P of index ». with
positive eigenvector ® = (g1, - -+ ), evidently "® = (T'wp1, -+, Thepn)
where Ty = PPy, -« PP, .- Piyy . Henee L(P, - P)) = L(r" =
[L.(")]", and in particular P is eritical if and only if P, --- P, is critical.
Thus, in §2, the multiplicative process represented by (7) and (7') is critical
if and only if the multiplicative process defined by the matrix P of (6)
is eritical.
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0 --- 0 P

P, .- 0 0

0 .- P, 0
Fig. 2

By considering the nonzero entries in | \/ — P |, one proves similarly
without great difficulty [6, p. 166]:
LeEmMA 6. For any n X n cyclic matriz P of index I,

(15) INC = P = N0 =25 - 0 =\,

where v + kr = n.

From this result, we deduce the important

CoroLLaRY. In Theorem 17, in order that\y = L > | \j |forj =2, -+ m
1t 18 necessary and sufficient that P, in Fig. 1 be primitive.

Combining the first statement with the general theory of matrices whose
dominant eigenvalues are simple, we see, much as in the proof of Theorem
4, that (13) applies also to discrete semi-irreducible processes (2). In fact,

THEOREM 4'. For any semi-irreducible process (2), the trichotomy (14) s
valid. If and only if P, is primitive (i.e., if and only if k(P.) = 1), we have
further

(16) N(r) = KL'g1 + o(p"), K = (F-N(0))/(F-¢)).

where @y is the positive eigenvector of Py, F its importance vector, L = A, the
eigenvalue of @1 and p is any number strictly between L and sup;si| A; |.
The proof of this theorem parallels that of Theorem 4. By analogy with
the corollary to Theorem 4, we also have
Cororrary. For any semi-irreducible process (2), if N(0) is positive, then

)

4o if (2) is supercritical.
lim, .40 EN(r) = {finite if (2) is critical.
0 if (2) is subcritical.
If P 1s primative, then
J(+ o, oo 4w) if (2)is supercritical.
lim. .. N(r) = < Ko, 7f (2) 7s critical.
0, ---,0) if (2) is subcritical.

8. Stieltjes matrices. The results of §§3-6 can be used to prove certain
facts ubout the matrices A, of (5) and (5'). Let A = —@Q, where @ is essen-
tially nonnegative. We consider the three mutually exclusive possibilities
of Theorem 4, Corollary 2:
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(a) If Q is supercritical (i.e., if M > 0), then A = —@ has a nonnegative
eigenvector p; # 0 with negative eigenvalue — 3. It follows that, if 4~
exists, A = —Q ' hasa nonnegative eigenvector with negative eigenvalue
—M™". Hence A ™" cannot exist and be nonnegative.

(b) If Q is critical (i.e., if M = 0), then Q and A are singular: their null
space includes a nonnegative eigenvector.

(e) If Q is subcritical (i.e., if M < 0), then the eigenvalues of A are in
the half-plane Re{\} = —M > 0. Hence A is nonsingular, and A™" has
eigenvalues in the circle |\ — 1/(2M) | £ 1/(2M), omitting 0. Therefore
all eigenvalues of A™ have a positive real part. Furthermore, by Theorem
4, the following integrals are convergent, and define a nonnegative matrix A™":

0

f et dt = [ eV dt=-Q' =47
o

@

This proves the following result.

THEOREM 5. Let A = || ai; || have nonpositive off-diagonal entrics (i.c.,
let a;; < 0¢f 1 % 7). Then A™" exists and s nonnegative if and only if all
ergenvalues of A have positive real parts.

CoroLLary 1. If A is symmetric and if a;; £ 0 whencver 1 % 7, then A~
exists and is nonegative if and only if A is positive definile.

(For, A is positive definite if and only if its (real) cigenvalues are all
positive.)

Appealing to Lemma 4, we get

Cororuary 2. In Theorem 5 and Corollary 1 above, A™" is positive if and
only if A is irreducible.

These results sharpen an old Lemma of Stieltjes” and some recent im-
provements on it. Because of this, we shall make the following

Definition. A Stieltjes matrix is o symmetric, irreducible matrix with non-
positive off-diagonal entries.

Thus, a matrix A is a Stieltjes matrix if and only if —A = Q is essentially
positive and symmetric. We have shown that a Sticltjes matrix .1 has «
positive inverse 47" if and only if Q = — A is subecritical.

9. Multigroup approximations. The usual multigroup approximation to
the time-dependent neutron distribution in a heterogeneous reactor in-
volves several functions of position: the diffusion length D, of the ith
lethargy aroup, its slowing-down cross-seetion =, , its total cross-scetion
I/ > Z:, the fission cross-section T, , and the fission yield ». The multi-
group equations for the flux ¢.(x, t) of neutrons in the ¢th lethargy group,
with average velocity v, , are then {4, p. 291}:

18T. J. Stieltjes, Acta Math. 9 (1886), pp. 385-400. These results can also be oh-
tained from {11}, or from unpublished work of Ky Fan.
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a(Pi | ] (')@,' \] .
(17) -:97 = l’z‘{z_' (D ——> - Ei"pi + Ei—l ﬂo'i—lf\ (l = 21 T, n)9

Ok i
a<p1 (') a¢1 ’ \
Py = . = 2 .
(17" ry vx{; o <Dl (—7“) Lo+ VEn‘Pnf

If the subdivision into lethargy groups, postulated in (17) and (17), is
accompanied by a spatial subdivision into cells (say, into squares or cubes
of constant side A), one can approximately represent (17) and (17') in the
form de/dt = Qe of (3). In fact, one can do this in various ways, depending
on the difference operator used to approximate the differential operator
V-D;V = Z3(D;3/dxi)/dxw . Fach such approximation leads, in a natural
way, to a continuous multiplicative process (3).

In one space dimension, the **best possible” simple approximation is the
three-point formula

d de 1 h h
d—.c[[)(x) ch] ~ E"{D <:c + 2) ol +h) + D <af - 3> olx — h)

ol ole-Yo)

The extension of (18) to (2n 4+ 1)-point approximations for (17) and (17')
on rectangular meshes in n = 2 and n = 3 rectangular space coordinates
is well-known and obvious.

For physical reasons, the v;, D, ; and v in (17) and (17") are all non-
negative. Hence, if A; denotes the difference approximation (18) to
—~Zd/dx(Did/dxr) + Z., and B, denotes the matrix corresponding to
multiplication by X, , then — A, is an essentially nonnegative matrix and
B; is a nonnegative diagonal matrix. Hence (17) and (177) lead to systems
of vector differential equations of the form

(18)

(19) (i(o,'/([l = U,‘{—Aitp,‘ -+ B,’(p,‘_gf (Z = 2, cee ,n),
(1Y) deoy/dt = v} — Ly + vBiput,
where the Q, = — 4, are essentially nonnegative and the B, are nonnega-

tive. Hence cquations (19) and (19°) define a continuous multiplicative
process like (3), of the form d®/dt = Qd, where

l—!‘l.‘1| 0 0 VB\
(19%) Q= "B —wmde o0 0
() O T l)nBrl —1);,11,,

If the reactor is geometrically connected, and if it contains some fissionable
material, then the matrix Q of (19*) is then essentially positive, and the
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submatrices A; are Stieltjes matrices. Hence, the results of §§3-6 are
applicable.

Furthermore, the A; are diagonally dominant,'® and hence positive
definite. Therefore, by Theorem 5, we have the further

CoroLLARY 3. In the usual difference-equation approximations for the
multigroup diffusion equations (17) and (17'), the matrices A7' are positive
and the A7'B; are nonnegative.

In fact, for ¢ > 1, the A7'B; are positive.

10. Critical flux calculations. In ecritical flux calculations, the time-
derivatives in (17) and (17’) are set equal to zero, giving rise to discrete
multiplicative processes (2) of the special form (5) and (5'). We shall now
apply the theory of §§3-6 to this case.

As shown in §7, the matrix P of (6), derived from (5) and (5'), is cyclic
of index k(P) = n > 1. It follows from Theorem 4’ that simple iteration
of the process N(r + 1) = P-N(r) defined by (6) will not in general con-
verge to the critical flux distribution. However, this apparent disadvantage
can be turned into a positive advantage by the simple device of replacing
(6) by the multiplicative process defined by (7), which is nonnegative and
semi-irreducible, but with a pimitive square submatrix P, (cf. Fig. 1).

To see that the two processes define the same (critical) thermal flux dis-
tribution, we proceed as follows. The matrices A7'B; are nonnegative by
Corollary 3 above, and the product T of (7') is also nonnegative and semi-
irreducible. Hence, by Theorems 1 and 1”, each process has a unique posi-
tive cigenvector. If ¢, is the thermal flux distribution vector component of
the positive eigenvector ®; = (¢, - -+, @a) of P in (6), then

@n = A;'IBn‘Pn-l = = V(A:an te ArlBl)¢rt = vapn .

Hence ¢, is the unique positive eigenvector of 7.

We shall now turn our attention to finding the positive eigenvector of
(7) and (7). In digital ealculations based on (7) and (77), one ealeulates
each i = A% 'Bipiy by an iterative numerical procedure; the inner itera-
tions involved can be interpreted as solving a source problem, which will
be discussed in §11. Assuming that this problem can be solved, the vector
Ton of the process represented by (7) and (7) can be calculated with
arbitrary accuracy. The iteration of this process is referred to as an outer
lteration.

Theorem 4’ shows that such an outer iteration will necessarily converge
to the dominant (critical) flux distribution. Moreover, this simple iteration

'8 A. Ostrowski, Comment. Math. Helv. 10 (1937), pp. 69-96. For further details
and generalizations to various boundary conditions, see {7, p. 14]. The case of non-
isotropic diffusion is, however, quite different.




REACTOR CRITICALITY AND NONNEGATIVE MATRICES 367

process is intuitively attractive, because by §2 it can be interp:-‘ed as an
ideal diffusion process with absorption and multiplication: it i- :nalozous
to what actually happens physically.

Though simple iteration, based on (7), is a multiplicative = ess which
is sure to converge, other processes may converge more rapic . Though
nonnegative matrices define intuitively attractive multiplic: e processes,
matrices whose entries have mixed signs may be more « :aputationally
efficient.

11. Source problems. With reactors containing sources of constant
strength, (3) is replaced by
(20) dN;/dt = Z: q;‘ij(l) -+ S.‘, S; = 0.

Jeml

Unless zero is an eigenvalue of Q, there is a unique equilibrium distribution
Ny such that QNo = —S; the general solution of (20) is then N, plus the
general solution of (3). In the subcritical case where M(Q) < 0, Theorem 5
shows that —Q™" is positive. Hence, comparing with Theorem 4, we see

THEOREM 6. For any irreducible process (20), with all N:(0) = 0, all
S: 2 0 and some S; > 0, we have

lim,. ZN; (t) = 4+ if (3) is critical or supercritical.
lime.w N(t) = —Q7'S  ¢f (3) is subcritical.
Source problems also arise in eritical flux calculations. Clearly, we can
write any single equation (5) or (5’) in the simplified form
(22) Ap = — V(DY) + Z'p = S(x),

where V-D YV may be approximated by (18), for example. Hence the
“inner” iterations of §10 can be regarded as solutions of a one-velocity-
group source problem.

We now discuss various specific processes for solving source prob-
lems' (22); no real generality is lost by considering the case

""ha‘P = 4tp($, J) - QO(J? + h’ Z/) - <p(x,y + h) - tp(.l: - hy y)

= o(x,y — k) = Sz, y),
of the plane difference analog to the Laplace equation. We shall show that
the theory of §§3-8 sheds fresh light' on various iterative processes for
solving (23).

(21)

(23)

1" For example, Chebyshev polynomials in the matrix 7' of (7*) have been used suc-
cessfully to accelerate convergence; see Bettis Atomic Power Division of Westing-
house Electric Corporation, Report WAPD-TM-70.

18 For Dirichlet type boundary conditions.

'9 Le., it gives results apparently not in the literature. For the latter, see [7] or [10].
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The primary questions concern the convergence to zero, as r — o, of
the error function Z,(z, y) after r iterations, under different iterative proc-
esses. This is equivalent to having spectral norm less than one (being
“guberitical’). o

Modified Schmidt Processes transform the error function according to

(24) Er+1 = [, + khzszEr .

This is nonnegative (i.e., o “multiplicative process”) if and only if 0 < k& < &,
which is the usual Courant-Friedrichs-Lewy “stability”” condition, as given in
[14]. As the mesh length & tends to zero, this is asymptotically the same as
the exact condition for being stable (having speetral norm less than one).
In o connected domain, (24) is irreducible and nonnegative. If & < %,
it is primitive;in the case £ = } of the ordinary Schmidt process, it is how-
ever cyclic of index two.

The Gauss-Seidel or Licbmann process, which affects the error veetor by

(25) HEru(e,y) = Ez + h,y) + E(e,y + h) + Eop(e — b, y)
+ Lz, y — h)

is also a discrete multiplicative process; it can easily be shown to be non-
negative, semi-irreducible with a primitive square submatrix, and stable.
The class of implicit processes defined by

(26) Erpy = E, + kh*[p6°E, + (1 — p)8°E, 4]

is also of interest. Laasonen’s choice p = 0 defines (26) as a multiplicative
process, which is also stable (alias convergent or subcritical). The choice
p = % of Crank-Nicolson® has the highest order of accuracy, but is not
positive.

Overrclaxation. The Young-IFrankel method of Successive Overrelaxation
is applicable to systems Ax = k, where A = || ai; ||, an n X n matrix has
all positive diagonal entries a;; > 0, and satisfies Young's Property (A)
(10, p. 93]:

(A) There exist two nonempty subsets S, T'with Sn 7T =0, Su T =
{1, 2, -+, n}, such that a;; # 0 implies ¢ = j or, if ¢ = j, then ¢ € S,
je€Torje S,2€ T.

Let D be the positive diagonal matrix with diagonal entries d;; = 1/ay;,
and let 3= =D+ £. The reduced (iteration) matrix 3 ix cyclic of index

30 Proe. Cambridge Philos. Soc. 43 (1947), 5-67; for Luasonen, sce Acta Math. 81
(1949), 309-317. The “‘alternating direction’ implicit method of Peaceman-Rachford,
deseribed in J. Soc. Indust. Appl. Math. 3 (1953), pp. 28-41, is not usually order-
preserving.
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2 if, and only if, A satisfies property (A). Hence, if we apply (15) with
k = 2, we have a simple proof of Young’s result that the nonzero ecigen-
values of B occur in == pairs. Also, the proof is equally valid for generaliza-
tions to block property (A).*

Though the concepts of cyclic and nonnegative matrices are very useful
in deriving the properties of Successive Overrclaxation with optimum w,
the process itself is not nonnegative on the error vector. Neither is “second-
order Richardson”, as defined in [15].

On the other hand, the Perron-Ifrobenius theory can be used for esti-
mating the optimum successive overrelaxation factor w, {10, p. 95] for a
class of cases including (23). Using the minimax property (12), nontrivial
upper and lower bounds can be found for w, {7, p. 21].

Successive Overrelaxation can also be generalized to the following ap-
proximation to the Laplace equation for a triangular mesh in the complex
z-plane,

27) wrn(z) — YHude — h) + w(z — ho) + w(z — ho’)} = 0,

where w is a primitive cube root of unity. This is cyclic of index three; one
of us will discuss this generalization elsewhere.

12. Parameter v. Criticality studies involve a matrix P = A 4+ vB de-
pending linearly on a parameter », in many applications besides (6),
(7) and (7'). For instance, » might correspond to enrichment by U**, to
control rod effectiveness, or to reactor size. In such cases, one looks for the
value of » making the matrix A + vB define a critical process. The following
result is therefore of interest.

LemMmA 7. Let A and B be nonnegative, A + B semi-trreducible, and let
A + B contain a cycle with a nonzero entry from B. Then o(v) = L(A + vB)
increases monotonely with v, for v > 0.

Proof. We shall assume for simplicity that .\ 4+ B is irreducible; the
extension to the semi-irreducible case is casy. Let Fy be the importance
vector of A + vB, and ¢, the eigenvector of A + »'B. If L is the spectral
norm of A 4+ vB, and L’ that of A + B, where »" > », then

F\L'gs = Fi(A + vB)py = F\(A + vB)p: + AvFBe,
= [aF(pg + AVF;R({)Q > [4F1'§0~_> s

since Ay = v — » > 0, and all entries of F, and ¢ are positive. Hence
L' > L, as claimed. In the semi-irreducible case, a similar argument goes

21 For such generalizations, see Arms, Gates and Zondek, J. Soc. Indust. Appl.
Math. 4 (1956), 220-229.
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through because all cycles lie in the range of A + vB, on which 4 + »B is
irreducible.

Further, since L(P) is a simple root of | P — M | = 0, by the Implicit
Function Theorem we know

Lemma 8. In Lemma 7, o(v) s analytic.

In most applications (e.g., in (6)), ¢(0) = 0. Moreover, we can prove

LEmMA 9. In Lemma 7, v(+ ) = + .,

Proof. If k is the length of the cycle of A + B containing a nonzero
entry from B, then (A4 + vB) has a nonzero diagonal entry with some
positive pth power of » as a factor. Hence

(28) [L(A4 + »B)* = L(A + vBI') z K",

from which the conclusion follows by Lemma 7.

Combining Lemmas 7-9, we obtain

THEOREM 7. Under the hypotheses of Lemma 7, A + vB is critical for just
one value v., ; it s subcritical if v < v.. , and supercritical if v > v, .

A similar result holds for continuous multiplicative processes. Moreover
if P is symmetric, then the “norm’ N(P) of P satisfies

(29) NP) = sup,ﬁéo{v}I'PP'X’/JKX«‘L"}”2 = sup |\ | = L(P).

But, for any matrices, N(A + B) £ N(A) + N(B); thercfore

THEOREM 8. For symmetric matrices, the spectral norm is a convex function;;
hence L(P) ts a convexr function of P, for symmetric, cssentially positive
matrices.

The preceding argument applies also to normal matrices,” or matrices I
such that PP’ = P’P. There is however a catch: the sum of two normal
matrices is not in general normal. The case of symmetric matrices seems,
therefore, to be the most important case for which L(4 + B) =
L(A) + L(B).

13. Transition matrix. The concept of @ matrix of transition probabilities
is familiar from the theory of radioactive disintegration and other stochastic
processes. We now extend it to any continuous multiplicative process (3)
with negative diagonal entries ¢;; . These entries are necessarily negative
if (3) is subecritical.

Clearly, exp(q;;t) is the probability that a neutron will remain in cell j
through time ¢ uninterruptedly under (33), =0 that 1.'(—¢;;) = 7, is the
mean sojourn time there. Hence q;; exp(q;;t) dt will be the expectation that a

2 In Lemma 9, if B is semi-irreducible, then we have the more precise formula
o(v) ~ v L(B) as v— =, where L(B) > 0 is the largest eigenvalue of B.

3 Another generalization is due to Peter Lax, Report NY0-7974, AEC Computing
Facility, Institute of Mathematical Sciences, New York University, 1957.
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neutron will appear in cell ¢ by direct transiton from cell j in the time
interval from ¢ to ¢ 4+ dt. Integrating over 0 = { £ 4+ o, we see that the
transition cepectation from cell j to cell 7 is

(30) rij = Qi) =qij = '£ qijexp (q;t) dt 2 0, ¢ j.

Also, the ideu of transition leads us to define
(30") rio =10 Z=1--,m).

Hence we make the

Definition. 1f ull q;; < 0, the transition matric associated with the multi-
plicative process (3) is the matrix R defined by (30) and (30").

TueoreM 9. [f all q;; < 0, then the discrete process N(r + 1) = RN(r)
defined by the transition matric (30) and (30") is subcritical, critical, or super-
critical, according as (3) is subcritical, critical, or supercritical. [n the critical
case, Q and R have the same tmportance vector.

Proof. As in §4, Q and its transpose Q" have the same spectrum and

hence criticality. If (3) has the importance vector F, then forj =1, -+ ,m
we will have
(31) —4i Dor P = 2 g Fo = ME; = 4 7.

)

Dividing through by —¢;; > 0, wesecthat R'F > F, R'F = For R'F < F
according as @ is supereritical, critical, or suberitical. The desired conclu-
sions then follow from Theorem 4 and its corollaries.

The transition matrix 2 also arises naturally in connection with source
problems (20). We look for the solution of (20) which is time-independent,
s0 that

(32) —QN = 8.
By definition. N satisfies (32) if and only if —¢,;; NV, = S aaNe+ S;,

-y

for j = 1,2, -+, m,or

(32') AVJ' = Z I'J'AAV/\- —+ ij’j,
k

or

(327) N = RN + DS

where D is o dingonal matrix with diagonal entries 7, = 1/(—v;;).

The Gauss iteration process [10, p. 100] for solving (32) consists in iterat-
ing (327), with only unimproved values of Vi on the right side. ITence,
the discrete process (2) defined by the transition matrix £ of (3) is identical,
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if all g;; < 0, with the process defined on the error function by the Gauss
iteration process for solving AN = S, with 4 = —(). Theorem 9 therefore
implies the following

COROLLARY. [n the time-independent source problem (32), Gauss iteration
s convergent if and only if the process (3) is suberitical.

14. Thermal up-scattering. .\s an example to show how the preceding
mathematical techniques can be applied to solve new problems, we consider
the case of so-called thermal up-scattering.

In many group diffusion problems, “thermal’” neutrons may themselves
be subdivided into two or more lethargy groups. Due to the possibility
of “up-scattering”, neutrons in a given thermal group can then arise from
lethargy groups having lower velocity. This defines a continuous multi-
plicative process through cquations which may be written as

A

(33) T = "Aigoi + I; B{k‘Pk 1= N),
where ¢; denotes the flux in the ith lethargy group, and the nonnegative
matrices By have entries corresponding to the possibility of scattering
between lethargy groups in the various spatial cells. The theory of the
continuous multiplicative process (3) defined by (33) is the same as before,
since the matrix  involved is still essentially positive.

The computational problem, however, requires i somewhat different
analysis. I'or computational purposes, all the thermal lethargy groups are
lumped together into a single “thermal group”, containing all lethargy
groups into which up-scattering is possible. The “inner iterations” used
to solve the source problem for ordinary lethargy groups must be supple-
mented by ‘“thermal iterations”.

The source problem for the thermal group in the discrete process defined
by (33) may be written in the matrix form

(33’) ‘l. p: = S, + Z [')),/\-(0/\; (Ib ;: 1:, k é LV).
kyhi

Here, s, is the flux coming to the ith group from fission sources and scatter-
ing from epithermal groups; the B refer to scattering between thermal
groups. The matrices .1, are nonsingular as before, so that (337) is equiva-
lent to
-1 4 —1 <1,
(33”) Qo = A,‘ S + Z ;1,‘ B,‘k(pk (n é 1, k é N)
kAL
If® = (p., -, pn) represents the total thermal neutron flux, then the
e .
system (337) may be written

(34) ® =(Cd + S,
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where the matrix C is defined by

O A:an,n-f-l cr A-IIBHN
(35) C = /1:-1%1 13n+1,n 0 s .’1;+1 BTH'LN
v Bva  A¥Byap - 0

The A" are positive, so that C is nonnegative and in general irreducible.

Equation (34) can be solved by Gauss-Seidel iteration, which reduces
to the Liebmann process (25) in the case of the Laplace equation. The
matrix C is formed only implicitly, since, in general, the matrices A7
themselves are not found explicitly, but approximated by means of inner
iterations. Thus, the application of the Gauss-Secidel iteration method to
the matrix C is equivalent to the method of “successive block displace-
ments”’,* the block submatrices being precisely the 4 /’s.

TureoreM 10. In any critical process (33), Gauss and Gauss-Seidel itera-
tion of (34) are comvergent.

Proof. In the critical case, the thermal groups by themselves define a
subcritical process, by the monotonicity theorems of §12. Hence, as shown
in Theorem 9 Gauss iteration is convergent. But it is known® that Gauss-
Seidel iteration is then also convergent—-and at least as rapidly convergent
as Gauss iteration (which reduces to the Schmidt process (24) in the case
of the Laplace equation). A similar conelusion holds, by the same argument,
for any component of any ecritical process. Moreover the convergence of
outer iterations follows as in §10.

Remark. If one allows up-scattering and down-scattering between ad-
jacent lethargy groups only, then the matrix C of (34) is cyclic of index two.
It follows that, in this case, one can again use Successive Overrelaxation
to speed up the convergence of thermal iterations.

16. Complex eigenvalues. In many reactor problems like those con-
sidered above, the matrices involved have only real ecigenvalues. Thus,
this is the case with source problems (22), since the A; are then symmetric.
It has been conjectured implicitly that this is true for the matrix Q in
typical reactor problems; this would be convenient, beeause it would
permit an expansion of the time-dependent flux in a series of exponentials
[4, p. 357]. It has also been conjectured that 7' has only real eigenvalues
in actual reactors.”™ This has an importaut computational application,

# L. J. Arms, L. D, Gates, B. Zondcek, loc. cit.

2 P, Stein and R. L. Rosenberg, J. London Math. Soc. 23 (1948), 111-118.

20 See Bettis Atomic Power Division of Westinghouse Electrie Corporation, Re-
port WAPD-TM-70, where a discussion is given as to how to apply Chebysheff-
polynomials in the matrix 7',
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because it enables one to speed up convergence by using Chebysheff poly-
nomials in 7', in the outer iteration cycle. Some empirical support for this
conjecture is lent by the fact that the use of such polynomials does, in
fact, speed up convergence.”

We shall now discuss the reality of the eigenvalues of the matrices P, Q
and T arising from bare homogeneous reactor problems.

In such reactors, the vector space of flux-components (p, - - - , @n) IS
the direct sum of subspaces S;, in each of which the spatial distribution is
proportional to an eigenfunction u,(x) of the scalar Helmholtz cquation
V% + B*u = 0 for some B = B;, or of its discrete analog. Moreover, each
such subspace is ¢nvariant under the (linear) operators involved in equa-
tions (17) and (17'). Hence, the matrix P of (6) acts on each Jth invariant
subspace like an n X n matrix of the same form, but with A;'B, replaced
by /(2 + 8Dy

It follows that the matrix T of (7) and (7’) acts on each Jth invariant
subspace like the scalar matrix v I:[ (Z/(Z + B*DW))I;, where I; is the

n X n identity matrix. Consequently, T has all real cigenvalucs.

On the other hand, the matrix of (6) will always have complex eigen-
values, if n > 2. For, P being similar to a bidiagonal matrix, having nonzero
entrics only on the principal diagonal and one adjacent diagonal, its char-
acteristic polynomial is easily calculated as

(36) IN =P =T\ - kaI (Ze/ (2 + B D).

b

This evidently has all real cigenvalues if and only if n = 1 or 2 (cf. [4],
p. 242).

The matrix @ arising in the nominal® reactor kinetics problem defined
by (17) and (17), for the sume (ideal) reactor, is also bidiagonal. Morcover,

(37) |1 —-Q| = H {H; b+ 08D + 2] — v IIl ¥ Ei}.
] 1 - T -
For @ to have complex cigenvalues, it is necessary and sufficient that the
number of intersections of each polynomial curve
(38) y=filw) =1 [« + 08" D: + =/

i

with the horizontal line y = »[]n.S bhe n.

¥ Rome a priori support may also be found in the idea that inhomogeneities lead
typically to cycles of length two (core fission — slowing down in moderator — core
fission) or less; 2 X 2 nonnegative matrices have real eigenvalues.

8 Nominal, beeaused delayed neutrons are ignored, and because the time scales
involved in (17) and (17') are entirelv fictitious in few-group calculations.
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y= f(A) My m,
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The variation in the coefficients of (3) is extreme, xince the neutron
velocities v; vary by a factor of 4 X 10° or more. This makes the problem
very difficult. To get some idea of the facts, we therefore suppose that
absorption and fission can be neglected, and that £/ = Z; are velocity-
independent. We shall see that, in few-group approximations, @ will then
usually have only real eigenvalues. We shall confine our attention to the
case j = 1 of the dominant mode (positive eigenfunction), writing g1 = @
and fi(u) = f(u) for simplicity.

In Fig. 3, we have sketched a sample curve y = f(\). It crosses the p-axis
at p = —u;Zu = a; n times (in Fig. 3, n = 5). Between successive a; ,
f(x) has one maximum or one minimum, and the signs of these alternate.
The condition that  should have (two or more) complex cigenvalues is thus
simply that y = »][]v.2. should lic above at least one of these maxima. In
Fig. 3, we have sketched a borderline case, in which y = v[JviZi at the
lowest of these maxima. In the eritieal case, since | w/ — Q] has a factor
u, clearly f(0) = uIIu,»P.‘;’ , this case is depicted in I'ig. 3. The critical case
is of course of greatest interest.

With three equally spaced lethargy groups, we can then write v, 2y = a
122 = 1, 0325 = afora > 1, insuitable units. In the borderline critical case,

) = s = (w— o= Dlp— o)+ 1= ulu’ = Ap+ 1),

(3Y) .
A=a + 14+ a

The quadratic factor is a perfect square (u — mo)* if and only if A = 4,
ora = 13 4+ V/5) = 1.977. In this case, the borderline lethargy spacing
is about 2n(v.n/v)) = 14

A similar but more complicated calculation can be made in case n = 4,
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with 03, = o™ A preliminary rough estimate gives the borderline
value of « in this case us about three. These estimates suggest that complex
cigenvalucs are likely to arise if twenty or more equally spaced lethargy groups
are used in multigroup diffusion problems.

A general theorem confirming this view can also be stated.

TueoruM 11. If n 2 4, and if the smallest value « of v:Z( exceeds one-filth
of the fourth smallest v,=/ | then Q) has at least one complex cigenvalue.

Roughly interpreted, the preceding result suggests that complex cigen-
values may be expected if the change in lethargy n(E,/E) between succes-
sive velocity groups is less than 0.8. We emphasize that it is only sufficicnt
to imply the existence of complex cigenvalues, and not necessary.

Proof. By the previous discussion, it suffices to prove that [[0:2/ exceeds
the relative maximum f(\,) nearest the origin. If the smallest four ;2 are
a, az, ay, ai, then —ay > Ay > —qy. The maximum of the ratio
H()\ — ai)/ajamayay , subjeet to the condition

a=a1$ag<a\<a3§a4§5a,

clearly oceurs when oy = ay = a: \ = 3a; ay = ay = Ha. Hence it is 16/23,
proving that

4 4
II ()\g -+ oy :,") H V; E,j/ < 10/25
(um] Tom]
For all 0,2/ other than the smallest four, however, clearly o + 0,3/ < 0,2,
since N2 < 0. Hence [Joix” > TTOw + 0.2, completing the proof.
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