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Sumanary. ln this note, the minimal Gerschgorin sct G is delined for a matrix A,
relative to a matrix D and a family # of norms. This minimal Gerschgorin set is
shown to be an inclusion region for the cigenvalues of a related collection (2 of matrices,
ie.,

o {Q) <G.
The main result is a necessary and sufficient condition for equality to hold in the
above inclusion. In addition, examples are given, one for which equality does not hold
in the above inclusion.

1. Introduction
Let # be a finite or infinite non-empty family of norms on €, If [€"] denotes
the set of all # xn complex matrices, let 4 and D be two arbitrary but fixed
matrices in [€*]. If 1 is an eigenvalue of A, written A€ (4), there exists an
Z+0in C* with A = Az, or equivalently, (4 —D)x =(A—=D)x. For Ao (D),
(A —D) is invertible, and hence

(A—=D) (A —D)x —. (1)
Using the standard notation 0(S)=max{[A[: det (A1 —S) =0} for the spectral

radius of any S€[C"*] and IS]s=sup{¢(Sy): & (y) =1} for the induced operator
norm of S for a norm ¢ on €, then (1) implies, as is well-known, that

1=e{d=D)M (4 —D)} = (A— D) (4 — D)), 2
As the last inequality holds for any ¢ €% then
t=o{(A—-D)1(4 —D)} < inf{|(A —D)1(4 —Djl;: peF}. (3)

Defining the set ¢ =Gg(4; D) in the complex plane € by
G=0(D)u{zeC: z¢0(D) and I(z— D) (4 — D) o =1 VoeF}, (4)
the inequalities of (3) give
a(4)<G. (5)

The set G is called the minimal Gerschgorin set for A, relative to and D, and (5)
establishes that G is an inclusion region for the eigenvalues of 4. Note that since
the set ¢
0(D)U{z€C: 2¢0(D) and l(z—D)1(4 — D) lo =1}

is a closed and bounded set in € for each ¢ €.F then so is their intersection, G.
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Of course, many matrices B€[€C"] have their spectra in G. In particular, let
Q= Q‘g: (4; D) be the subset of [C*] of all matrices B for which

[z D) B—D)|, <[z —D) M4 ~D)|, Ve & Vzéo(D).  (6)

Clearly, Qis nonempty since it trivially contains 4 and D. For any B 655, consider
any A€o (B) with A¢o (D). The argument leading to (3) similarly applied to B gives

1=0{(2 D) (B =D} = (2 —D)*(B—D)|, <|(2 — D) (4 —D)|, Vpe Z (7)

the last inequality following from (6). Hence, from (4 ), A€G. If Jea(B)na (D),
then 1 is again, by definition, in G. Thus, if o‘(.Q) denotes the collection of all
eigenvalues of all BG.Q the above discussion has established

Proposition 1. Let 4 and D be any matrices in [C"], and let # be any family
of norms on €". Then,

a(Q) <G, (8)

For a related but somewhat more general result, see also Kovarik [1, Prop. 1].
The purpose of this note is to give a necessary and sufficient condition that

equality hold in (8), i.e. G(Q) =(, and to give examples both where equality in
(8) holds and where equahty in (8) fails.

2. Preliminary Results

We now derive some properties of the set Q.

Lemma 1. The set O is star-shaped with respect to D, i.e., for any BeQ and
any t€C with 0 || <1, then {D +¢(B —D)}ef.

Proof. If BeQ and B= D +t(B —D) where 0 <|¢t|<1, then for any ¢peF
and any zdo (D),

|z =D)* (B —D)| =|¢] |(z — D) (B—D) |, =| (- — D) * (B — D)
=|E—=D)* (4 D),

the last inequality followmg from (6), since B is by hypothesis an element of 0.
Thus, by definition, BeQ. O.E.D.

Lemma 2. Q is a compact subset of "

Proof. Here, it is convenient to regard each matrix Be[C"] as a point in C*.
We first show that & is bounded. Given any two matrices S and 7" in [€"] with T
nonsingular, it is well known (cf. Ostrowski [2, II.4 and II. 16]) that, for any
norm ¢ on C”,

17Slsz]S]s - (1T])

Now, fix any ¢ € F and any zd¢ (D). For any BeQ, it follows from the above
inequality that
Iz =D)*(B—D)|y=z|B—Dl, - (s —Dl,)*,
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and as | B —D|, =B, — D], we see from (6) that
|Bly =Py +]z—Dly - {l(z =D)*(4 —D)]y}

for any BeQ. Thus, Q is a bounded subset of €. That is a closed subset of £
€™ follows easily from (6). Thus, £ is a compact subset of €. Q.E.D.

3. Main Result
For any z¢¢ (D), it is convenient now to define

v =sup{e((— D)1 (B —D)): Bed), ©)
and
1) =int{|(z —=D) (4 —D)[,: g7} (10)
Evidently, G =0 (D) u{z€C: z¢0 (D) and 7 (z) =1}, and it follows from the last
two inequalities of (7) that
v{2) =nlz), Vzdo(D).

In addition, the first inequality of (7) gives that each z€g ([:)) not in ¢ (D) must
satisfy »(2) = 1. This brings us to

Theorem 1. Let A and D be any matrices in [€"], and let & be any non-
empty family of norms on C”. Then

o(Q) =G (1)
if and only if »(2) =1 for all 2€G not in o (D).
Proof. First, suppose that »(z) =1 for all 2€G not in ¢ (D). To show that (11)

holds, let 2 be an arbltrary point in G. If z€g(D), then, as Def, it necessarily

follows that zEc(Q) If z¢0(D), then, by hypothe51s 1= (2) <-+oo. It is well-
known that the spectral radius of a matrix is a continuous function of the entries

of the matrix. Since 2is a compact subset of €* from Lemma 2, there is evidenthy
a Bef such that

eile—D) (B—D)} =»(x
Moreover, if we write B=D - S, it is obvious from (6 that D +¢*°S is also an

element of Q for each real 0. Thus, without loss of generality, we may assume
that (z — D)™ (B — D) has »(2) as an eigenvalue, i.e., there is an # == 0 in C* with
(2 —D)™(B —D)x =v(2)®, or equivalently,

{D+( -------- )(B D)}w:z;p. , (12)

But, using the fact from Lemma 1 that O is star- -shaped with respect to D, the
matrix B=D + ( "G )) (B —D) is an element of .Q having z as an eigenvalue, i.e.,

46(7(!2 Thus, G(o(.Q) But, with the reverse inclusion from (8), then 0(52
Conversely, assume that there is a z in G not in ¢ (D) for which » (2) <1. But
then z cannot be in o’(.O ) since if it were, »(z) would be at least unity from (7).

Thus, o‘(.Q) $G. QED.
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4. Examples
It is natural to ask when equality holds in (11). Particular known results do in
fact establish (11) in special cases, and it is worthwhile to recall one such example.
If {e,}j_, denotes the canonical basis in R", let the family # of norms on C" be
defined as

F, ={¢: there exist positive numbers ¢,, ¢,, ..., ¢, such that (13)

¢ (éﬁ 0197') = lglflgxn H%’l/ﬁby‘]}-

For any A =(a,;,)€[C"], choose D =diag(4)=diag(ayy, as s, .-, 4,,). For this
choice of D and 4, the set Gz, (A4; diag(4)) reduces exactly to the original
minimal Gerschgorin set considered in [4]. In particular, from [4, Theorem 6],
it is known that

o (2, (4; diag (4))) = Gg, (4, diag(4)),

i.e., equality holds in (11) for this example. Similarly, if %, is the collection of
all norms on €”, then for arbitrary 4 and D in [€"], equality holds in (11). For
infinite dimensional analogues which similarly establish equality in (11), see
Kovarik [1].

We now establish that equality cannot hold in general in (11), and we make
use of Theorem 1 to show this. Specifically, if % is the family of norms of (13) for
the special case #» =2, choose

el 3 ol

5 4 2 4
Starting with the observation (cf. [5]) that, for any S = s, ;) €[C?],
inf{|S]y: ¢peF}=eo(|S]) (14)

where |S|= (|s;;|), it follows from (14) that
0(d) =inf{](: — D) (4 —D)|,: $€F}=o{|z—D) (4 —D)]}
=(4+)4+3e—1] - [e—4])/(z] - [ —5]), Vzéo(D),
the last expression resulting from direct computation. Thus, as

G=0(D)u{zeC: z¢o(D) and 7(z) =1},

it follows that
G={2eC: 4+Y4+3|z—1] [z —4|=]z] - |- 5[} (16)

Next, a short calculation based on (6), which uses the variability of both
z and ¢ € &, shows that Bef if and only

[0 e
B—-D= [02,1 o 1

and |c;,| =1 and |¢,,| < 3. From this, it follows that

|(z—D)*(B—D)|<|(z—D)*(4—D)| Vzes(D), VYBeR, (17)
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in the sense of nonnegative matrices. Choose now any z, for which 7 (z,) =1, i.e.,
%y is a boundary point of G. If we for convenience set S = (z, —D)=*(B — D) for
any BeQand 7" =|(zy — D) (4 — D)|, then |S| < T from (17), and hence from (15)
and the Perron-Frobenius theorem on nonnegative matrices (cf. [3, p. 28]),

2(S) =o(T) =n(z) =1,
with equality holding throughout only if S has the representation (cf. [3, p. 29])
S=¢"NTN-! (18)

where N is a diagonal matrix with diagonal entries all having modulus unity. By
direct verification, it turns out, however, that S has the representation of (18) if
and only if 7, is real. Thus, for any non-real z, with % (z,) =1, (which clearly exist
from (15)), it necessarily follows that » (z,) <1 =1 (2,) and hence, from Theorem 1,

0(Qg, (4; D))<Gx (4; D).

It is interesting to note in the last example that while ¢(£2) & G, it is however
true that the real points of the boundary, G, of G are in ¢{Q), i.e.,

0G N (Q) =+ ¢. (19)

It is an open question if (19) is valid for any choice of matrices 4 and D in [C€"],
and for any non-empty family % of norms on €”.
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