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1. Introduction

The Young-Frankel successive point overrelaxation scheme [14, 4] has been
shown [14] to be applicable in solving partial difference equations of elliptic type
arising from discrete approximations to general partial differential equations of
elliptic type. More recently, Arms, Gates, and Zondek [1] generalized the suc-
cessive point overrelaxation scheme of Young-Frankel to what is called the
successive block overrelazation scheme, and they stated that, with certain additional
assumptions, a theoretical advantage in the rates of convergence is always
obtained in using successive block overrelaxation rather than successive point
overrelaxation. In particular, for the numerical solution of the Dirichlet problem
of uniform mesh size A in a rectangle, the successive block overrelaxation scheme
[1] is asymptotically faster by a factor of 2! than the successive point overrelaxa-
tion scheme, as k — 0. Despite that advantage, the successive block overrelaxa-
tion scheme has not been widely used, mainly because the usual computing
machine application of block overrelaxation requires more arithmetic operations
than point overrelaxation, and this increase in the number of arithmetic opera-
tions would appear to cancel any gains in the rates of convergence.

We shall show for a large class of matrix problems that, when the equations are
suitably normalized, the successive block overrelaxation scheme can be applied
in the same number of arithmetic operations per iteration as that required by the
successive point overrelaxation scheme. Therefore, in this computing machine
application of block relaxation, the full advantage in the rates of convergence of
block vs. point relaxation will be obtained. We shall also show that the same
normalization of our equations in general gives rise to an essential reduction in
the number of entries of the coefficient matrix which is used in the computing
machine application of the iterative block relaxation scheme.

2. Basic Assumptions
We seek the solution vector x of the matrix problem
Ax =k, (2.1)
* Received September, 1958.
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where the coefficient matrix 4 = || a,,; || is a given real n X n matrix. We shall
assume that A is partitioned into
Aig Aiy oo+ Arw .
A =1 : I (2:2)
Axs Aws -+ Aww

where the diagonal blocks 4, ; are n; X n; submatrices of A, 1 £ ¢ £ N, and
2y n; = n. We further assume that

(a) A is symmetrie (2.3)

(b) as; < 0fori=j, 1<4,j<n.

(e) A is drreducible [5], i.e., there exists no permutation matrix P such that

L _(Q R
par = (4 1)

where ¢ and S are square submatrices.

(d) 2 % ai; = 0forall I <4 < n, with strict inequality for some 7.

(e) EachA;;istridiagonal,ie. if 4,, = || o'} | thena} , = Ofor|k — 1] > 1,

(f) A bas Property A" [1, p. 221], i.e., there exist two disjoint subsets S and
T of W, the set of the first N integers, such that SU 7T = W, and if
Aq,; does not have all zero entries, then eithers = j, ors € S andj € 7,
ori € Tandj€ 8.

We may assume, without loss of generality, that A is (consistently) ordered
[1, p. 221]. We remark that from (a), (b), (¢), and (d) of (2.3), it follows [11]
that the matrices 4 and A;;, 1 =4 =N, are all symmetric and positive
definite.

We shall show in section 5 that the above assumptions are fulfilled for a large
class of matrix problems, especially those occurring in the numerical solution of
self-adjoint partial differential equations.

3. Factorization

The following well-known result [6, pp. 20-22] gives a representation for the
matrices A, ; :

Lemva 1. If C = || ¢;,; || @ a real n X n symmelric and positive definite matriz,
then there exists a unique positive diagonal matriz D and a unique real upper-
triangular’ matriz T with unit diagonal entries such that

¢ =DT'TD (3.1)
where T denotes the transpose of T.

1An n X n matrix 7' = | &, || is upper triangular if t;,; = Ofor ¢> j, 1 <4, < n.



238 ®. H. CUTHILL AND R. 8. VARGA

The matrices 4 ; in addition to being symmetric and positive definite are, by
hypothesis (e) of (2.3), also tridiagonal. For this type of matrix the following

corollary can be proved inductively:
CoroLrAry 1. Let

rby  ¢1 :
S/ 3/ 9/ 0
C = //////
OO\ N
o DR /o H
RN

be a real symmetric and positive definite tridiagonal matriz. Then C has the unique

factorization C = DT'TD, where

1 e B
r Qu ! 1 (2 O
&, 0 NN
N ANERN
o NN
N NN
L &s d O 1 [
L 1 4
and
2y o
5 Cj— . .
di = b &Q.H/M?IAQNVWV 2=27=mn, Aw.ﬁv
and
Gu . [ /
;= 1£5=n—1. 3.
@u &QA&.}‘HN .I..wllﬁ\ Ab\»v
Assuming that C is a tridiagonal symmetric and positive definite matrix, we
seek to solve the matrix problem
Cu = k. (3.5)
Corollary 1 implies that we can write: DT"TDu = k, from which we obtain
T'T(Du) = D k. (3.6)
Letting y = Du, and g = D'k, our matrix problem is reduced to
T'Ty = g. (38.7)
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This can be solved directly for y in terms of the auxiliary vector h, where
hi=g1,  hin=gi—eh;, 1=j=n-—1, (38)
and
Yn=he, yi=h;j—eyin, 1=2j=n—1 (3.9)

Trom (3.8) and (3.9), it is clear that at most two multiplications and two addi-
tions are needed per component in finding directly the solution y of (3.7).

4. Normalized Block Relaxation Applied to the Matrix A

Let A satisfy the conditions of (2.3), and let the column vectors x and k of
(2.1) be partitioned in a form consistent with (2.2) so that (2.1) can be written
as

\?L \»rw T xwrz MD NWH
Asy X K (41)
\»Z.H e ‘%ZMZ N«z Nmz

Here, X; and K; are column vectors with n; components.
Using the results of lemma 1, we write 4,; = D7 T7:D;, 1 =7 = N, where

D; is a positive diagonal matrix, and 7'; is an upper triangular matrix of the form

(3.3). Letting

this matrix problem reduces to

Aig Arp oo Aiy Yy M,y
Az .m o) o [ M) (4.3)
Aus oo Ayvw/ \Yy My
or equivalently
Ay = M, (4.3)
where
4., = D74, D7 14, N. (44)
In particular,
A= 1415, 1<i<N. (45)

From (2.3), it is clear that A satisfies (2.3), except possibly for (d). While (d) of
(2.3) wasused in establishing that the matrices A and 4, ;, 1 <7 £ N, are pos-
itive definite, we obtain the same result for the matrices A and A, ;, 1 =7 < N.
directly from (4.4) and (4.5).
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If superseripts denote iteration indices, then we define the normalized block
relazation scheme applied to (4.1) as

i—1 N
Vi = T%MSLL AM (=AY 4+ 2 (=AY + E&v -y ;ﬂ
i j i

j=1+1
+ ¥, (46)

where o is the overrelaxation factor. We can write (4.6) in the form:

YO o GFE 0] 4 ¥, (4.7
where
) % i—l . Yoo
(TTH Y = — AMW A, v 4 ‘Mi A, 7% v + M.. (4.7
J= 7=

Having evaluated the right-hand side of (4.7"), (4.7") represents a matrix prob-
lem of the form (3.7), where g is known. As previously mentioned, the solution

*

Y of (4.77) can be found directly, with at most two multiplications and two
additions per component. We remark that having found the solution y of (4.3,
the solution x of (2.1) can be found from (4.2). Note that passing from y to x
requires but one multiplication per component. Hence, if the number of iterations
of (4.6) is large, the work in passing from y to x will be quite negligible in com-
parison.

5. Self-adjoint Partial Differential Equations

We consider the numerical solution of two-dimensional elliptic partial dif-
ference equations, arising from discrete approximations to the self-adjoint
partial differential equation”

—div{D(u) grad p(w)} + o(u) (u) = S(w), uweR, (51)

where R is a finite connected region in two dimensions, subject to the boundary
conditions

d¢(u)

ﬂ = QAQV“ uc Ha. A@.Nv

a(u)e(u) + g(u)
where T is the exterior boundary of R. Here, the normal derivative refers to the
outward normal.

We assume that

(a) a(u)and B(u) are piecewise continuous, and & >0, 8 = OonT. (5.3)
(b) D(u) > 0 R.
(¢) o(u) 2 0in E.

2 Problems of this type occur in the multigroup neutron diffusion approximation to the
neutron transport equation of reactor physics. See for example [9] and [12].
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(d) Both ¢(u) and D(u) grad ¢(u) are continuous in R U T
(e) S(u) and g(u) are piecewise continuous in R and T, respectively.

We merely state that a matrix problem of the form (2.1) is obtained from the
discrete approximation to the above problem by imposing a rectangular’ mesh
A on B U T, and approximating the partial differential equation (5.1) by a
five-point formula in two dimensions. Based on (5.3), the matrix A can be
derived [12], moreover, in such a way that hypotheses (a), (b), and (d) are
satisfied, and that the matrix 4 satisfies Young’s (point) Property A. When a
sufficiently fine mesh is chosen, the connectivity of R implies the irreducibility of
A, so that (¢) of (2.3) is satisfied. Tf the mesh points of A are numbered in the
usual manner (cf. [12]) and n; is the number of interior mesh points in the 7th
row (line) of A, then partitioning, as in (2.2), leads to square submatrices on the
diagonal of A which are tridiagonal, and (e) of (2.3) is satisfied. With this
partitioning in the two-dimensional case, the associated matrix 4 of section 4 is
of the special tridiagonal block form:

NME Nrm
MML /Mﬁ /Nwa 0]
NN N
7 \
//
0 AN

N // . (54)
// /m
/ N—IsN

/M?»Zi/umzuz

Ry ayd

The matrix A clearly satisfies Property A", (f) of (2.3), as well as (point)
Property A. Therefore, A satisfies all the conditions of (2.3), so that the results
of sections 3-4 are applicable.

Since the approximation to (5.1) is by means of a five-point formula, the
block matrices A .1, are such that there is at most one nonzero entry per row of
A, i1 . Using the symmetry of 4, and the fact that A, ; = 77,7, , where T, is
of the form given in (3.3), it is clear that only two coefficients are needed per mesh
point to completely specify the matrix 4 for which the normalized block relaxa-
tion scheme is defined. On the other hand, even with symmetry, one would in
general’ need three coefficients per mesh point to specify the matrix A for the
usual application of the block relaxation scheme. This means that iteration of the

block (line) relaxation scheme based on the matrix A of (5.4) can in general be

? The mesh spacings in each coordinate direction need not be constant.

* In reactor problems and various heat conduction problems, nonconstant mesh spacings
and nonhomogeneous composition are the rule rather than the exception. It is for these
problems that the above remarks concerning coefficient reductions are of interest. In the
solution of the Dirichlet problem on a uniform mesh, the above reduction is certainly not
gained, since all the coefficients of A are either unity or one-fourth in magnitude.



242 E. H. CUTHILL AND R. 8. VARGA

applied to numerical problems with more mesh points for the same -internal
storage of a given computing machine.

The normalized block (line) relaxation scheme as applied to the matrix A
requires, from (4.6), five multiplications and six additions per mesh point for
each iteration. It is precisely the same for the point relaxation scheme. Since the
matrix A satisfies Property A, Property A", and the hypotheses of (2.3), we can
conclude that the rate of convergence of the block relaxation scheme is at least
as fast, and in general faster, than the rate of convergence of the point relaxation
scheme applied to A 1, p. 228]. Hence, for the matrix A, an increase in the rate
of convergence is in general obtained in passing from point to block relaxation,
without obtaining a corresponding increase in the number of arithmetic opera-
tions.

For the three-dimensional problem based on a seven-point difference formula,
an analogous argument can be made. In this case, only three coeflicients are
needed per mesh point to specify the matrix A, and point and block relaxation
applied to A both require seven multiplications and eight additions per mesh
point per iteration.

6. Estimation of the Optimum Relaxation Factor w

Under the assumptions of (2.3), we shall show how upper and lower bounds
can be found for the optimum overrelaxation factor, w,, associated with the
successive block overrelaxation scheme, much as has been done for the successive
point overrelaxation scheme [12, p. 58-61].

We first consider the square matrix

ﬁ 0 A4, - —AT AN

R ¢ ) o 0 _ N.Kz_
B = . . . , Aa.wv

o i S

l&mwz Ana lx»ﬂz Ayxs - 4] v

)\

obtained from the matrix A of (4.3), which exists since the matrices A, are,
by (3.5), nonsingular. Letting a[B] denote the spectral radius’ of B, i.e., glB] =
max | M | where \; is an eigenvalue of B, we have

Lemma 2. If A satisfies (2.3), then the mairix B is a non-negative matriz, t.e.,
every entry of B is a non-negative real number. Moreover, alB] < 1.

Proor. From the assumptions of (2.3), it mo:oém that the entries of A, ;,
7 5 j are nonpositive real HEEUQE To prove that B is a non-negative matrix,
it suffices to prove that each A7iis a non-negative matrix. Since A.iis mu:B‘
metric and positive Qmmsao with nonpositive off- &mqob& entries, then xp ; has
non-negative entries’ by an early result of Stieltjes [1o}.”

5 This is also called the spectral norm of a matrix by Young [14, p. 94], although it is
not a norm in the usual sense. For B a non-negative matrix, as is the case by lemma 2, this
quantity is called the Jacobi constant for the mairiz A by Omﬁo‘%mwﬂ 7, p. 182].

6 If A4;.; is in addition irreducible, it can be shown that A7Y has every entry positive.

7 See also [7, p. 188] and [3].
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satisfies (f) of (2.3), it follows [1, pp. 224-225] that g[B] < 1, which completes
the proof.

The Perron-Frobenius theory of non-negative matrices can now be applied to
B in order to estimate the optimum value of o, wy, in (4.6). It is known that
this optimum overrelaxation factor w,, producing the fastest convergence in
(4.6), is given explicitly [1] by the formula

Since A and A;;, 1 <4 = N, are all symmetric and positive definite, and A

_ 2
Vi

Tueorem. Let A satisfy (2.3), and let a be any vector with positive components.
If Ba = 8, and of m(a) = min;(8;/a;), w(e) = max;(8;/a;), then

p(e) = alB] £ p(a). (6.3)

(6.2)

Wy

Moreover, if us(a) =< 1, then

2 < 2
= Wp = ————————
1+ )\H - E&AQV 14 )\H — wa)

Proow. If B is a non-negative and irreducible matrix, the inequalities of
(6.3) follow from the fact [13] that g[/B] can be expressed as a minimax:

max ABE A@VW = g[B] = min HHBMSW A@VW , (6.5)
12 Jj (%) a€R i o

where R is the set of all vectors u with positive components. In the general case
where B is only a non-negative matrix, the inequalities of (6.3) follow from a
lemma of Debreu and Herstein [2, p. 601]. From the formula

2
U_.JT/\M!..»%“

we see that w(u) is an increasing function of u for 0 < x < 1, from which the
inequalities of (6.4) follow. This completes the proof.

It can be shown that if the vector « of the theorem is specifically chosen to
be the positive vector whose components are the positive diagonal entries of the
matrices D;, 1 =4 = N, deseribed in section 4, then uy(a) < 1. Moreover, it
can be shown, based on (2.3¢), that B has no row of all zero entries. Thus, it
follows [12, p. 59] that the repeated application of the above theorem to
ar= Bay, k=12 - , gives sequences of nondecreasing lower bounds and
noninereasing upper bounds for g[B].

A

(6.4)

w(p) =
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