7ZERO-FREE PARABOLIC REGIONS FOR SEQUENCES OF
POLYNOMIALS*

Dedicated to Nicholas C. Metropolis on the Occasion of his 60th Birthday, June 11,1975
E. B. SAFFt anp R. S. VARGA:

Abstract. In this paper. we show that certain sequences of polynomials { px{2 )}k -0 generated
from three-term recurrence relations, have no zeros in parabolic regions in the complex plane of the
form y>=4da(x+a), x > —a. As a special case of this, no partial sum s,,(z) =Z:=0 z¥/klof e has a
zeroin y>=4(x + 1), x> —1, for any n = 1. Such zero-free parabolic regions are obtained for Padé
approximants of certain meromorphic functions, as well as for the partial sums of certain
hypergeometric functions.

1. Introduction. In his thesis [11] and in [12], the second author obtained
results concerning the existence of unbounded zero-free regions in the complex
plane C for the partial sums of special entire functions f(z) =Y, -, az". with
a, =0 for all k. In particular, it was shown in [12] that the partial sums s,(z) of the
exponential function f(z)=e" i.e.,

(1.1 s, (2)= 3 z*/k!
k=0

have no zeros in the infinite half-strip [Im z| = J6,Re z=0,foranyn=1,2.---.
More recently, Newman and Rivlin [8] stated that the parabolic-like domain

2\1/2
(1.2) ]y]‘é‘g+~r(x+47rz) . x=0, 7=1637017,
T

is free of zeros of the s, (z) in (1.1) for all n sufficiently large. However, in 9] this
result of (1.2) was retracted, and, using different methods, Newman and Rivlin
proved that the smaller region

(1.3) yi=dx, xz=0. d+0.745407,

is zero-free for every s,(z).
The purpose of the present paper is to establish the existence of zero-free

parabolic regions for certain general sequences of polynomials. As a special case
of our main result, we deduce that the parabolic region

(1.4) L yi=4x+1),  x>-1,

is zero-free for all the partial sums of the exponential function. As the unbounded
set of (1.4) contains the region of (1.3) (and in fact the region of (1.2) as well), we
thereby improve upon Newman and Rivlin’s results. Furthermore, we obtain
zero-free parabolic regions for Padé approximants of certain meromorphic
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ZERO-FREE PARABOLIC REGIONS 345

functions, as well as for the partial sums of certain | Fy hypergeometric functions.
Also, we improve upon the result of Docev |3], concerning the location of the
zeros of generalized Bessel polynomials.

" The essential technique of proof utilizes continued fraction expansions, in the

spirit of Wall [13].

2. A parabola theorem. Our main result is the following theorem.
TueoReM 2.1. Let {pi(2)}i_o be a sequence of polynomials of respective
degrees k which satisfy the three-term recurrence relation

H 'z 2
(2.1 P xPk(z)’“(*b“”‘“1>Pk‘|(z)—"Pk“z(Z), k=1,2,--,n,
K Ck
where the b,’s and c,’s are positive real numbers for all 1=k =n, and where
p-1(2)=0, py(z)=py # 0. Set i
(2.2) a=min{b(1=be_icx):k=1,2,--+,n},  by=0.

Then, if a >0, the parabolic region
(2.3) P ={lz=x+iyeC: y2§4a(x +a), x> —a}

contains no zeros of p\(z), p2(z), -+, pa(2).
Proof. Let z € 2, be any fixed point which is nota zero of any p, (z), = k =n,
and define » '

|

(2.4) = ()= ) k=12, n
by px(z)

We shall show inductively that

(2.5) , Reu, =1 fork=1,2,- -, n

This is certainly trL;e for k = 1; indeed, from (2.4), (2.1) and the fact that
po(z):=po# 0, we have that

= zpo(z) _ polz) 2

P bipi(z) bi(z/bi+ Dpolz) z+b)

from which it follows that Re u, =1 if and only if Re z = —b,. Butas z€ #, and
b, = a from (2.2), this last condition holds; i.e., Re z > ~a = -b,.

Now, assume inductively that Re g -, = 1 forsome k satisfying2 =k =n. We
can express w; from (2.4) and (2.1) as

" _zpia(z) _ zpi - i(2)
() (2 b pe(2) = biei zpa(2)

z
' Z+bk~bkclglbk 1#:«1‘

In other words,

(26) M = Tl 1),
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where T, (w) is the bilinear transformation defined by

z
z2+b = by b w

Hence, since Re u, _, = 1 by hypothesis, then u, lies in the image of the half-plane
Re w = | under the transformation T,. Now, T, has its pole at

ozt b
Wk':: -1 L}
bicy by

and since Re z > —a = —(b, —byc,'by,) from (2.2), it follows that Re w, > 1.
Therefore, T, maps Re w =1 onto a closed disk D, in the £-plane. The center &,
of this disk is the image, under T, of the point in the w-plane symmetric to the
pole w, with respect to the line Re w =1, i.e.,

B Z+b, )_ z
becr bt/ 2Rez+2b(1=by_ici')

Furthermore, since T, (00) = () lies on the boundary of D,, the radius r, of this disk
is given by

b= Ti2- )= T2

P E—— .
2Re z+2b,(1=by_icxh)

Consequently, the real part of any point in D, does not exceed the sum

Re z +|z|
2Re z+2b,(1=by_,c')

Again from (2.2), an upper bound for this last quantity is

Re z +|z|
2Re z+2a’

Refk +rn =

which one can directly verify is at most unity because z € ?,. In particular, since
i € Dy, we have Re u, = 1. This completes the induction for establishing (2.5).

Next, we observe that p, (0) # Oforall k =0, 1, - - -, n; indeed, from (2.1) we
have o
0# po(0)= p(0) =+ - = p(0).

Furthermore, if p,(z4) = pi1(29) =0 for some k = 1, then evidently z, # 0, so that
from (2.1), we deduce that p, _;(z,) =0 for all 0= j = k. In particular, this would
imply that p,(z,) = 0, which is a contradiction. Hence, p,(z) and p,_,(z) have no
zero$ in common foreach k, [ Sk =n.

Finally, suppose on the contraryithat p, (z,) = 0 for some z,€ ?,, and some k
with 1 =k = n.Clearly, since p,(z) = (po/b,)(z + b;) from (2.1), then p, has its sole
zero at —b,. But as —b, = —a from (2.2), this zero by definition (cf. (2.3)) is notin
P.. Thus, 2= k = n. Next, p(z,) = 0 implies from (2.1) that (zo/by + Dy ((2) =
(z0/c)pi 2(zo), and as p(2) and p, -, (z) have no common zeros, thenon dividing,

c ZoPr -2z
k (zo+by) = 0Pk -2(20)

: = py-1(20).
b 1by bi 1Pk 1(z0) Hic-1izo

(2.8)
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Now, z,€ ?, implies from (2.5) and continuity considerations that Re p, _,(z,) =
1. Thus, taking real parts in (2.8), we obtain

Re zy=—b (1= b ¢ )= —a,

the last inequality following from (2.2). On the other hand, z,€ 2, implies from
(2.3) that Re z,> ~a, which contradicts the above inequality. Thus, p,(z) has no
zeros in P, foreach k, 1=sk=n [

Note, using (2.6), that

M = Ti(pe 1) = T T (pu—2)) = - =TTy - Tolpy), 2=k =n.

Hence, the above teéhnique of proof of Theorem 2.1 essentially depends on the
finiteness of a continued fraction expansion of w,, namely, from (2.7),

4

Mk(i) =
bk bz

=
by_1Ck-1bx 22
Zz +bk—2~

Z+bk’“
z+be—

There is in fact a well-known ““parabola theorem” due to Wall [13, p. 57] for
continued fractions, but it does not appear to the authors that the finiteness of the
above continued fraction expansion for u,(z) with z € 2, follows from Wall’s
parabola theorem.

We remark that, jn a certam sense, the result of Theorem 2.1 is sharp. For,
consider any three-term recurrence relation (2.1) for which g

a=b,.

Then, as p\(z) =(py/bi)(z +b)), it has its sole zero at —b, = —a. Therefore, since
the parabola y> =4a(x + a) has its vertex at x = —a, the parabolic region of (2.3)
cannot be enlarged to include the boundary point z = —a of P, and still exclude
the zeros of p(z), - -, p.(2). . .

We remark further that Theorem 2.1 has an obvious extension to an infinite
sequence of polynomials { p, (z)}x ., which satisfy (2.1). Insucha case, we define

Then, the conclusion that the region g’a of (2.3) is zero-free for every p,(z), k =
1,2, -, remains valid provided that « >0. If, in addition, such an infinite
sequence p,(z) converges uniformly on all compact subsets of #, to an analytic
function f(z) which is not identically zero, then by the theorem of Hurwitz, f(z)

must also be zero-free in the interior of 2,.

Some concrete applications of the parabola theorem will be given in the next
sections. For the remainder of the present section, we consider sufficient condi-
tions under whlch the hypotheses of Theorem 2.1 are fulfilled. We deal first with
the partial sums of a power series expansxon

COROLLARY 2.2. Let s, (z)i= Z/ 0@z’ k=0,1,-+, n, and assume that a; >
Oforallj=0,1,--, n, and that :

(2.9) a:=min{(f’-“—‘~‘ % 2) k=12, }>0.
Qe Qg
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where a ,/ay=0. Then, the polynomials s,(z), k=1,2,-+,n, have no zeros in
the parabolic region P, defined in (2.3).

Proof. One easily verifies that the partial sums s, (z) satisfy the three-term
recurrence relation

(2.10) s =(F 1 )sa@ s a2 k=120
by by

where s, = 0, and where

(210 b = a1/ ax, k=0,1,--,n

Consequently, (2.1) holds with ¢, = by, and (2.2) becomes
a=min{(by —bx_1): k=1, ,n}

which from (2.11) is the same as (2.9); Applying Theorem 2.1 then establishes the
corollary. 0
The partial sums of a formal power series

(2.12) f(z): Z a,'Zi- ag# 0,

j=0

can be regardéd as special cases of the so-called Padé approximants to f(z) (see
Perron [ 10], or Baker [2]). More precisely, given any pair of nonnegative integers
(n. v), the Padé approximant of type (n, v) is that rational function R, .(z) of the

form
(2.13) R, (z)=P,,(2)]0,.(2)

for which the following conditions are satisfied:
(i) P, (z)is a polynomial of degree =n;
(i) Q,,(z)is a polynomial of degree =v with Q, ,(2)#0;
(ili) The power series development of f(2)0,,(z)—P,.(z) about z = 0
begins with the (n+ v+ 1)st power of z.
In particular, for v =0, these conditions are satisfied by

P,o(z)= >_, a,‘zlﬁ Qu,o(z) =1, n=0,1,-".

j-0
Corresponding to the power series (2.12), we define the Hankel determinants

(2.14) @ G T e
- Ay v a, e Ay 2
AV =1 nz0, A =det) : C L n=z0, vzl

Ay e 1 vy 2 T a,

with the convention that -
a =0 forj=12,"-.

!
These determinants play an important role in the study of Padé approximants.
Indeed. if ;
(2.15) AL A0,
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then the conditions (i), (ii) and (iii) above are satisfied by the polynomials

M q a 4y, ]
Apsy a, T [/
l n
— 7
(2.16) Pny(Z)*Xm Ydet| a,o  an,  cc An,a| -2
no =0
__an+v an+u—l a, .
- 2 -
I z z z"¥
Ap vy a An - [
1
(217) On.u(z)zxmdet A, 42 Ay iy a, T Ay
n
LAn+y iy Apyyp.z "7 a,

In such a case, we refer to the polynomial P, (z) in (2.16) as the Padé numerator
of type (n, v), and to Q, ,(z) in (2.17) as the Padé denominator of type (n, v).
We now prove a generalization of Corollary 2.2 for the Padé numerators.
CororLLaRry 2.31 Let f(z) :ZZ‘, a;z' be a formal power series, and assume
that, for a fixed v= 0, the corresponding Hankel determinants defined in (2.14)
satisfy ’

AV>0,AY >0, fork=0,1,-"-n,

(2.18) o
AYDS0 fork=0,1,--,n—1.

Then, defining the positive constant a by

(v) 4 (v+2)
Ak Ak—l

(2.19) a = min {
we find that the Padé numerators Py ,(z), P, ,(z), -+, P, (z) for f(z) have no

zeros in the parabolic region P, defined in (2.3).
. Proof. A classical identity of Frobenius [5] asserts that

(2.20) P,W(z):(bz +1>Pk_,‘,,(z)-— 2 p (2
Yk Ck,u
where
A(V)A(ufl)
by, = W k=1,
(2.21) . .
_Amary

Chw "= o7 AT )
AL AL

(For notational convenience we set ¢, '= 1.) By assumption (2.18), the b,;(;;”s and
¢, 's are positive real numbers fork=1,2, - - - n. Consequently, the recurrence
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relation (2.1) holds with b, = b, ,., ¢, = ¢i,» and (2.2) of Theorem 2.1 becomes

A(V)Ah+|) (1 A{t FI)A(u+I)) k 1 }
v v+ - v+ = T, ne.
A( ) A;( D] \ [A(k—[”]

(2.22) a =min{

However, using the known identity
(2.23) (AP —AY ALY = AP AY,
in (2.22), we obtain

A(V)A(v+|)A(V+2)A(I)
A(n) A(.;H)[A u+|) tk=1,2,-" n},
which is the same as the defining formula (2.19). 0

In a similar manner, we deduce the following result for the Padé
denominators.

COROLLARY 2.4. Suppose that, for fixed n 20, the Hankel determinants
corresponding to the formal power series f(z) = Z, o a;z’ satisfy

AR>S0, AN >0, fork=1,2,--+, v
AL, >0 fork=1,2,~-~,v~—'1.

a :min{

(2.24)

Then, defining the positive constant a by
A(k)A(k+fv-21}
(2.25) a = min —-—1-,-~"—-—:k=1,2,--~,v},
. ALUAY
the Padé denominators O, (z), Q,.(2), -, Q,,(2) for f(z) have no zeros in the
parabolic region
(2.26) P o={z=x+iyeC: y* =dala~x), a>x}.

The proof of Corollary 2.4 follom in an analogous fashion from the
Frobenius identity

Az On,k~z(“2),

n.k

(2.27) Ona(=2)= (1455 O s(=2) -
nk

where

; . A(,,k)A(,,kf"” . A(k I)A(k 1))
(2.28) b = W' ok = W

In concluding this section we remark that the hypotheses (2.18) and (2.24) of
the preceding corollaries will be satisfied for all n and v if f(z) is a meromorphlc
function of the form

e R a+A2)
(2.29) f(z)=aye HW_LMﬁ,Z)

where ag> 0, y =0, 4,20, 8,20 and Z, (Aj +B;) <co. The convergence proper-
ties of the Padé dppr(mmdnts of such functlons were studied by Arms and Edreiin

(]
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3. Partial sums and Padé approximants of ¢”. As a concrete application of
the results in § 2, we now obtain zero-free regions for the Padé numerators P, ,(z)
and denominators O, ,(z) for e°. Explicitly, these polynomials are given by (cf.
Perron [10, p. 433)).

“’ B (n+i)—j)!n!z’

(3.1) Pale)= ¥ CE
& (n+v=jlv! N
(3.2) O"V(Z)—’g:()(n-FV)']'(V——])'( Z)

COROLLARY 3.1. For any v=0, each element of the sequence of Padé

n

P

numerators {P, ,(z)}n-, for e’ has no zeros in the region

(3.3) Poa={z=x+iyeC:y’=4(v+ Dx+v+1), x>—(v+1)}.

Furthermore, for any n =0, each element of the sequence of Padé denominators
{Q,..(z)}7., has no zeros in the region

(34) Poi={z=x+iyeCiy’=4n+1)(n+1-x), x<(n+ 1}

Proof. The Hankel determinants A"} for s =1 for e* are given (cf. [1]) by

: 1
5 AV =11 — , .
() 1U11(1+1)"’(]+m—1)

Thus, for any n =0, the constant « defined in (2.19) is easily verified to be

(3.6) ca=min{(v+1):k=1,2,--- ,n}=v+l,

and so, by Corollary 2.3, the region 2,,, is zero-free for every P, (z),n=
1,2,---. : '
Similarly, for any » =0, the constant a defined in (2.25) equals n +1, so that
by Corollary 2.4, theregion &, , , is zero-free forevery O, ,(z), v=1,2,---. [
In particular, for v =0, we obtain Corollary 3.2.
CoRrOLLARY 3.2. No partial sum P, o(z) =Y, z'/j! of ¢, foranyn = 1, hasa
zero in the parabolic region

Pr={z=x+iyeC: y’=4(x+1), x> -1}

This result is sharp at x =—1, and, as discussed in the introduction, it
improves upon an analogous result due to Newman and Rivlin [9].

In Figs. 1 and 2 we plot, respectively, the zeros (shown as asterisks) in the
upper half-plane of the Padé polynomials {P, o(z)}2”, and of {P, «(z)}:" | for e~
together with the corresponding bounding parabolas for ?, and #,. The compu-
tations and the ones mentioned below were carried out by A. Price and P.
Comadoll on an IBM 360/65 using a modified version of SUBROUTINE
POLRT from the IBM Scientific Subroutine Package. The plots were done on a
Calcomp Model 563 plotter. | ‘

We remark that the largest parabolic region of the form y®>< A(x + 1) which
omits the zeros of the Padé polynomials {P, ,(z)}."., for e* is approximately given
by

Y2 <7.01940(x + 1), x>-1.
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On the other hand, Newman and Rivlin [8] have (correctly) established that

o0

{ Pon+v2n-w)
exp(n +~/—2;- W) et

converges uniformly to

1 J’Ln e \ '
— | e " dt=;erfc(w), ’
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on any compact setin Im w 2 0. If t, denotes the zera of erfc (w), having real part
negative and smallest (positive) imaginary part, then 1, is given approximately (cf.
Fettis et al. [4]) by ,

1=-1.354810+i(1.991467).

Becase of the uniform convergence above, it then follows from Hurwitz's theorem
that, for all n sufficiently large, P.o has a zero of the form

onAN2nw, = x, Hiy, with lim w, =1,
n->00

From this, we easily deduce that for each fixed B,

2

. yn 2.
lim =2(Im¢,)*=7.931 880.
n= (X, + ) !

In other words, any parabola of the form

V<K(x+B), x>-p

which is devoid of zeros of P, 4(z) of e, for all n sufficiently large, must evidently
satisfy

K =2(Im,)>=7.931 880.

4. ,F, hypergeometric functions. Using the notation
@.1) (@), =ala+1)- - (a+j=1, j=1 (a)}=1.
for any complex number a, the hypergeometric function F\(c; d: z) isdefined by
© (C) Zj
(42) Fic:d;z)= _.__'.._’
v PINTIT

and is an entire function of z, for any choice of ¢ and d with d #0, —1. =2,
For example,

(4.3) voet = F\c:c;z), c#0,—1,~-2,-,
~and
n—1 n
(4.4) =Y k=2 F(lin+liz),  a=12-.
k=0 n! .

Concerning zero-free regions for certain F,’s and their partial sums, we

prove the next corollary.
COROLLARY 4.1. With the notation (2.3) for the parabolic region P,,. all the

partial sums -

x
—_
o

—
[N}

(4.5) s,(z)= Y —+ 7
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’

of \F\(c; d: z) have no zeros in the region

(1) Py if O<d=c,

(i) P, if l=c=d,

(i) P a=Q2c—d+cd)/(c*+¢), if 0<c<landc=d<2c/(1-c).

Consequently, the entire function \F\(c; d; z) has no zeros in the corresponding
interior region.

Proof. Putting

(c);
(4.6) a; = e a_, =0,
; b)) l
we apply Corollary 2.2 with the constant a being defined by
(4.7) azinf{(gi‘—"imgl‘—i):k=l,2,~-}.
a,  Qk-y

On substituting (4.6) in (4.7), we obtain
(4.8) a =inf {g, g(k): k=23, '},

where

P+ Q2c=3)t+(c—1)(d-2)

- =2
T (et (c—Dc—y orallt

(4.9) g(1)

Next, we observe that

2c—d+cd . _
8(2)'*“-—;2‘:*;*, ’[jinm&(t)~1,
and
, 2t+2c-3)c—1)c—d)
g'(n=

[2+Q2c—3)+(c-D)(c-2)T

From these facts, it follows that the constant « of (4.8) is positive, and is given by
d/e. 1. and (2¢ —d +cd)/(c” +¢), in the respective cases (i), (ii) and (iii). Applying
Corollary 2.2 then proves that all the partial sums have no zeros in the corre-
sponding region ?,, and consequently, the limit function (F, has no zeros in the
interior of @, (see the remarks following the proof of Theorem 2.1). O

We remark that when ¢ is not a nonpositive integer and ¢—d is pot a
nonnegative integer, then it is known [6] that ,F,(c; d; z) has infinitely many zeros
in the complex plane.

In Fig. 3, we plot the zeros in the upper half-plane of the partial sums
{5,(2)}2" | in (4.5) of the hypergeometric function (F(1;4;z), i.e., when ¢ =
[.d = 4. The corresponding zero-free parabolic region 2, from (ii) of Corollary
4.1 is also sketched. Two accumulation points of zeros are evident in the figure,
and these are necessarily zeros of | F\(1;4; z).

Corov1.ARY 4.2, For all n = 1, the remainder

n -1
(4 10) et Y k!
Lo
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has no zeros in the region
(4.11) PIUP)={z=x+iyeC:y’<4(x +}U{z =x+iyeC: y’<4(1-x)},

exceptatz =0.

Proof. Applying Corollary 4.1 in the case when ¢ =1,d =n+1, we deduce
from conclusion (ii) that the function ,F,(1;n+1; z) is zero-free in P9, the
interior of P,: Furthermore, the identity (cf. [6])

Fi(l;n+1;—2)=e " Fi(n;n+1, 2),

together with Corollary 4.1, imply that \F\(1; n+1; z) is zero-free in P9, the
interior of #,, defined in (2.26). Hence, by virtue of the representation (4.4), the
remainder (4.10) is zero-frée in (P°U ?D\{0}. O

5. Generalized Bessel polynomials. In this section, we consider the
generalized Bessel polynomials
f, n —2\J
(5.1) v § (M, (),
j=0"
where (n + 8 + 1), is defined as in (4.1). These polynomials were first introduced by
Krall and Frink [7], and in their notation,

Y®(2) =y (—2,6+2,2).

Several authors have investigated the location of the zeros of the polynomials
(5.1); among them, Dodev [3] appears to have obtained the strongest result We

state his theorem:for real 6 as follows.
THeorREM 5.1, If n+686+1>0,8#-2,-3,—-4,-- -, then all the zeros of

Y'®(2) lie in the closed disk

(5.2) Diisor {zeq:. E “n+5+1}‘

Using Theorem 2.1, we now improve upon Dodev’s result.
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THEOREM 5.2. If n + 8 + 1 >0, then all the zeros of Y3, (2) lie in the cardioidal
region <

. ; | +cos 6 2
53) Chis+ I={ =re?eceC0<r<——i— —r<g< } {-——————}
(5:3) = zErenebilsre T T 0 7TUn+5+1

Notice that C,, 541 < Dn.5+1, and this containment is proper, except for z =
2/(n+8+1).
Proof of Theorem 5.2. It is convenient to introduce the polynomials

I'm+7+1) -2
54) P'7(z) = 2™ ”(«-—)
(54 P2 =10 i ) vl

_I(m+r+1) f <m

Fral)zm™ N
rem+7+1),% >(m 7+ 1Dz, mAr+1>0,

]

As can be directly verified, for fixed n and 8, the polynomials {P{"**™(2)}i-o
satisfy the recurrence relation :

(5.5) Pt () = (e )P ) =S PR ), kL
by Ck .

where P","2*"(z) = 0, and

(n+é+k)(n+8+k-1)
(k—1)

Since, by hypothesis, n +8 +1>0, the constants b, and ¢, in (5.6) are positive for
all k = 1. Furthermore, a simple computation shows that

b(1=be_ci)=n+8+1 forall k=1,2,-+-,n, by=0.

(5.6) bk=n+8+k, k=1, o= , k=2, ¢ = 1.

Hence, the constant « defined in (2.2) is given by
a= n‘+ s+1,
and so from Theorem 2.1, we deduce that all the polynomials (PR ()Y, are
zero-free in the region
Posa=lz=x+iyeCiy’=4n+8+ Dx+n+8+1), x>—(n+3+ 1)}
={zeC:|z|=Re(z)+2(n+6+1),Rez>—(n+5+ D}
In particular, taking k = n, we have that P2 (z) is zero-free in P, 5.1

Finally, from (5.4) (with m=n, 7= §) it follows that no zero of Y'?'(w) is of

the form w =—2/z with z€ P, ,5.,. In other words, all the zeros of Y2 (w) must
fie in the region

> Re (—’;2‘)+2(}1+6~+ 1)}U{;—:§*‘;"},

e

which is the same as the region C,,5,, in (5.3). U
We remark that the Padé polynomials in (3.1) are related to the polynomials
in (5.4) by the formula

RERAE
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