THE BEHAVIOR OF THE PADE TABLE
FOR THE EXPONENTIAL

E.B. Saff and R.S. Varga

In this paper we survey recent results and present some
new theorems on the behavior of Padé approximants for e™2
The new results include necessary and sufficient conditions for
(1) a sequence of approximants to be pole-free in an infinite
sector, and (2) a sequence of approximants to converge geomet-
rically in the uniform norm over an Infinite sector.

1 Introduction

While the study of the Padé table for the exponential
function dates back to Padé's thesis, there has been renewed
interest in the subject because of its usefulness in certain
oumerical schemes for sclviag parzbolic differential equations,
Several recent papers have appeared which consider the ques-
tions of location of zeros and poles, regions of convergence,
and degree of convergence of sequences from ﬁhe table (see [ﬁ],
[9J,E]_0J, EM],[ls]). The purpose of the present paper is to
survey some of these results and also to establish some new
theorems. In this first section we introduce the necessary no-
tation, in Sec. 2 we discuss zero and pole-free regions, and
in Sec. 3 we consider the degree of convergence of Padé approx-—
imants in unbounded regions.

To- be specific we shall deal with the complex negative ex-
ponential function e - . For each pair (v,n) of nonnega-
tive integers the Padé approximant R, n(z) of type (v,n) for

o ?
e ° 1s defined as that unique rational function with numerator

degree v , denominator degree n , which has greatest con-

z

tact with e - at the origin, i.e.,

By
]



n+v+l) as z+0 .

(1.1) e % - Rv,n(z) = 0(z

Explicitly it is known EGJ that Rv,n(z) = Qv,n(z)/Pv,n(z) ’

where

v : 3
_ (n+v-4) Iv! (-2)
1.2 o @ = I ooyTe=nT

J=o
and
n k|
_ (n%—j)!n!z
1.3) P, (@) = ] Gy T

’n j=0
The polynomials Q (z) and P (z) are referred to re-
v,n v,n

spectively as the Pad€ numerator and Padé denominator of type

(v,n) for e 2 . From the representations (1.2) and (1.3)
it is apparent that Qv,n(z) = Pn,v(_z) , and so any result on
the location of the poles of Pad€ approximants to e’ has a
reformulation in terms of zeros.

The Padé approximants Rv,n(z) are usually studied in the
context of the following doubly infinite array known as the

| Padé table:

Ro,0 F1,0 2,0 - -
(1‘4) Ro,z Rl’z R2’2 e o e

Notice that the f&rst row of the table consists of the partial

sums R (z) = z (-z)k/k! of e % and that the first col-
k=o

umn is composed of ‘the reciprocals of the partial sums for the

positive exponential, i.e., (Z) - ( z z /k!] .



2 Unbounded Pole-Free Regions

The asymptotic behavior of the poles of the first“column
of (1.4), i.e., the zeros of the partial sums sn(z)=k2 z /k! .
was studied by Szegd [13] and Dieudonné [2]. As a conézauence
of their results it follows that any infinite sector with ver-
tex at the origin contains infinitely many poles of the se-
quence {R (z)}n=o . By way of contrast it is shown in
R.S. Varga' s ‘thesis [17) that the infinite half—sttip ]y|</€ ,
x>0 , is free of poles of the wvhole sequence ( )}nﬂo .
More recently, Newman and Rivlin ([4],[5]) éstablished that
there exists an unbounded parabolic region, namely

@.1) y?<dx , x>0 ,d#0.745 .,

which is pole-free for the sequence {Ro;n(z)}:;o . Further-

_more they proved that for this sequence parabolic growth char-

acterizes the largest pole-free region symmetric about the pos-
itive real axis.

Using continued fraction techniques the authors were able
to improve upon the result of (2.1) and also to obtain similar
results for all the columns of the table (1.4). In stating
this theorem it is convenient to introd&ce the normalized Pade

approximants R _((vtl)z) .
v,n

THEOREM 2.1. (Saff, Varga [8],[11]). For all-v>0 , n»0 , the
normalized Padé approximant Rv n((v+1)z) has no poles ig.the

*

unbounded parabolic’ region

(2.2) Plzﬂfz =x + iy @ y2 <4(x+1) , x>-1} .

‘Moreover, every boundary point of Pl is a 1imit point of

poles of the collection {R ((v+1)z)} .
— v,n v=o n=o

In particular, Theorem 2.1 implies that the first column



of the table (1.4), for which v=0 , is pole-free in Pl (a
region larger than that of (2.1)) and, in general, the (v+l)st
column {Rv n(z)}::m0 is pole-free in the parabolic region

»

(2.3) P t= {z=cHly @ y% < 4(vH) Grivil) , x > —(vH)) .

-These facts have proved useful in approximation estimates for
the matrix exponential as discussed in a recent paper of
Van Loan [15].

While Theorem 2.1 is sharp, it does not include the fact
that for an arbitrary fixed v the largest pole-free region
for the sequence {Rv,n(z)}:=o has parabolic growth. We shall
prove this in

THEOREM 2.2. For each fixed v>0 , the Padé approximant

(z) for e % has a pole of the form

V,
@4) (rax, ) +imy M %, o 1y, o (£0)
as me
Note that as
L nyz’d
1im — v,n . (In w )2 ,
n+o n+v/n x v

there are poles of the Rv n(z) which asymptotically fall on

’
the parabolic arc y2=(Im v, ) X, as n* . VWhen wv=0 ,
Theorem 2.2 reduces to the knowu result of Newman and Rivlin

{4]. The proof of Theorem 2.2 requires the following lemma:

LEMMA 2.1. For each nonnegative integer v , the function

2
(2.5) F (2):= j: Vet 2 (0<t<w)

ds an entire*function‘having at least one (finite) zero wv(#O);

" Proof. It is easy to see that Fv(z) 1s entire. More pre-
cisely, on writing



(2.6) ¥ (2) = X &k(v)z ,

k=0
it follows from (2.5) that
o k+v—1)
. (—l)k 2 2 P(k+¥+1}
@.7) a2, = = k0.

Using Stirling's formula one can verify from (2.7) that Fv(z)
is of order 2 for each v and, moreover, Fv(z) is an en-
tire function of perfectly regular growth; specifically 1if
MF (r):= max va(z)l , then

zl=r
in M (T)
MFv 1
(2.8) 1lim ————??———* = 7 .
Yo r

Now assume to the contrary that Fv(z) has no zeros. By
the Hadamard Factorization Theorem ([l,p.22]), we can express
Fv(z) as Fv(z)=eq(z) , where q(z) is a polynomial of de-
gree not exceeding the order of Fv ~« Hence, since Fv is of

order 2 , there exist constants GysQy such that

.2 2
a,zta .z ulz+uzz

1 =a (v)e ’ for all z .

(2.9) F (2) = F (Oe

Using (2.7), (2.8), and the fact that M? (r) = F (-r) , it 1is
‘easy to show that

o, =2, o =-Z1&HI&GD

and hence the right-hand member of (2.9) is completely speci-
fied. Equating the ‘coefficients of z2 in (2.9) results in

the equatipn v S vEl

27 ey 2% [/fr(—"—“g-?-))z
L AT = A+
) 2 r(_v_;i)




which after some minor manipulations becomes

.

vi2,,2
2.10) v E&? = 205
But this equality must fail for every v>0 . Indeed, if v=0,
the left side of (2.10) vanishes, while the right side is 2 ,
If v is positive, one side of (2.10) is an integer, while the
other side is a rational multiple of w . Thus the assumption

that Fv has no zeros yields a contradiction, and Lemma 2,1

is proved. g

We can now give the

Proof of Theorem 2.2. Since for each pair (v,n), the Padé

numerator Qv n(z) and Padé denominator Pv‘n(z) have no com-
. ’

mon factors, it suffices to show that for eaéh.fixed v , the
polynomials Pv,n(z) have zeros of the form (2.4). Using the
representation (1.3) the following integral formula can be
derived: '

(2.11) (o)1 Py (2) = re‘t(uz)“:"dc o (0<t<ts)

, , o

Letting z = n + Yo w and making the change of variables

t=/n u , O<u<t+» , in (2.11) we find that

2n+v+l
(2.12) (@)1 P (et W) = n 2 Cemugy W v,

’ o /o

The logarithm of the integrand above is, for u and w fixed
and n large,

2 . 2 : ’
Wy U Ny e 1
(/o w 3 ) = wu - 2.)+-v1n u -+ OEQI) .
and so
2 2
lim e-JSE'{l + ¥y u\’/e'/;w-w 12 | e /2 ..
Do o

Now the proof given by Newman and Rivlin @]can be adapted here



to show, using the Lebesgue Dominated Convergence Thebrem, that

(2.13) 1lim

n-+e

Tt du -=:Fv(w) s

()1 P (ot W) r Y mwuul/2
2,; SEIVIZ |
e,/x_:f ww'/2 2

(o]

the convergence being uniform on compact subsets of the w-
plane. Since, by Lemma 2.1, F (w) (#0) has a finite zero, say
v, Hurwitz's Theorem implies that P v,n (n+f_ W) possesses a
zero, say W=, . such that w ,n-vw as n*>~ ., This means
(z) has a zero of the form (2.4). k
e Concerning pole-free sectors for the Padé approximants

R n(z) the following is known:
?

THEOREM 2.3 (Saff, Varga (9), [1I]}). For every v20 , n>2 ,

the Padé approximant Rv n(:'.) for e 2 has no poles in the

9y
4nfinite sector

>

(2.14) ‘Z'Sv’n:={z:|arg z| < cos

Furthermore, for any fixed ¢ , 0<o<t= , each element in the

sequence of approximants {R (z)}j 1 ~ satisfying
. V17

(2.15) lin n,=t= , lin v,/n =0 ,f_g_p_g (—-'L—-) >0,
j_w,j j_,c,j J n,

for all j>1 , is pole-—free in the infinite sector

(2.16) SO:={z:|arg .z[_<__'cos ( )} ,

and S_ 1is the largest sector of the form larg z| < u , w0,
which is devoid of all poles of any sequence of approximants

{r (z )} -1 satisfying (2.15).
Y1°7
In particular, for any (fixed) o0>0 , Sc is the largest

pole-free sector of the form “|arg z| <u, w0, for the




scquence {R[onj,n(z)}n=1 , where . ['] denotes the greatest
integer function. This fact has an interesting geometric in-
terpretation as explained in [9].

Using Theorems 2.2, 2.3, and the results in [11], we can

deduce the following new result .

THEOREM 2.4. A necessary and sufficient condition that a se-

” [
quence of Pade approximants {Rvk’nk(z)}knl , with n o=, be

pole-free in some infinite sector Iarg zI <y, w0, is that

(2.17)' 1im 4inf vk/nk >0 .

ke
Proof. The sufficiency part follows immediately from Theorem
2.3. To prove necessity assume that (vk,nk) is a sequence
such that n,+= and 'lim inf, . vk/nk=0 . Our aim is to show
that for every u>0 , there are infinitely many poles of the

sequence {Rvk’nk(z)}k=1 in the sector ]arg z| <u . For

this purpose let {(vj,n )}j 1 denote a subsequence of

{(v,m )]} forwhihlm
(vk'nk k=1 c oo vj

/n,=0, We consider two separate

3

cases:

Cage 1: If some subsequence of {vj}j ; 1s bounded, then
there is evidently a subsequence {(vl’nl)}L 1 of {(vj,n )}j=1
for which vp is constant, say v,=v for all £>1 , and for
- which 1im ny= <« . But as a consequence of Theorem 2.2, the

sequence {R (z)}L 1 has poles which asymptotically (as
VaTlp

ny +) lie on some parabola opening about the positive real
axis. Therefore the sequence has infinitely many poles in any

sector of the form |arg zl <u, w0 .

Case 2: If v as j+ , and lim vjlnj=0 , then the

_ h|
result of Corollary 3.1 of [113 applied to the sequence
{Pv‘ n (z)} of Padé denominators for e © again shows that
’

373



there is no pole-free sector of the form Iarg zl <y, w0,
for the sequence {R ()}, A |
vj, j i=1
The next theorem has application to stability questions

and extends results in [3] and [18].

THEOREM 2.5 (Saff, Varga [9]). If n<v+4 , the Pad€ approxi-
mant 'Rv n(z) for e * has all its poles in the open left

»

half-plane.
The above theorem is sharp in the sense that the approxi-
mant Ro 5(z) , for which n=w+5 , does in fact have a pole
»
in the right half-plane. However the following assertion can

be made with regard to diagonal sequences of the table (1.4) of

- - -]
the form {Rn—r,n(z)}n-t s T25:

THEOREM 2.6 (Saff, Varga [9)). For any integer t>5 , there
exists an integer m=m(t) such that the approximants

(z)} have all their poles in the open left half-

n‘rn

; Elane.

3 Ge eometric Convergence of Eade Approximants
in Unbounded Regions

In this section we discuss results concerning geometric
convergence of Padé approximants on the nonnegative ray
[b,+a) , and on infinite sectors of the form |arg z| <u,

"u>0 . First we set

-x
(3.1) nv,n:-lle ~Rv,n(x)I|Lm[0,+°) .

’ -l
Notice that when v>n , we have n =|e -R (“)l = e,
v,n v,n

When v<n the following estimates are known:

THEOREM 3.1 (Saff, Varga, N1 [12]). For any nonnegativé inte~
gers v and n with O0<v<n , there holds




Y < n < .._.__1.—
- — - ]
oD v(;\) (n+1)2 v,n = o0 v(g)

(3.2)

where y 1is a positive constant independent of v and n .

To state the next theorem we need the function g(B) de-

fined for O0<B<l by

B,y _oy1-B
(3.3) g(B):-‘é—L%:%l—- , O<g<l , g(0):=1/2 , g(1):=1 .
2 ~ .

THEOREM 3.2 (Saff, Varga, Ni [12]). Let {v(m)} _; be a se-

quence of nonnegative integers with 0<v(n)<n for all n ,

and satisfying 1lim v(n)/n =8 . Then
) s gad

1/n

(3.4) 1lim nv(n),n

N

=g(B) .

As min g(B) = g(1/3) = 1/3 , it follows from\the above

0<B<l
theorem that for any sequence {v(n)}ngl' , there holds
lim dnf ni/R > 1 ‘

e V@)n =3
n=1

Indeed numerical computations.appear to indicate that for each

.

with equality possible for the sequence {R[p/3] n(x)}
]

fixed n the smallest error ",n * -v=0,1,2,..., occurs when
, ,

v=[p/3] . Another consequence of Theorem 3.2 is stated in

THEOREM 3.3 (Saff, Varga, Ni [12]). A necessary and sufficient

condition that a sequence of Padé approximants {Rv(n),n(x)}n=l

converges geometrically in the uniform norm to e* on [0,+=)

is that

v(n)

n

(3.5) 1im sup <1l .

o
Concerning geometric convergence in the uniform norm over

infinite sectors we shall prove the following new result:



THEOREM 3.4. A necessary and sufficient condition that E.fEf

quence of Padé approximants (R v(n), n(z)}:m1 converges geo-—

metrically in the uniform norm to e -z in some infinite sector

Su:={z:larg z| <u}, w0, is that

(3.6) 0 < lin tnf X0 < 14n gup WL < 3

nre . o
Proof. That condition (3.6) is sufficient to ensure geometric
convergence in some Su , w0 , is proved in [12]. To demon-
strate necessity we assume that for some u>0 , the sequence

{Rv(n),n(z)}:=l satisfies

(3.7) lin sup [1e™* R, (ny 0@ )lli/?s y <o

Since Su contains the ray [0,+) , it follows from Theorem
3.3 that 1im sup v(n)/n <1 . Furthermore,as (3.7) evidently

1o
implies that for n large enough, the poles of the sequence
{Rv(n),n(z)} must omit the sector Su , Theorem 2.4 implies
lin inf v(@)/n >0 . B
neo

Concerning estimates for the size of the sector Su of
geometric convergence for a sequence satisfying (3.6), the
reader is referred to [12]. We remark that although no column
of the table (1.4) converges geometrically to e ? in an in-
finite sector, each column does, in fact, convergebgeometri—
cally to e © on an unbounded parabolic region (see [lQ]).

Of course the poles of the Padé appraximants to e 2 are,
in general, not all real. For computational purposes it is
sometimes desirable to deal with rational approximations whose
poles are all real and coincident. In [7] it is shown that

there exists a sequence of rational functions of the form



Po1 )
r (x) = ! deg Po-1 <n-1l , n=1,2,...,
(1+';9

such that

-X n
[fe™ - rn(x)][Lm[0’+¢? = 0(;;9 as me

Some further properties of this sequence are discussed in L7].

References

1 Boas, R.P., Entire Functions, Academic Press, Inc., New
York, 1954.

2 Dieudonné, J., Sur les zeroes des polynomes-sections de ex,
BUII. SCio Math‘, 22.(1935), 333_3510

3. Ehle, B.L., A-stable methods and Padé approximation to the
exponential, SIAM J. Math. Anal., 4 (1973), 671-680.

4 Newman, D.J. and T.J. Rivlin, The zeros of partial sums of
" the exponential function, J. Approximation Theory, 5
(1972), 405-412, ‘
5 Newman, D.J. and T.J. Rivlin, Correction: The zeros of the
’ partial sums of the exponential function, J. Approximation
Theory (to appear).

- 6 Perron, 0., Die Lehre von den Kettenbruchen, 3rd ed., vol.
2, .B.G. Teubner, Stuttgart 1957.

"7 sSaff, E.B., A. Schonhage, and R.S. Varga, Geometric conver-
_gence to e % by rational functions with real poles,
Numer. Math. (to appear).

8 Saff, E.B. and R.S. Varga, Zero-free parabolic regions for
sequences of polynomials, SIAM J. Math. Anal. (to appear).

9 Saff, E.B. and R.S. Varga, On the zeros and poles of Padé
- approximants to eZ , Numer. Math. (to appear).

10 Saff, E.B. and R.S. Varga, Convergence of Pade approximants
to e~Z on unbounded sets, J. Approximation Theory, 13

(1975), 470-488.
11 saff, E.B. and R.S. Varga, On the sharpness of theorems con-

cerning zero-free regions for certain sequences of poly-
nomials, Numer. Math. (to appear).




12 saff, E.B., R.S. Varga, and W.-C. Ni, Geometric convergence
of rational approximations to e~? in infinite sectors,

Mumer. Math. (to appear).

13 Szego, G., Uber eine Eigenschaft der Exponentialreihe,
Berlin Math. Ges. Sitzungsber., 23 (1924), 50-64.

14 Underhill, C. and A. Wragg, Convergence properties of Padé
approximants to exp(z) and their derivatives, J. Inst.
Maths. Applics., 11 (1973), 361-367.

15 Van Loan, C., A study of the matrix exponential, Numerical
Analysis Report No. 10, Univ. of Manchester, Manchester,
England, 1975. .

16 Van Rossum, H., On the poles of Padé approximants to e” ’
Nieuw Archief voor Wiskunde (1) XIX (1971), 37-45.

17 Varga, R.S., Semi-infinite and infinite strips free of
zeros, Rend. Sem., Mat. Univ. Politecnico Torimo, 11

(1952), 289-296.

18 Wimp, J., On the zeros of a confluent hypergeometric
function, Proc. Amer. Math. Soc., 16 (1965), 281-283.

E. B. Saff* R. S. Varga**

Department of Mathematics Department of Mathematics
University of South Florida - Kent State University
Tampa, Florida 33620 ~ Kent, Ohio 44242

* ) <
Research supported in part by the Air Force Office of
Scientific Research under Grant AFOSR-74-2688.

k%
Research supported in part by the Air Force Office of

Scientific Research under Grant AFOSR-74-2729, and by the
Energy Rescarch and Development Administration (ERDA) under

Grant E(11-1)-2075.



