MATH 12002 - CALCULUS I §2.7: Related Rates Part 3: More Examples

Professor Donald L. White
Department of Mathematical Sciences
Kent State University

Examples

Example 1

At noon, ship A is 100 km west of ship B. Ship A is sailing south at 35 kilometers per hour (km / h) and ship B is sailing north at $25 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 4 pm ?

Solution

Let

- $A=$ distance from starting point to ship A,
- $B=$ distance from starting point to ship B,
- $Z=$ distance between the ships.

Given: $\frac{d A}{d t}=35 \mathrm{~km} / \mathrm{h}$ and $\frac{d B}{d t}=25 \mathrm{~km} / \mathrm{h}$.
Want: $\frac{d Z}{d t}$ at 4 pm .
We need to relate A, B, and Z and then take derivatives with respect to time in order to relate $\frac{d A}{d t}, \frac{d B}{d t}$, and $\frac{d Z}{d t}$.

Examples

Example 1 Solution [continued]

We have the following situation at a given time after noon:

By the Pythagorean Theorem, $100^{2}+(A+B)^{2}=Z^{2}$.
[Continued \rightarrow]

Examples

Example 1 Solution [continued]

We now have $Z^{2}=100^{2}+(A+B)^{2}$, and taking derivatives with respect to time yields

$$
2 Z \cdot \frac{d Z}{d t}=2(A+B)\left[\frac{d A}{d t}+\frac{d B}{d t}\right]
$$

Hence

$$
\frac{d Z}{d t}=\frac{A+B}{Z}\left[\frac{d A}{d t}+\frac{d B}{d t}\right] .
$$

Finally, at $4 \mathrm{pm}, A=(35)(4)=140 \mathrm{~km}, B=(25)(4)=100 \mathrm{~km}$, and

$$
Z=\sqrt{100^{2}+(140+100)^{2}}=\sqrt{100^{2}+240^{2}}=260 \mathrm{~km}
$$

and so

$$
\frac{d Z}{d t}=\frac{140+100}{260}(35+25)=\frac{720}{13} \approx 55.4 \mathrm{~km} / \mathrm{h} .
$$

Examples

Example 2

A plane flying with a constant speed of 210 miles per hour passes over a ground radar station at an altitude of 2 miles and climbs at an angle of 45°. How fast is the distance from the plane to the radar station increasing 2 minutes later?

Solution

Let

- $p=$ distance of plane from the point where it passed over the station,
- $z=$ distance from the plane to the station.

Given: $\frac{d p}{d t}=210 \mathrm{mph}$.
Want: $\frac{d z}{d t}$ after 2 minutes.
We need to relate p and z and then take derivatives with respect to time in order to relate $\frac{d p}{d t}$ and $\frac{d z}{d t}$.

Examples

Example 2 Solution [continued]

We have the following situation at a given time:

We use the Law of Cosines to relate p and z, and this says

$$
\begin{aligned}
z^{2} & =2^{2}+p^{2}-2(2)(p) \cos 135^{\circ} \\
& =4+p^{2}-4 p \cdot(-\sqrt{2} / 2) \\
& =4+p^{2}+2 \sqrt{2} p .
\end{aligned}
$$

[Continued \rightarrow]

Examples

Example 2 Solution [continued]

We have $z^{2}=p^{2}+2 \sqrt{2} p+4$, and taking derivatives with respect to time, we obtain

$$
2 z \frac{d z}{d t}=2 p \frac{d p}{d t}+2 \sqrt{2} \frac{d p}{d t}
$$

and so

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{2 p \frac{d p}{d t}+2 \sqrt{2} \frac{d p}{d t}}{2 z} \\
& =\frac{p+\sqrt{2}}{z} \cdot \frac{d p}{d t}
\end{aligned}
$$

We know $\frac{d p}{d t}=210 \mathrm{mph}$, and so we now need to determine the values of p and z two minutes after the plane passes over the station.
[Continued \rightarrow]

Examples

Example 2 Solution [continued]

Since the plane is flying at a speed of $210 \mathrm{mph}, 2$ minutes (or $\frac{1}{30}$ hour) after it passes over the station,

$$
p=210 \cdot \frac{1}{30}=7 \text { miles, }
$$

and

$$
z=\sqrt{7^{2}+2 \sqrt{2}(7)+4}=\sqrt{53+14 \sqrt{2}} \text { miles. }
$$

Therefore,

$$
\frac{d z}{d t}=\frac{7+\sqrt{2}}{\sqrt{53+14 \sqrt{2}}} \cdot 210 \approx 207 \mathrm{mph} .
$$

