Algebra and Representation HW \#7

I. Verifying Magic Square Properties

1. Suppose we have a 3 by 3 Magic Square, called Square 1, and that the three numbers in some row, column, or diagonal are represented by the variables a, b, and c. Also, represent the magic number by the variable M.

Now suppose we multiply each entry of Square 1 by the same number, represented by the variable p. Call this new square Square 2.
(a) In terms of the variables above, what are the entries in the row, column, or diagonal of Square 2 corresponding to those of Square 1?
(b) Write an expression for the sum of these entries of Square 2 in terms of the variables a, b, and c.
(c) Now write this sum in terms of the magic number M of Square 1.
(d) Use this to explain why Square 2 must be a Magic Square. What is the magic number of Square 2?
2. We now consider the difference of two Magic Squares. Again, we let a, b, and c represent the entries in a row, column, or diagonal of Square 1 and let M represent the magic number of Square 1. Represent the corresponding entries of Square 2 with the variables x, y, and z, respectively, and represent the magic number of Square 2 by N.
Now subtract Square 2 from Square 1 by subtracting corresponding entries to obtain a new square, Square 3.
(a) In terms of the variables above, what are the entries in the row, column, or diagonal of Square 3 corresponding to those of Square 1 and Square 2?
(b) Write an expression for the sum of these entries of Square 3 in terms of the variables a, b, c, x, y, and z.
(c) Now write this sum in terms of the magic numbers M and N.
(d) Use this to explain why Square 3 must be a Magic Square. What is the magic number of Square 3?

II. Formulas and Equations

3. The volume of a rectangular prism is given by $V=\ell \times w \times h$, where ℓ is the length, w is the width, and h is the height of the prism.
(a) Find the volume if the length is 3 feet, width is 7 feet, and the height is 4.5 feet.
(b) Find a formula for the height h of a rectangular prism in terms of the volume V, length ℓ, and width w. Use your formula to find the height of a prism with volume $52 \mathrm{~cm}^{3}$, length 4 cm , and width 3 cm .
4. The volume of a (circular) cylinder is given by $V=\pi r^{2} h$, where r is the radius of the base and h is the height of the cylinder. Use this to find a formula for the radius in terms of the volume and the height.
