FUNCTIONS, CONTINUED: TABULAR REPRESENTATIONS

V. Representations of Functions in Tables

A function can be represented by a table that lists the values of the independent variable along with the corresponding values of the function (that is, the corresponding values of the dependent variable). A function that has a *finite* domain can be represented completely using a table, though if the domain is large, this may not be convenient. Any function can be *partially* represented by such a table, but of course, if there are infinitely many numbers in the domain, it is not possible to list *all* of the values of the independent variable and the corresponding values of the function.

Example:

Let *f* be the function that assigns to each of the counting numbers *n* from 1 to 10 the *sum* of the first *n* counting numbers. For example, f(5) = 1 + 2 + 3 + 4 + 5 = 15. The table of values of this function is as follows:

n	1	2	3	4	5	6	7	8	9	10
f(n)	1	3	6	10	15	21	28	36	45	55

The table indicates that f(1) = 1, f(2) = 3, ..., f(10) = 55.

The domain of the function *f* is the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The range of *f* is the set {1, 3, 6, 10, 15, 21, 28, 36, 45, 55}.

Note that the *rule* would work for any counting number, but the *function f* is only defined for the counting numbers from 1 to 10. Unless stated otherwise, the domain of a function represented by a table is exactly the set of values of the independent variable that are listed in the table.

Exercises:

1. Let g be the function that assigns to each of the counting numbers n from 1 to 12 the sum of the first n even counting numbers. For example, g(4) = 2 + 4 + 6 + 8 = 20.

Fill in the missing entries in the table of values of this function:

n	1	2	3	4	5	6	7	8	9	10	11	12
<i>g</i> (<i>n</i>)	2	6	12	20								

What is the domain of this function? What is the range of this function?

FUNCTIONS: TABULAR REPRESENTATIONS, CONTINUED

2. Let f(x) be the function represented by the following table:

x	1	2	3	5	6	7	8	9	10
f(x)	3	6	9	15	18	21	24	27	30

- a. What is the domain of this function?
- b. What is the value of f(6)?
- c. What is the value of f(4)?
- 3. Let g(x) be the function represented by the following table:

ſ	x	1	2	3	4	5	6	8	9	10
	g(x)	9	3.2	1/2	143	17	2.9	47	$\sqrt{2}$	0

- a. What is the domain of this function?
- b. What is the value of f(2)?
- c. What is the value of f(7)?

g(x)

9 8 7

- 4. Determine whether each of the following tables represents a function. If the table represents a function, give the domain and range; if not, explain why not.
 - a.

b.

	x	2	4	5	6	8	9	10	15	23	94
	f(x)	7	3	2	9	12	3	18	36	45	55
_											
	x	5	7	3	9	2	6	7	12	15	10

12

6

c.

x	0.1	0.2	0.3	0.4	0.5	0.7	0.8	0.9
h(x)	0	2	5	9	14	20	27	35

11

10

15

27

55

x	1	3	5	7	9	11	13	15	17	19	21
r(x)	5	2	5	2	5	2	5	2	5	2	7

- 5. Can a function have more numbers in its **domain** than it has in its **range**? If so, give an example, and if not, explain why not.
- 6. Can a function have more numbers in its **range** than it has in its **domain**? If so, give an example, and if not, explain why not.