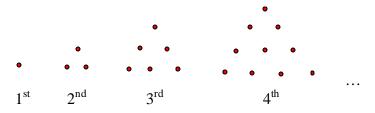
PATTERNS AND VERIFYING FORMULAS, continued

2. Recall the **Triangular Numbers** problem: find the number of dots in the n^{th} object below:



Step 1: We conjectured that the number of dots in the n^{th} object, which is also the sum of the first *n* counting numbers, is n(n+1)/2.

The following steps establish this formula for all counting numbers *n*:

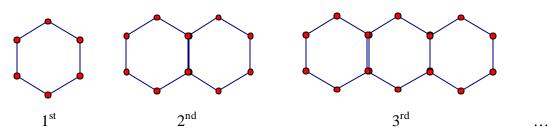
- Step 2: Verify that the formula works when n = 1:
 - a. How many dots are there in the first object?
 - b. What does the formula (that is, n(n+1)/2) give for the number of dots when n = 1?
 - c. Are your answers to (a) and (b) the same? If so, then the formula works when n = 1.
- Step 3: Now determine the number of dots in the (k + 1)th object, *assuming* the formula works for the kth object:
 - a. How many dots does the *formula* say are in the k^{th} object? (Substitute k for n in the formula.)
 - b. Assuming the expression in Step 3(a), determine how many dots are in the $(k+1)^{\text{th}}$ object:
 - i. How many dots are *added* in going from the k^{th} object to the $(k + 1)^{\text{th}}$ object?
 - ii. Assuming the results of Step 3(a) and 3(b)(i), what is the total number of dots in the (k + 1)th object?
- Step 4: How many dots does the *formula* say the (k + 1)th object should have? (Substitute k + 1 for *n* in the formula.)
- Step 5: Are your answers for the number of dots in the (k + 1)th object from Step 3 and Step 4 the same? (Some algebraic manipulation may be needed in order to compare the two answers.)

The Principle of Mathematical Induction says that if the answers to Step 1(c) and Step 5 are both *yes*, then the formula must work for every counting number. That is, the number of dots in the n^{th} object, or the sum of the first *n* counting numbers, is n(n+1)/2.

PATTERNS AND VERIFYING FORMULAS, continued

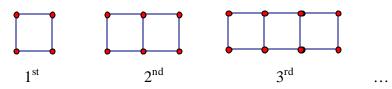
More Induction Problems

3. Recall the **Hexagon Trains** problem: find the number of "external sides" in the hexagon train made up of n hexagons, as in the picture.



Use Mathematical Induction to show that the number of external sides in a hexagon train of n hexagons is 4n+2.

- 4. Use Mathematical Induction to show that the number of *all* sides in hexagon train made up of n hexagons, as in the picture above, is 5n+1.
- 5. Use Mathematical Induction to show that the number of *all* sides in square train made up of n squares, as in the picture below, is 3n+1.



- 6. Use Mathematical Induction to show that the n^{th} even counting number is 2n.
- 7. Use Mathematical Induction to show that the n^{th} odd counting number is 2n-1.