PATTERNS AND VERIFYING FORMULAS, continued

2. Recall the Triangular Numbers problem: find the number of dots in the $n^{\text {th }}$ object below:

Step 1: We conjectured that the number of dots in the $n^{\text {th }}$ object, which is also the sum of the first n counting numbers, is $n(n+1) / 2$.

The following steps establish this formula for all counting numbers n :
Step 2: Verify that the formula works when $n=1$:
a. How many dots are there in the first object?
b. What does the formula (that is, $n(n+1) / 2$) give for the number of dots when $n=1$?
c. Are your answers to (a) and (b) the same? If so, then the formula works when $n=1$.

Step 3: Now determine the number of dots in the $(k+1)^{\text {th }}$ object, assuming the formula works for the $k^{\text {th }}$ object:
a. How many dots does the formula say are in the $k^{\text {th }}$ object? (Substitute k for n in the formula.)
b. Assuming the expression in Step 3(a), determine how many dots are in the $(k+1)^{\text {th }}$ object:
i. How many dots are added in going from the $k^{\text {th }}$ object to the $(k+1)^{\text {th }}$ object?
ii. Assuming the results of Step 3(a) and 3(b)(i), what is the total number of dots in the $(k+1)^{\text {th }}$ object?

Step 4: How many dots does the formula say the $(k+1)^{\text {th }}$ object should have? (Substitute $k+1$ for n in the formula.)

Step 5: Are your answers for the number of dots in the $(k+1)^{\text {th }}$ object from Step 3 and Step 4 the same? (Some algebraic manipulation may be needed in order to compare the two answers.)

The Principle of Mathematical Induction says that if the answers to Step 1(c) and Step 5 are both yes, then the formula must work for every counting number. That is, the number of dots in the $n^{\text {th }}$ object, or the sum of the first n counting numbers, is $n(n+1) / 2$.

PATTERNS AND VERIFYING FORMULAS, continued

More Induction Problems

3. Recall the Hexagon Trains problem: find the number of "external sides" in the hexagon train made up of n hexagons, as in the picture.

$1^{\text {st }}$

$2^{\text {nd }}$

$3^{\text {rd }}$

Use Mathematical Induction to show that the number of external sides in a hexagon train of n hexagons is $4 n+2$.
4. Use Mathematical Induction to show that the number of all sides in hexagon train made up of n hexagons, as in the picture above, is $5 n+1$.
5. Use Mathematical Induction to show that the number of all sides in square train made up of n squares, as in the picture below, is $3 n+1$.

$1^{\text {st }}$

$2^{\text {nd }}$

$3^{\text {rd }}$
6. Use Mathematical Induction to show that the $n^{\text {th }}$ even counting number is $2 n$.
7. Use Mathematical Induction to show that the $n^{\text {th }}$ odd counting number is $2 n-1$.

