Verifying Magic Square Properties
Sample Proof

Theorem. Adding the same number \(n \) to each entry in a 3 by 3 magic square with magic number \(M \) yields a magic square with magic number \(M + 3n \).

Proof. Suppose we are given a 3 by 3 magic square, called Square 1, and the three numbers in some row, column, or diagonal are represented by the variables \(a, b, \) and \(c \).

\[
\begin{array}{c c c}
\text{Square 1} \\
| a | & | b | \\
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>&</td>
</tr>
</tbody>
</table>
\end{array}
\]

Suppose further that the magic number for Square 1 is represented by the variable \(M \). It follows from the definition of a magic square that

\[
a + b + c = M
\]

and that this holds for any row, column, or diagonal with entries \(a, b, \) and \(c \).

Now suppose we add the same number \(n \) to each entry in Square 1 to obtain a new square, and call the new square Square 2. The entries of Square 2 corresponding to entries \(a, b, \) and \(c \) of Square 1 are then \(a + n, b + n, \) and \(c + n \), respectively.

\[
\begin{array}{c c c}
\text{Square 2} \\
| a + n | & | b + n | \\
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b + n</td>
<td>&</td>
</tr>
</tbody>
</table>
\end{array}
\]

The sum of the entries in this row, column, or diagonal is then

\[
(a + n) + (b + n) + (c + n).
\]

Rearranging this sum using the commutative and associative properties of addition, we obtain

\[
(a + b + c) + (n + n + n).
\]

Recalling that \(a + b + c = M \) and noting that \(n + n + n = 3n \), this sum becomes

\[
M + 3n.
\]

Now since this holds for any row, column, or diagonal, we have shown that the sum of the entries in each row, column, or diagonal of Square 2 is the same number, namely \(M + 3n \). It follows that Square 2 is a magic square with magic number \(M + 3n \) as claimed. \(\square \)