Verifying Magic Square Properties Sample Proof

Theorem. Adding the same number n to each entry in a 3 by 3 magic square with magic number M yields a magic square with magic number $M+3 n$.

Proof. Suppose we are given a 3 by 3 magic square, called Square 1, and the three numbers in some row, column, or diagonal are represented by the variables a, b, and c.

Square 1

a		
	b	
		c

Suppose further that the magic number for Square 1 is represented by the variable M. It follows from the definition of a magic square that

$$
a+b+c=M
$$

and that this holds for any row, column, or diagonal with entries a, b, and c.
Now suppose we add the same number n to each entry in Square 1 to obtain a new square, and call the new square Square 2. The entries of Square 2 corresponding to entries a, b, and c of Square 1 are then $a+n, b+n$, and $c+n$, respectively.

Square 2

$a+n$		
	$b+n$	
		$c+n$

The sum of the entries in this row, column, or diagonal is then

$$
(a+n)+(b+n)+(c+n)
$$

Rearranging this sum using the commutative and associative properties of addition, we obtain

$$
(a+b+c)+(n+n+n) .
$$

Recalling that $a+b+c=M$ and noting that $n+n+n=3 n$, this sum becomes

$$
M+3 n
$$

Now since this holds for any row, column, or diagonal, we have shown that the sum of the entries in each row, column, or diagonal of Square 2 is the same number, namely $M+3 n$. It follows that Square 2 is a magic square with magic number $M+3 n$ as claimed.

