Properties of 3×3 Magic Squares

Notation: We will denote the entries in a 3×3 magic square as follows:

C_1	S_1	C_2
S_4	C	S_2
C_4	S_3	C_3

We will denote by M the magic number of the square; that is, M is the sum of the 3 entries in each row, each column, and each diagonal.

Theorem 1. If a 3×3 magic square has magic number M, then the sum of the 9 entries in the square is 3M. That is, in the notation above,

$$C + C_1 + C_2 + C_3 + C_4 + S_1 + S_2 + S_3 + S_4 = 3M.$$

Proof. Since the sum of the entries in each row of the magic square is M, we know that

$$C_1 + S_1 + C_2 = M$$

$$S_4 + C + S_2 = M$$

$$C_4 + S_3 + C_3 = M.$$

Therefore, rearranging and regrouping using the associative and i commutative laws of addition, we have

$$C + C_1 + C_2 + C_3 + C_4 + S_1 + S_2 + S_3 + S_4 =$$

$$(C_1 + S_1 + C_2) + (S_4 + C + S_2) + (C_4 + S_3 + C_3) =$$

$$M + M + M = 3M$$

Hence,

$$C + C_1 + C_2 + C_3 + C_4 + S_1 + S_2 + S_3 + S_4 = 3M,$$

as claimed.

Theorem 2. The magic number of a 3×3 magic square is three times the number in the center square. That is, in the notation above, M = 3C, or equivalently, $C = \frac{1}{3}M$.

Proof. Since the sum of the entries in each row, column, or diagonal is the magic number M, we have

$$C_{1} + C + C_{3} = M$$

$$C_{2} + C + C_{4} = M$$

$$S_{1} + C + S_{3} = M$$

$$S_{2} + C + S_{4} = M$$

Therefore,

$$(C_1 + C + C_3) + (C_2 + C + C_4) + (S_1 + C + S_3) + (S_2 + C + S_4) = M + M + M + M = 4M.$$

Rearranging and regrouping using the associative and commutative laws of addition, we have

$$(C + C + C) + (C + C_1 + C_2 + C_3 + C_4 + S_1 + S_2 + S_3 + S_4) = 4M.$$

By Theorem 1, we can substitute 3M for $C+C_1+C_2+C_3+C_4+S_1+S_2+S_3+S_4$ to obtain

$$(C+C+C) + 3M = 4M.$$

and, subtracting 3M from both sides of this equation, we have

$$C + C + C = M.$$

Hence 3C = M, or equivalently, $C = \frac{1}{3}M$ as claimed.

Theorem 3. The number in the center square of a 3×3 magic square is the median of the 9 entries in the square. That is, in the notation above, C is the median of the numbers C, C_1 , C_2 , C_3 , C_4 , S_1 , S_2 , S_3 , and S_4 .

Proof. We know that the sum of the entries in each row, column, or diagonal is the magic number M. By Theorem 2, M = 3C, so substituting 3C for M shows that the sum of the entries in each row, column, or diagonal is 3C. Hence we have

$$C_{1} + C + C_{3} = 3C$$

$$C_{2} + C + C_{4} = 3C$$

$$S_{1} + C + S_{3} = 3C$$

$$S_{2} + C + S_{4} = 3C.$$

Subtracting C from both sides of each equation yields

$$C_{1} + C_{3} = 2C$$

$$C_{2} + C_{4} = 2C$$

$$S_{1} + S_{3} = 2C$$

$$S_{2} + S_{4} = 2C.$$

Now if both of C_1 and C_3 are greater than C, then $C_1 + C_3$ is greater than C + C, and if both of C_1 and C_3 are less than C, then $C_1 + C_3$ is less than C+C. But the first equation above says that C_1+C_3 is equal to 2C = C+C. Therefore, either

1. one of C_1 or C_3 is greater than C and the other is less than C, or

2. both C_1 and C_3 are equal to C.

By the same argument, this holds for each of the pairs of numbers

$$\{C_1, C_3\}, \{C_2, C_4\}, \{S_1, S_3\}, \text{ and } \{S_2, S_4\}.$$

Therefore, exactly half of the numbers

$$C_1, C_2, C_3, C_4, S_1, S_2, S_3$$
, and S_4

are greater than or equal to C and the other half are less than or equal to C. Thus, by the definition of median, C is the median of the numbers

$$C, C_1, C_2, C_3, C_4, S_1, S_2, S_3$$
, and S_4

as claimed.