Properties of 3×3 Magic Squares

Notation: We will denote the entries in a 3×3 magic square as follows:

C_{1}	S_{1}	C_{2}
S_{4}	C	S_{2}
C_{4}	S_{3}	C_{3}

We will denote by M the magic number of the square; that is, M is the sum of the 3 entries in each row, each column, and each diagonal.

Theorem 1. If a 3×3 magic square has magic number M, then the sum of the 9 entries in the square is $3 M$. That is, in the notation above,

$$
C+C_{1}+C_{2}+C_{3}+C_{4}+S_{1}+S_{2}+S_{3}+S_{4}=3 M
$$

Proof. Since the sum of the entries in each row of the magic square is M, we know that

$$
\begin{aligned}
C_{1}+S_{1}+C_{2} & =M \\
S_{4}+C+S_{2} & =M \\
C_{4}+S_{3}+C_{3} & =M .
\end{aligned}
$$

Therefore, rearranging and regrouping using the associative and i commutative laws of addition, we have

$$
\begin{aligned}
C+C_{1}+C_{2}+C_{3}+C_{4}+S_{1}+S_{2}+S_{3}+S_{4} & = \\
\left(C_{1}+S_{1}+C_{2}\right)+\left(S_{4}+C+S_{2}\right)+\left(C_{4}+S_{3}+C_{3}\right) & = \\
M+M+M & =3 M .
\end{aligned}
$$

Hence,

$$
C+C_{1}+C_{2}+C_{3}+C_{4}+S_{1}+S_{2}+S_{3}+S_{4}=3 M,
$$

as claimed.

Theorem 2. The magic number of a 3×3 magic square is three times the number in the center square. That is, in the notation above, $M=3 C$, or equivalently, $C=\frac{1}{3} M$.
Proof. Since the sum of the entries in each row, column, or diagonal is the magic number M, we have

$$
\begin{aligned}
C_{1}+C+C_{3} & =M \\
C_{2}+C+C_{4} & =M \\
S_{1}+C+S_{3} & =M \\
S_{2}+C+S_{4} & =M .
\end{aligned}
$$

Therefore,

$$
\begin{array}{rl}
\left(C_{1}+C+C_{3}\right)+\left(C_{2}+C+C_{4}\right)+\left(S_{1}+C+S_{3}\right)+\left(S_{2}+C+S_{4}\right) & = \\
M+M+M & M+M
\end{array}
$$

Rearranging and regrouping using the associative and commutative laws of addition, we have

$$
(C+C+C)+\left(C+C_{1}+C_{2}+C_{3}+C_{4}+S_{1}+S_{2}+S_{3}+S_{4}\right)=4 M
$$

By Theorem 1, we can substitute $3 M$ for $C+C_{1}+C_{2}+C_{3}+C_{4}+S_{1}+S_{2}+S_{3}+S_{4}$ to obtain

$$
(C+C+C)+3 M=4 M
$$

and, subtracting $3 M$ from both sides of this equation, we have

$$
C+C+C=M .
$$

Hence $3 C=M$, or equivalently, $C=\frac{1}{3} M$ as claimed.

Theorem 3. The number in the center square of a 3×3 magic square is the median of the 9 entries in the square. That is, in the notation above, C is the median of the numbers $C, C_{1}, C_{2}, C_{3}, C_{4}, S_{1}, S_{2}, S_{3}$, and S_{4}.

Proof. We know that the sum of the entries in each row, column, or diagonal is the magic number M. By Theorem $2, M=3 C$, so substituting $3 C$ for M shows that the sum of the entries in each row, column, or diagonal is $3 C$. Hence we have

$$
\begin{aligned}
C_{1}+C+C_{3} & =3 C \\
C_{2}+C+C_{4} & =3 C \\
S_{1}+C+S_{3} & =3 C \\
S_{2}+C+S_{4} & =3 C .
\end{aligned}
$$

Subtracting C from both sides of each equation yields

$$
\begin{aligned}
C_{1}+C_{3} & =2 C \\
C_{2}+C_{4} & =2 C \\
S_{1}+S_{3} & =2 C \\
S_{2}+S_{4} & =2 C .
\end{aligned}
$$

Now if both of C_{1} and C_{3} are greater than C, then $C_{1}+C_{3}$ is greater than $C+C$, and if both of C_{1} and C_{3} are less than C, then $C_{1}+C_{3}$ is less than $C+C$. But the first equation above says that $C_{1}+C_{3}$ is equal to $2 C=C+C$. Therefore, either

1. one of C_{1} or C_{3} is greater than C and the other is less than C, or
2. both C_{1} and C_{3} are equal to C.

By the same argument, this holds for each of the pairs of numbers

$$
\left\{C_{1}, C_{3}\right\},\left\{C_{2}, C_{4}\right\},\left\{S_{1}, S_{3}\right\}, \text { and }\left\{S_{2}, S_{4}\right\}
$$

Therefore, exactly half of the numbers

$$
C_{1}, C_{2}, C_{3}, C_{4}, S_{1}, S_{2}, S_{3}, \text { and } S_{4}
$$

are greater than or equal to C and the other half are less than or equal to C. Thus, by the definition of median, C is the median of the numbers

$$
C, C_{1}, C_{2}, C_{3}, C_{4}, S_{1}, S_{2}, S_{3}, \text { and } S_{4}
$$

as claimed.

