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ABSTRACT

Let G be a finite group and let cd(G) be the set of irreducible ordinary character

degrees of G. The degree graph of G is the graph ∆(G) whose set of vertices is

the set of primes dividing degrees in cd(G), with an edge between primes p and q

if pq divides some degree in cd(G). We determine the graph ∆(G) for the finite

simple groups of types B`, C`, D` and 2D`; that is, for the simple orthogonal and

symplectic groups.

1. INTRODUCTION

A problem of interest in the character theory of finite groups is to
determine information that can be deduced about the structure of a finite
group G from its set of irreducible ordinary character degrees. One tool
that has been used to study the relationship between the structure of G
and its set of character degrees is the character degree graph ∆(G).

Let G be a finite group and let Irr(G) be the set of ordinary irreducible
characters of G. Denote the set of irreducible character degrees of G by
cd(G) = {χ(1)|χ ∈ Irr(G)} and let ρ(G) denote the set of primes dividing
degrees in cd(G). The character degree graph of G is the graph ∆(G)
whose set of vertices is ρ(G), with primes p, q in ρ(G) joined by an edge if
pq divides a for some character degree a ∈ cd(G).

The structure of this graph was first studied in the case where G is a
solvable group (see [15], [16], and [10], for example). Recently, Lewis and
the author have obtained some results on the structure of ∆(G) for arbi-
trary finite groups, essentially by using known results for solvable groups
to reduce the problem to the structure of ∆(G) for a finite simple group G
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(see [11] and [12]). It is therefore very useful to have as much information
about the graphs for the finite simple groups as possible. For example, we
obtained a bound on the diameter of ∆(G) in [12] using the fact proved
there that the only simple group whose graph is of diameter three is the
sporadic simple Janko group J1. We hope to improve on that bound, and
for this it will be necessary to know precisely which simple groups have
graphs of diameter two.

The character tables of the sporadic simple groups are known (see the
Atlas [4]) and the graphs for these groups are easily determined. These
graphs are described briefly in [12]. The graphs for the alternating groups
can be found using the Atlas character tables and the results of [1]. The
graphs for the simple groups of exceptional Lie type and for the simple
linear and unitary groups were determined by the author in [20] and [21],
respectively.

By the Classification of Finite Simple Groups, this leaves the graphs
for the simple groups of Lie type of the types B`, C`, D` and 2D`, that
is, the simple orthogonal and symplectic groups, to be determined. The
purpose of this paper is to complete the description of the degree graphs
of the finite simple groups by proving the following theorem.

Theorem 1.1. If G is a finite simple group of Lie type of one of the
types B` with ` > 2, C` with ` > 3, D` with ` > 4, or 2D` with ` > 4, then
∆(G) is a complete graph.

The restrictions on ` are due to isomorphisms of these groups with other
groups of Lie type already considered when ` is smaller. The groups con-
sidered in the theorem are the orthogonal group Ω2`+1(q), the symplectic
group PSp2`(q), and the orthogonal groups PΩ+

2`(q), PΩ−2`(q), respectively.
(In Atlas [4] notation, these are the groups O2`+1(q), S2`(q), O+

2`(q), and
O−2`(q), respectively.)

Theorem 1.1 and the results of [11], [12], [20], and [21] imply the fol-
lowing corollary.

Corollary 1.2. Let G be a finite simple group. The graph ∆(G) is
disconnected if and only if G ∼= PSL2(q) for some prime power q. If ∆(G)
is connected, then the diameter of ∆(G) is at most 3, and we have the
following.

1. The diameter of ∆(G) is 3 if and only if G ∼= J1.

2. The diameter of ∆(G) is 2 if and only if G is isomorphic to one of

(a) the sporadic Mathieu group M11 or M23,
(b) the alternating group A8,
(c) the Suzuki group 2B2(q2), where q2 = 22m+1 and m > 1,
(d) the linear group PSL3(q), where q > 2 is even or q is odd and

q − 1 is divisible by a prime other than 2 or 3, or
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(e) the unitary group PSU3(q), where q > 2 and q +1 is divisible by
a prime other than 2 or 3.

Otherwise, ∆(G) is a complete graph.

2. CHARACTER DEGREES

In this section, we describe the character degrees used in the proof of
Theorem 1.1. We denote by q a power of a prime p, Fqa is the field of qa

elements, and F∗qa its multiplicative group. An algebraic closure of the field
Fp of p elements will be denoted by Fp. We will denote by Φj the value of
the jth cyclotomic polynomial evaluated at q.

For notation, definitions, and basic properties of groups of Lie type, we
refer to [2] or [5]. We will denote by G a simple linear algebraic group of
adjoint type defined over Fp, and by F a Frobenius endomorphism of G so
that the set G = GF of fixed points is finite and the derived group L of
GF is a finite simple group. Let (G∗, F ∗) denote the dual of (G, F ), and
let G∗ = G∗F∗ .

Many of the character degrees will be determined using the following
lemma, which is a direct result of [5, Theorem 13.23, Remark 13.24] or [2,
§12.9] and is also stated in [21, Lemma 2.1].

Lemma 2.1. There is a bijection between the set of conjugacy classes
(s) of semisimple elements s of G∗F∗ and the set of geometric conjugacy
classes E(GF , (s)) of irreducible characters of GF . For a semisimple el-
ement s of G∗F∗ , there is a bijection ψs between the set of irreducible
characters in E(GF , (s)) and the set of unipotent characters of CG∗(s)F∗ .
Moreover, for χ ∈ E(GF , (s)), the degree of χ is

χ(1) =
|GF |p′

|CG∗(s)F∗ |p′ ψs(χ)(1).

The semisimple character corresponding to the conjugacy class of s is
the character χs such that ψs(χs) is the principal character of CG∗(s)F∗ .
The lemma says that the irreducible characters of G = GF are in bijection
with the set of pairs (χs, µs), where χs is the semisimple character corre-
sponding to (s) and µs is a unipotent character of CG∗(s)F∗ . The degree
of the character corresponding to (χs, µs) is χs(1)µs(1).

The semisimple elements of G∗F∗ and their centralizers are found us-
ing the results of [3]. The corresponding semisimple character degrees are
then computed using the results in [3, §8] or Lemma 2.1. The degrees of
the unipotent characters of the classical groups are computed using for-
mulas found in [2, §13.8]. The degree of a general irreducible character
corresponding to the pair (χs, µs) is then found using Lemma 2.1.
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Lemma 2.2. If G ∼= B`(q) is of adjoint type with ` > 3, then G has
irreducible characters χα, χc, and χ1 with degrees

χα(1) =
1
2
q4 (q`−2 − 1)(q`−1 − 1)(q`−1 + 1)(q` + 1)

(q2 − 1)2

χc(1) =
(q2 − 1)(q4 − 1) · · · (q2(`−1) − 1)(q2` − 1)

q` + 1

= (q2 − 1)(q4 − 1) · · · (q2(`−1) − 1)(q` − 1)

χ1(1) = q
(q4 − 1)(q6 − 1) · · · (q2(`−1) − 1)(q2` − 1)

q`−1 + 1

Proof. In this case, G ∼= SO2`+1(q) and the dual group is G∗ ∼= Sp2`(q).
The character χα is the unipotent character of G corresponding to the
symbol

α =
(

1 2 `
0 1

)
.

The degree χα(1) can be computed using the formula in [2, §13.8].
The character χc of G is the semisimple character corresponding to the

conjugacy class of a regular element s in the Coxeter torus of G∗, as in [11].
Such an element exists by [19, Theorem 1]. Explicitly, let η be a generator
of F∗q2` and let τ = ηq`−1 be of order q` + 1. The semisimple element s is
conjugate in G∗ to the matrix

s = diag[τ, τ−1, τ q, τ−q, τ q2
, τ−q2

, . . . , τ q`−1
, τ−q`−1

].

In the notation of [3], this conjugacy class corresponds to the pair of par-
titions λ =

(
1`

)
, µ = ∅ with η(1) = (`) and ξ(1) = ∅. By [3, §8], the

centralizer in G∗ is of order q` + 1 and the degree of χc is as claimed.
The character χ1 is obtained as follows. Let θ be a generator of F∗

q2(`−1)

and let γ = θq`−1−1 be of order q`−1 + 1. Let s1 ∈ G∗ be conjugate in G∗

to
s1 = diag[1, 1, γ, γ−1, γq, γ−q, γq2

, γ−q2
, . . . , γq`−2

, γ−q`−2
].

Thus s1 corresponds to a regular element in the Coxeter torus of Sp2(`−1)(q).
Such a regular element exists for all q by [19], [7], or direct computation
since ` > 3. Let χs1 be the semisimple character of G corresponding to the
class of s1.

In the notation of [3], the conjugacy class of s1 corresponds to the pair of
partitions λ =

(
1`−1

)
, µ =

(
11

)
with η(1) = (`−1), ξ(1) = ∅, and ζ(1) = (1).

The semisimple part of the centralizer in G∗ is of type C1(q) = A1(q) and
the p′-part of the order of the centralizer is (q2 − 1)(q`−1 + 1). In this
case, the centralizer has a unipotent character St of degree q, the Steinberg
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character. Let χ1 be the character of G corresponding to the pair (χs1 ,St).
The degree of χ1 then follows from Lemma 2.1.

Lemma 2.3. If G ∼= C`(q) is of adjoint type with ` > 4 and q is a
power of an odd prime, then G has irreducible characters χα, χc, and χ1

with degrees

χα(1) = q3 (q2(`−2) − 1)(q2` − 1)
(q2 − 1)2

χc(1) =
(q2 − 1)(q4 − 1) · · · (q2(`−1) − 1)(q2` − 1)

q` + 1

= (q2 − 1)(q4 − 1) · · · (q2(`−1) − 1)(q` − 1)

χ1(1) = q2 (q2 + 1)(q6 − 1)(q8 − 1) · · · (q2(`−1) − 1)(q2` − 1)
q`−2 + 1

.

Proof. In this case, G ∼= PCSp2`(q), the projective conformal symplectic
group, and the dual group is the spin group G∗ ∼= Spin2`+1(q), the simply
connected group of type B`. As C`(q) ∼= B`(q) when q is even, we will
assume q is odd.

The character χα is the unipotent character of G corresponding to the
symbol

α =
(

1 `− 1
1

)
.

The degree χα(1) can be computed using the formula in [2, §13.8].
The character χc of G is the semisimple character corresponding to

the conjugacy class of a regular element s in the Coxeter torus of G∗, as
in [11]. Such an element exists by [19, Theorem 1]. In the notation of [3],
this conjugacy class corresponds to the pair of partitions λ =

(
1`

)
, µ = ∅

with η(1) = (`) and ξ(1) = ∅. By [3, §8], the centralizer in G∗ is of order
q` + 1 and the degree χc(1) is as claimed.

The character χ1 is obtained as follows. Let s1 be an element of the
semisimple conjugacy class of G∗ corresponding to the pair of partitions
λ =

(
1`−2

)
, µ =

(
21

)
with η(1) = (` − 2), ξ(1) = ∅, ζ(2) = (1), and

ω(2) = ∅, in the notation of [3]. Thus s1 corresponds to a regular element
of the Coxeter torus of B`−2(q). Such a regular element exists for all
odd q by [19] or [7] since ` > 4. Let χs1 be the semisimple character of G
corresponding to the class of s1.

By [3, §8], the semisimple part of the centralizer in G∗ is of type D2(q)
and the p′-part of the order of the centralizer is (q2− 1)2(q`−2 +1). In this
case, the Steinberg character St of the centralizer has degree q2 and we let
χ1 be the character of G corresponding to the pair (χs1 , St). The degree
of χ1 then follows from Lemma 2.1.
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Lemma 2.4. Let G ∼= D`(q) be of adjoint type.

1. If ` = 4 and q > 3, then G has irreducible characters of degrees

χβ(1) =
1
2
q3Φ4

2Φ6, χc(1) = Φ4
1Φ

2
2Φ3Φ

2
4, and χ1(1) = q2Φ2

1Φ3Φ
2
4Φ6.

2. If ` = 5, then G has an irreducible character of degree

χ1(1) = q2Φ3
1Φ2Φ3Φ4Φ5Φ6Φ8.

3. If ` > 6, then G has irreducible characters χα, χc, and χ1 with degrees

χα(1) = q6 (q`−4 + 1)(q2(`−3) − 1)(q2(`−1) − 1)(q` − 1)
(q2 − 1)2(q4 − 1)

χc(1) =
(q2 − 1)(q4 − 1) · · · (q2(`−2) − 1)(q2(`−1) − 1)(q` − 1)

(q + 1)(q`−1 + 1)

χ1(1) = q2 (q2 + 1)(q6 − 1) · · · (q2(`−2) − 1)(q2(`−1) − 1)(q` − 1)
(q + 1)(q`−3 + 1)

.

Proof. In this case, G ∼= P(CO2`(q)
0) in the notation of [2, §1.19]. The

dual group is the spin group G∗ ∼= Spin2`(q), the simply connected group
of type D`.

The character χc is the semisimple character corresponding to the con-
jugacy class of a regular element of the Coxeter torus of G∗, as in [11]. Such
an element exists for all q when ` > 4 by [19, Theorem 1]. In the notation
of [3], this conjugacy class corresponds to the pair of partitions λ =

(
1`

)
,

µ = ∅ with η(1) = (`− 1, 1) and ξ(1) = ∅. By [3, §8], the centralizer in G∗

is of order (q`−1 + 1)(q + 1) and the degree χc(1) is as claimed in all cases.
The character χ1 is constructed as follows. Let s1 be an element of the

semisimple conjugacy class of G∗ corresponding to the pair of partitions
λ =

(
1`−2

)
, µ =

(
21

)
with η(1) = (` − 3, 1), ξ(1) = ∅, ζ(2) = (1), and

ω(2) = ∅, in the notation of [3]. Thus s1 corresponds to a regular element
of the Coxeter torus of D`−2(q). For ` > 6, such a regular element exists for
all q by [19] or [7]. Let χs1 be the semisimple character of G corresponding
to the class of s1.

By [3, §8], the semisimple part of the centralizer in G∗ is of type D2(q)
and the p′-part of the order of the centralizer is (q2 − 1)2(q`−3 + 1)(q + 1).
In this case, the Steinberg character St of the centralizer has degree q2 and
we let χ1 be the character of G corresponding to the pair (χs1 , St). The
degree of χ1 then follows from Lemma 2.1. By [14], the degree χ1(1) also
exists for q > 3 if ` = 4 and for all q if ` = 5.

For ` = 4, the character χβ is the unipotent character of G correspond-
ing to the symbol

β =
(

1 3
0 2

)
.
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For ` > 6, the character χα is the unipotent character of G corresponding
to the symbol

α =
(

1 `− 2
1 2

)
.

The degrees of these unipotent characters can be computed using the for-
mula in [2, §13.8].

Lemma 2.5. Let G ∼= 2D`(q2) be of adjoint type.

1. If ` = 4, then G has irreducible characters of degrees

χc(1) = Φ3
1Φ

3
2Φ3Φ4Φ6,

χ1(1) = q2Φ1Φ2Φ3Φ6Φ8,

χ2(1) = q3Φ1Φ3Φ4Φ8.

2. If ` > 5, then G has irreducible characters χα, χc, and χ1 with degrees

χα(1) =
1
2
q3 (q`−3 − 1)(q`−2 + 1)(q`−1 − 1)(q` + 1)

(q2 + 1)(q − 1)2

χc(1) = (q2 − 1)(q4 − 1) · · · (q2(`−2) − 1)(q2(`−1) − 1)

χ1(1) = q2 (q2 + 1)(q6 − 1) · · · (q2(`−2) − 1)(q2(`−1) − 1)(q` + 1)
q`−2 + 1

.

Proof. In this case, G ∼= P(CO−2`(q)
0) in the notation of [2, §1.19]. The

dual group is the spin group G∗ ∼= Spin−2`(q), the simply connected group
of type 2D`.

The character χα is the unipotent character of G corresponding to the
symbol

α =
(

0 2 `− 1
1

)
.

The degree χα(1) can be computed using the formula in [2, §13.8]. (This
character also exists when ` = 4, but is not useful in determining the degree
graph in that case.)

As in the previous cases, χc is the semisimple character corresponding
to the conjugacy class of a regular element of the Coxeter torus of G∗ used
in [11]. Such an element exists for all q when ` > 4 by [19, Theorem 1]. In
the notation of [3], this conjugacy class corresponds to the pair of partitions
λ =

(
1`

)
, µ = ∅ with η(1) = (`) and ξ(1) = ∅. By [3, §8], the centralizer

in G∗ is of order q` + 1 and the degree χc(1) is as claimed in all cases.
The character χ1 is obtained as follows. Let s1 be an element of the

semisimple conjugacy class of G∗ corresponding to the pair of partitions
λ =

(
1`−2

)
, µ =

(
21

)
with η(1) = (` − 2), ξ(1) = ∅, ζ(2) = (1), and
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ω(2) = ∅, in the notation of [3]. Thus s1 corresponds to a regular element
of the Coxeter torus of 2D`−2(q2). For ` > 6, such a regular element
exists for all q by [19] or [7]. Let χs1 be the semisimple character of G
corresponding to the class of s1. By [14], the degree χs1(1) also exists for
all q if ` = 4 or ` = 5.

By [3, §8], the semisimple part of the centralizer in G∗ is of type D2(q)
and the p′-part of the order of the centralizer is (q2− 1)2(q`−2 +1). In this
case, the Steinberg character St of the centralizer has degree q2 and we let
χ1 be the character of G corresponding to the pair (χs1 , St). The degree
of χ1 then follows from Lemma 2.1. Again the results of [14] show that
the character χ1 also exists for all q if ` = 4 or ` = 5, and the degree is as
claimed in these cases as well.

Finally, the character χ2 is constructed as follows when ` = 4. Let s2

be an element of the semisimple conjugacy class of G∗ corresponding to the
pair of partitions λ =

(
11, 31

)
, µ = ∅ with η(1) = ∅, ξ(1) = (1), η(3) = (1),

and ξ(3) = ∅, in the notation of [3]. Let χs2 be the semisimple character
of G corresponding to the class of s2.

By [3, §8], the semisimple part of the centralizer in G∗ is of type 2A2(q2)
and the p′-part of the order of the centralizer is (q2 − 1)2(q3 + 1). In this
case, the Steinberg character St of the centralizer has degree q3 and we let
χ2 be the character of G corresponding to the pair (χs2 , St). The degree
of χ2 then follows from Lemma 2.1. The results of [14] show that G has
(q − 1)2/2 characters of this type, so this is a degree of G for all q.

3. PROOF OF THEOREM 1.1

In this section we use the character degrees found in §2 to prove The-
orem 1.1. If n is a positive integer, we denote by π(n) the set of prime
divisors of n. As above, G will denote a finite group G = GF of ad-
joint type and L will denote the derived group of G, a finite simple group.
Since L is a nonabelian simple group, ρ(L) = π(|L|), by the Itô-Michler
theorem (see [17, Remarks 13.13]).

The degrees given in §2 are for the group G. If d = [G : L], χ is
an irreducible character of G, and µ is an irreducible constituent of the
restriction of χ to L, then by [9, Corollary 11.29], χ(1)/µ(1) divides d.
Moreover, by [2, §12.1], the degrees of the unipotent characters of G and L
are the same.

3.1. Groups of Type B`

Let G be of type B`, with ` > 2, so that G ∼= SO2`+1(q), L ∼= Ω2`+1(q),
and [G : L] = (2, q − 1) = d. The order of L is

|L| = 1
d
q`2(q2 − 1)(q4 − 1) · · · (q2(`−1) − 1)(q2` − 1),
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and it follows that ρ(L) consists of p and the primes dividing Φj or Φ2j for
j = 1, . . . , `.

First, let ` = 2 so that G = B2(q) ∼= C2(q) and L ∼= PSp4(q). The
character table of Sp4(q) is computed in [18] for odd q and in [6] for even q.

If q = 2, then L ∼= PSp4(2) is not simple. If q = 3, then |L| = 26 · 34 · 5
and, by the Atlas [4] character table, L has the character degree χ11(1) =
30 = 2 · 3 · 5, so ∆(L) is complete. Hence we may assume q > 3.

Since ` = 2, ρ(L) consists of the primes dividing one of q, Φ1, Φ2, or
Φ4. The tables in [18] and [6] show that for q > 3, L has the character
degrees

Φ2
1Φ

2
2, qΦ1Φ4, and qΦ2Φ4.

These are the degrees of χ1(j), χ7(k), and χ9(k), respectively, if q is odd,
and χ5, χ13, and χ11, respectively, if q is even. It follows easily that ∆(L)
is a complete graph in this case.

Now let ` > 3, so that G has the character degrees listed in Lemma 2.2.
Since χα is a unipotent character, the simple group L also has an irreducible
character of degree χα(1).

If q is even, then d = 1 and G = L. If q is odd, then d = 2. Note that
since ` > 3, χc(1) is divisible by q2 − 1 and χ1(1) is divisible by q2` − 1, so
also by q2 − 1. Thus both χc(1)/2 and χ1(1)/2 are divisible by 2. Hence
the degrees of the irreducible constituents of the restrictions of χc and χ1

to L are divisible by the same primes as χc and χ1.
As noted above,

χ1(1) = q
(q4 − 1)(q6 − 1) · · · (q2(`−1) − 1)(q2` − 1)

q`−1 + 1

is divisible by q2 − 1 and so by p and all Φj , Φ2j for j = 1, . . . , `, other
than Φ2(`−1). Therefore all primes in ρ(L) other than those dividing only
Φ2(`−1) are adjacent in ∆(L).

The degree

χc(1) = (q2 − 1)(q4 − 1) · · · (q2(`−1) − 1)(q` − 1)

is divisible by Φ2(`−1) and all primes in ρ(L) except p and primes dividing
only Φ2`. Hence the primes dividing Φ2(`−1) are adjacent in ∆(L) to all
primes except p and primes dividing Φ2`.

Finally, since ` > 3, the unipotent degree

χα(1) =
1
2
q4 (q`−2 − 1)(q`−1 − 1)(q`−1 + 1)(q` + 1)

(q2 − 1)2

is divisible by 1
2q4Φ2(`−1)Φ2`. Hence χα(1) is divisible by p and all primes

dividing Φ2(`−1) or Φ2`, except possibly 2 (when q is odd). But when q is
odd, both χ1(1) and χc(1) are divisible by 2, and therefore 2 is adjacent
in ∆(L) to all primes. Hence all primes dividing Φ2(`−1) are adjacent to p
and the primes dividing Φ2`, and so ∆(L) is complete.
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3.2. Groups of Type C`

Let G be of type C`, with ` > 2, so that G ∼= PCSp2`(q), L ∼= PSp2`(q),
and [G : L] = (2, q − 1) = d. If q is even, then C`(q) ∼= B`(q) and we have
shown that the degree graph of a simple group of type B` is complete. We
may therefore assume here that q is odd. Moreover, we have C2(q) ∼= B2(q)
for any q, hence we may assume ` > 3.

First, let ` = 3 so that G ∼= PCSp6(q),

|G| = q9(q2 − 1)(q4 − 1)(q6 − 1) = q9Φ3
1Φ

3
2Φ3Φ4Φ6,

and [G : L] = d = 2. The character table of CSp6(q) was computed by
Lübeck in [13] and is available in the CHEVIE system [8].

Since q > 2, the CHEVIE character table shows that CSp6(q) has an
irreducible character χ = χ82(1, 1, q − 2) whose kernel contains the center
of CSp6(q). Hence we may view χ as a character of G. The degree of χ
is χ(1) = qΦ1Φ2Φ3Φ4Φ6, and the degree of a constituent of the restriction
χL of χ to L is χ(1) or χ(1)/2. Since q is odd, χ(1) is divisible by 4, so χ(1)
and χ(1)/2 are divisible by the same primes. It follows that a constituent
of χL is divisible by every prime in ρ(L) and ∆(L) is complete in this case.

We may now assume that q is odd and ` > 4, so that G ∼= PCSp2`(q)
and [G : L] = d = 2. The order of L is

|L| = 1
2
q`2(q2 − 1)(q4 − 1) · · · (q2(`−1) − 1)(q2` − 1),

and it follows that ρ(L) consists of p and the primes dividing Φj or Φ2j for
j = 1, . . . , `.

Since ` > 4, G has the character degrees listed in Lemma 2.3. As
χα is unipotent, L also has a unipotent character of degree χα(1). Also,
[G : L] = 2 implies that irreducible constituents of (χ1)L and (χc)L have
degrees divisible by χ1(1)/2 and χc(1)/2, respectively. We have that χ1(1)
is divisible by q2`−1 and χc(1) is divisible by q2−1, hence both degrees are
divisible by 4. It follows that L has irreducible characters whose degrees
are divisible by the same primes as χα(1), χ1(1), and χc(1).

As noted above,

χ1(1) = q2 (q2 + 1)(q6 − 1)(q8 − 1) · · · (q2(`−1) − 1)(q2` − 1)
q`−2 + 1

is divisible by q2`−1, hence by Φ1 and Φ2. It follows that χ1(1) is divisible
by p and all Φj , Φ2j for j = 1, . . . , `, other than Φ2(`−2). Hence all primes
in ρ(L) except those dividing only Φ2(`−2) are adjacent in the graph ∆(L).

The degree

χc(1) = (q2 − 1)(q4 − 1) · · · (q2(`−1) − 1)(q` − 1)
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is divisible by Φj for j = 1, . . . , ` and by Φ2j for j = 1, . . . , ` − 1. Hence
primes dividing Φ2(`−2) are adjacent to all primes in ρ(L) except p and
primes dividing Φ2`.

Finally, since ` > 4, the degree

χα(1) = q3 (q2(`−2) − 1)(q2` − 1)
(q2 − 1)2

is divisible by p, Φ2(`−2), and Φ2`. Hence primes dividing Φ2(`−2) are
adjacent to p and primes dividing Φ2` and it follows that ∆(L) is a complete
graph in this case.

3.3. Groups of Type D`

Let G be of type D` with ` > 4, so that G ∼= P(CO2`(q)
0) (in the

notation of [2, §1.19]), L ∼= PΩ+
2`(q), and [G : L] = (4, q` − 1) = d.

First, let ` = 4 so that L ∼= PΩ+
8 (q), or L ∼= O+

8 (q) in Atlas [4] notation.
If q = 2, then |L| = 212 · 35 · 52 · 7 and by the character table of L in [4],
L has an irreducible character χ11 of degree χ11(1) = 210 = 2 · 3 · 5 · 7.
Similarly, if q = 3, then |L| = 212 · 312 · 52 · 7 · 13 and L has the degree
χ17(1) = 5460 = 22 · 3 · 5 · 7 · 13. Hence ∆(L) is a complete graph if q = 2
or q = 3.

We now assume ` = 4 and q > 3. In this case,

|G| = q12(q2 − 1)(q4 − 1)(q6 − 1)(q4 − 1) = q12Φ4
1Φ

4
2Φ3Φ

2
4Φ6

and by Lemma 2.4, G has character degrees

χ1(1) = q2Φ2
1Φ3Φ

2
4Φ6, χc(1) = Φ4

1Φ
2
2Φ3Φ

2
4, and χβ(1) =

1
2
q3Φ4

2Φ6.

Note that when d 6= 1, q is odd and each of these degrees is divisible
by 8. Thus, since [G : L] = (4, q4 − 1) = 4 when q is odd, the degrees of
the irreducible constituents of the restrictions of these characters to L are
divisible by the same primes as the degrees of G.

Now χ1(1) is divisible by all primes in ρ(L) except those dividing Φ2.
Each of χc(1) and χβ(1) is divisible by Φ2, and every prime in ρ(L) divides
at least one of these degrees. Hence ∆(L) is a complete graph when ` = 4.

We next assume ` = 5. In this case,

|G| = q20(q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1)(q5 − 1) = q20Φ5
1Φ

4
2Φ3Φ

2
4Φ5Φ6Φ8

and by Lemma 2.4, G has character degree χ1(1) = q2Φ3
1Φ2Φ3Φ4Φ5Φ6Φ8.

Again, when d 6= 1, this degree is divisible by 8 and so L has an irreducible
character whose degree is divisible by the same primes as χ1(1). All primes
in ρ(L) divide this degree, hence ∆(L) is complete when ` = 5.
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We may now assume that ` > 6. The order of L is

|L| = 1
d
q`(`−1)(q2 − 1)(q4 − 1) · · · (q2(`−1) − 1)(q` − 1),

and it follows that ρ(L) consists of p, the primes dividing Φj or Φ2j for
j = 1, . . . , `− 1, and the primes dividing Φ`.

Since ` > 6, G has the character degrees listed in Lemma 2.4, part (3).
The character χα is unipotent and therefore L also has an irreducible unipo-
tent character of degree χα(1). Moreover, χ1(1) and χc(1) are both divisible
by q2(`−2)− 1, hence both are divisible by 8 when q is odd. We have d = 1
when q is even and d = 2 or d = 4 when q is odd. Thus, in any case, L
has irreducible characters whose degrees are divisible by the same primes
as χ1(1), χc(1), and χα(1).

The degree

χ1(1) = q2 (q2 + 1)(q6 − 1) · · · (q2(`−2) − 1)(q2(`−1) − 1)(q` − 1)
(q + 1)(q`−3 + 1)

is divisible by all primes in ρ(L) except those dividing only Φ2(`−3). The
degree

χc(1) =
(q2 − 1)(q4 − 1) · · · (q2(`−2) − 1)(q2(`−1) − 1)(q` − 1)

(q + 1)(q`−1 + 1)

is divisible by Φ2(`−3) and all other primes in ρ(L) except p and those
primes dividing only Φ2(`−1). Therefore it remains to show primes dividing
Φ2(`−3) are adjacent to p and primes dividing Φ2(`−1). Finally, since ` > 6,
the degree

χα(1) = q6 (q`−4 + 1)(q2(`−3) − 1)(q2(`−1) − 1)(q` − 1)
(q2 − 1)2(q4 − 1)

is divisible by p, Φ2(`−3), and Φ2(`−1). Therefore ∆(L) is a complete graph
in this case as well.

3.4. Groups of Type 2D`

Let G be of type 2D` with ` > 4, so that G ∼= P(CO−2`(q)
0) (in the

notation of [2, §1.19]), L ∼= PΩ−2`(q), and [G : L] = (4, q` + 1) = d.
First, let ` = 4 so that L ∼= PΩ−8 (q), or L ∼= O−8 (q) in Atlas [4] notation.

In this case,

|G| = q12(q2 − 1)(q4 − 1)(q6 − 1)(q4 + 1) = q12Φ3
1Φ

3
2Φ3Φ4Φ6Φ8

and [G : L] = (4, q4+1) = d is 1 if q is even and 2 if q is odd. By Lemma 2.5,
G has character degrees

χ1(1) = q2Φ1Φ2Φ3Φ6Φ8,

χc(1) = Φ3
1Φ

3
2Φ3Φ4Φ6,

χ2(1) = q3Φ1Φ3Φ4Φ8.
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If q is odd, each of these degrees is divisible by 8, hence L has irreducible
characters whose degrees are divisible by the same primes as χ1(1), χc(1),
and χ2(1).

The degree χ1(1) is divisible by all primes in ρ(L) except those dividing
only Φ4, while χc(1) is divisible by Φ4 and all other primes except p and
the primes dividing Φ8. It remains only to show that primes dividing Φ4

are adjacent to p and the primes dividing Φ8. Since χ2(1) is divisible by p,
Φ4, and Φ8, ∆(L) is a complete graph in this case.

We now assume ` > 5. The order of L is

|L| = 1
d
q`(`−1)(q2 − 1)(q4 − 1) · · · (q2(`−1) − 1)(q` + 1),

and it follows that ρ(L) consists of p, the primes dividing Φj or Φ2j for
j = 1, . . . , `− 1, and the primes dividing Φ2`.

Since ` > 5, G has the character degrees listed in Lemma 2.5, part (2).
The character χα is unipotent. Hence L also has an irreducible unipotent
character of degree χα(1). Moreover, χ1(1) and χc(1) are both divisible by
q2(`−1) − 1, hence both are divisible by 8 when q is odd. We have d = 1
when q is even and d = 2 or d = 4 when q is odd. Thus, in any case, L
has irreducible characters whose degrees are divisible by the same primes
as χ1(1), χc(1), and χα(1).

The degree

χ1(1) = q2 (q2 + 1)(q6 − 1) · · · (q2(`−2) − 1)(q2(`−1) − 1)(q` + 1)
q`−2 + 1

is divisible by all primes in ρ(L) except those dividing only Φ2(`−2). The
degree

χc(1) = (q2 − 1)(q4 − 1) · · · (q2(`−2) − 1)(q2(`−1) − 1)

is divisible by Φ2(`−2) and all other primes in ρ(L) except p and the primes
dividing Φ2`. Hence it remains only to prove that primes dividing Φ2(`−2)

are adjacent to p and the primes dividing Φ2`. Finally, since ` > 5, the
degree

χα(1) =
1
2
q3 (q`−3 − 1)(q`−2 + 1)(q`−1 − 1)(q` + 1)

(q2 + 1)(q − 1)2

is divisible by 1
2q3Φ2(`−2)Φ2`. Hence χα(1) is divisible by p and all primes

dividing Φ2(`−2) or Φ2`, except possibly 2 (when q is odd). But when q is
odd, both χ1(1) and χc(1) are divisible by 2, and therefore 2 is adjacent
in ∆(L) to all primes. Hence all primes dividing Φ2(`−2) are adjacent to p
and the primes dividing Φ2`, and ∆(L) is a complete graph in this case as
well.

This completes the proof of Theorem 1.1.
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